
CS533 HW1
Devrim Şahin

1. For Q1:
Rank 1 2 3 4 5 6 7 8 9 10

Relvnt + + +

Prec. 0 1/2 1/3 2/4 2/5 3/6 3/7 3/8 3/9 3/10

Recall 0 1/15 1/15 2/15 2/15 3/15 3/15 3/15 3/15 3/15

For Q2:
Rank 1 2 3 4 5 6 7 8 9 10

Relvnt + + + +

Prec. 1/1 1/2 2/3 2/4 3/5 3/6 3/7 3/8 4/9 4/10

Recall 1/4 1/4 2/4 2/4 3/4 3/4 3/4 3/4 4/4 4/4

a. Then the interpolated precision tables are:

For Q1:
Recall 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Prec. 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

For Q2:
Recall 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Prec. 1.00 1.00 1.00 1.00 1.00 0.67 0.67 0.67 0.60 0.60 0.44

Average:
Recall 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Prec. 0.75 0.75 0.75 0.50 0.50 0.33 0.33 0.33 0.30 0.30 0.22

Below is the plot. Blue is Q1, Orange is Q2. Yellow is the average:

0 0,2 0,4 0,6 0,8 1 1,2
0

0,5

1

1,5

Recall

P
re
ci
s
io
n

b. Q1: 15 relevant documents. 15 results were never returned, but we can extrapolate and
say that for 15 results, 3 relevant documents were obtained. Therefore R-precision is 3/15 = 0.2

 Q2: 4 relevant docs. in total; 2 relevant documents in the first 4 results; R-prec = 2/4 = 0.5
 Average R-prec: (0.2 + 0.5)/2 = 0.35

c. MAP for Q1 = (0.5 + 0.5 + 0.5)/15 = 0.10
 MAP for Q2 = (1 + 2/3 + 3/5 + 4/9)/4 = 0.67
 Avg. = 0.38

2. Assume we have 2 machines, M1 and M2. In a possible document-based partitioning scheme
d1, d2 and d3 will be stored in M1 whereas d4, d5 and d6 will be sent to M2. Whereas, in term-based
partitioning, we will make the assignment of terms instead, such that t1..3 -> M1 and t4..6 -> M2.

Or, we can partition them more cleverly, easing the search process; such that d1,5,6 -> M1 and
vice versa. This way we can assert that all terms in M1 have t6, whereas none in M2 has. A similar
thing can be done in term-based partitioning for d1 by assigning t1,5,6 to M1.

In cases where this is not possible (which generally is the case), one should distribute the
query to all machines and finally merge results. The inverted index constructed on terms for the
document-based partitioning scheme will require looking for ti in both M1 and M2, then merging the
list of documents. For the term-based partitioning scheme, we should find the machine in which t i is
stored and get the entire list of documents.

According to Zobel et al., document-based partitioning typically results in a better balance
of workload than does term partitioning and achieves superior query throughput. Furthermore, term-
based partitioning requires the exchanging of index fragments, which makes it immediately
noticeable when one of the machines is down. Therefore document-based partitioning seems more
plausible.

3. a.
term a: <1, 5> <4, 1> <9, 3> <10, 4> <12, 4> <17, 4> <18, 3>

<22, 2> <24, 4> <33, 4> <38, 5> <43, 5> <55, 3><64, 2>
<68, 4> <72, 5> <75, 1> <88, 2>

term b: <12, 3> <40, 2> <66, 1>

Constructing chunks of 4 entries with descending order w.r.t. the document number:

term a:
chunk1: <10, 4> <9, 3> <4, 1> <1, 5>
chunk2: <18, 3> <17,4> <12, 4> <12, 4>
chunk3: <38, 5> <33, 4> <24, 4> <22, 2>
chunk4: <68, 4> <64, 2> <55, 3> <43,5>
chunk5: <88, 2> <75, 1> <72, 5>

term b:
chunk1: <66, 1> <40, 2> <12, 3>

The chunking scheme is as follows: Given a document di, we first check chunk1. For
instance, assume we are looking for term a. Checking chunk1, if di > 10, we can skip the chunk and
advance to chunk2. Otherwise, we should sequentially check chunk1 and stop there (Note that if
di=10 we should also check chunk2, because of possible repetitions). We apply the same pruning
approach to every chunk using the first term in the chunk. Given that there are 19 documents
containing term a, and 3 terms containing term b; without a skipping strategy we would make 19*3
= 57 comparisons for “term a AND term b” query. With the given skipping strategy, however, we
can start from term-b and do this:

for 66:

compare chunk1: 66>10 skip
compare chunk2: 66>18 skip
compare chunk3: 66>38 skip

compare chunk4: 66<68 check
compare 66!=64, also 66>64 therefore break

skip chunk5 because all elements in it are greater than 68 anyway,
and we are looking for 66

(5 comparisons with no matches)

Similarly;

for 40: 7 comparisons with no matches
for 12: 5 comparisons with 2 matches

In total we make 17 comparisons with skipping, and 57 comparisons without.

b. 1. <4, 1> <75, 1> <22, 2> <64, 2> <88, 2> <9, 3> <18, 3> <55, 3> <10, 4>
<12, 4> <17, 4> <24, 4> <33, 4> <68, 4> <1, 5> <38, 5> <43, 5> <72, 5>

 2. <1:2:4,75> <2:3:22,64,88> <3:3:9,18,55> <4:6:10,12,17,24,33,68> <5:4:1,38,43,72>
And if we take differences as well for further compression:
<1:2:4,71> <2:3:22,42,24> <3:3:9,9,37> <4:6:10,2,5,7,9,35> <5:4:1,37,5,29>

Ordering terms by frequency increases performance because one can disregard terms with
frequencies below a level, greatly reducing disk I/O. Prefix construction is costy, but allows further
compression by avoiding repetition of frequency values.

4. In Cranfield approach to IR experimens, we treat the evaluation problem as if we work in a
laboratory environment. That is, we have a test collection consisting of a set of documents, a set of
queries, and relevant documents for each query. One example to this is the TREC test collection. To
determine relevant documents for each query, one can devise a pooling approach, in which a set of
assessers (or 'annotators') deem the top results retrieved by several information retrieval systems for
a given query relevant or irrelevant. The union of the relevant document set is then picked as the
ground truth for future experiments.

5. The empirical investigations that were conducted by Justin Zobel in the relevant paper show
that TREC results that are obtained through the pooling approach are reliable in terms of measured
relative performance; but fails to meet demands in terms of recall; that is, many relevant documents
were amiss in the merged result sets.

bpref is the binary preference based evaluation measure that considers whether relevant
documents are ranked above irrelevant ones. bpref can be used once relevant and irrelevant items
are defined, that is, a relevance judgement must be passed on a pool of IR systems by assessers, as
defined above.

6. a. Unlike traditional IR environments, a data stream is potentially unbounded; that is, there
might be massive amount of data arriving sequentially, whereas in the traditional IR environments
there exists a finite dataset in which the instances can be processed in an order defined by the
algorithm rather than the stream itself. Furthermore, traditional IR environments have fairly static
probability distributions, although that is not necessarily the case for a data stream.

b. A time window is a frame in which recent instances are stored. The definition of 'recency'
here defines the characteristics of the time window. For example we can define a time window that
stores the last 10 elements. Similarly, we can limit our time window with respect to the timestamp
of the packages that arrive and say that we want to keep the instances that arrived in the last 3
seconds. One of the advantages of keeping a time window is that it allows our operator to be

stateful. Also, under certain assumptions, one can treat the dataset inside a time window as if it was
a traditional IR dataset.

c. Data abstraction in this concept refers to on-line summarization of the data that is input to
the stream such that the produced summary represents the necessary information for the clustering
system without having the satellite data.

d. Feature vectors: Also named as the Clustering Feature (CF) vector, it has 3 components:

N: the number of data objects
LS: the linear sum of data objects (n-dim array)
SS: the squared sum of data objects (n-dim array)

These are selected for being common terms in the equations calculating cluster centroids,
radii and diameters:

e. Since the data abstraction step provides summary statistics, of which the size is much less
than the streaming data; one can employ offline algorithms such as k-means to work on the
streaming data that is chunked into windows.

8. a. Nominal data is a form of discrete data where possible values are finite and unordered.
That is, the user chooses one of the options, of which the order does not mean anything. An
example is gender: M/F (this is also called dichotomous, for it has only two categories). Another
example is “your favourite car brand”. There are also Ordinal, Interval and Ratio data. Below is a
chart depicting their features:

b. The data in a binary D matrix is ordinal, for the set of terms are discrete and their order is
important.

c. We cannot, because we do not know how similar each of the nominal values to each other.
Bin Wang suggested in his paper “A New Clustering Algorithm On Nominal Data Sets” to use
'Olary code' (a binary sequence which has k+1 possible values given k bits) for assigning numeric
values to nominal data. Then using this Olary transform, he applies an algorithm similar to k-means,
however uses the Hamming distance between two Olary codes instead of the Euclidean distance.

