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1. For Q1:
Rank 1 2 3 4 5 6 7 8 9 10

Relvnt + + +

Prec. 0 1/2 1/3 2/4 2/5 3/6 3/7 3/8 3/9 3/10

Recall 0 1/15 1/15 2/15 2/15 3/15 3/15 3/15 3/15 3/15

For Q2:
Rank 1 2 3 4 5 6 7 8 9 10

Relvnt + + + +

Prec. 1/1 1/2 2/3 2/4 3/5 3/6 3/7 3/8 4/9 4/10

Recall 1/4 1/4 2/4 2/4 3/4 3/4 3/4 3/4 4/4 4/4

a. Then the interpolated precision tables are:

For Q1:
Recall 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Prec. 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

For Q2:
Recall 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Prec. 1.00 1.00 1.00 1.00 1.00 0.67 0.67 0.67 0.60 0.60 0.44

Average:
Recall 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Prec. 0.75 0.75 0.75 0.50 0.50 0.33 0.33 0.33 0.30 0.30 0.22

Below is the plot. Blue is Q1, Orange is Q2. Yellow is the average:

0 0,2 0,4 0,6 0,8 1 1,2
0

0,5

1

1,5

Recall

P
re
ci
s
io
n

b. Q1: 15 relevant documents. 15 results were never returned, but we can extrapolate and 
say that for 15 results, 3 relevant documents were obtained. Therefore R-precision is 3/15 = 0.2

    Q2: 4 relevant docs. in total; 2 relevant documents in the first 4 results; R-prec = 2/4 = 0.5
    Average R-prec: (0.2 + 0.5)/2 = 0.35



c. MAP for Q1 = (0.5 + 0.5 + 0.5)/15 = 0.10
    MAP for Q2 = (1 + 2/3 + 3/5 + 4/9)/4 = 0.67
    Avg. = 0.38 

2. Assume we have 2 machines, M1 and M2. In a possible document-based partitioning scheme 
d1, d2 and d3 will be stored in M1 whereas d4, d5 and d6 will be sent to M2. Whereas, in term-based 
partitioning, we will make the assignment of terms instead, such that t1..3 -> M1 and t4..6 -> M2.

Or, we can partition them more cleverly, easing the search process; such that d1,5,6 -> M1 and 
vice versa. This way we can assert that all terms in M1 have t6, whereas none in M2 has. A similar 
thing can be done in term-based partitioning for d1 by assigning t1,5,6 to M1.

In cases where this is not possible  (which generally is the case),  one should distribute the 
query to all machines and finally merge results.  The inverted index constructed on terms for the 
document-based partitioning scheme will require looking for ti in both M1 and M2, then merging the 
list of documents. For the term-based partitioning scheme, we should find the machine in which t i is 
stored and get the entire list of documents.

According to Zobel et al., document-based partitioning typically results in a better balance 
of workload than does term partitioning and achieves superior query throughput. Furthermore, term-
based  partitioning  requires  the  exchanging  of  index  fragments,  which  makes  it  immediately 
noticeable when one of the machines is down. Therefore document-based partitioning seems more 
plausible.

3. a.
term a: <1, 5> <4, 1> <9, 3> <10, 4> <12, 4> <17, 4> <18, 3>

<22, 2> <24, 4> <33, 4> <38, 5> <43, 5> <55, 3><64, 2>
<68, 4> <72, 5> <75, 1> <88, 2>

term b: <12, 3> <40, 2> <66, 1>

Constructing chunks of 4 entries with descending order w.r.t. the document number:

term a:
chunk1: <10, 4> <9, 3> <4, 1> <1, 5>
chunk2: <18, 3> <17,4> <12, 4> <12, 4>
chunk3: <38, 5> <33, 4> <24, 4> <22, 2>
chunk4: <68, 4> <64, 2> <55, 3> <43,5>
chunk5: <88, 2> <75, 1> <72, 5>

term b:
chunk1: <66, 1> <40, 2> <12, 3>

The  chunking  scheme  is  as  follows:  Given  a  document  di,  we first  check  chunk1.  For 
instance, assume we are looking for term a. Checking chunk1, if di > 10, we can skip the chunk and 
advance to chunk2. Otherwise, we should sequentially check chunk1  and stop there  (Note that if 
di=10 we should also check chunk2, because of possible repetitions). We apply the same pruning 
approach to every chunk using the first  term in the chunk.  Given that there are  19 documents 
containing term a, and 3 terms containing term b; without a skipping strategy we would make 19*3 
= 57 comparisons for “term a AND term b” query. With the given skipping strategy, however, we 
can start from term-b and do this:

for 66:

compare chunk1: 66>10 skip
compare chunk2: 66>18 skip
compare chunk3: 66>38 skip



compare chunk4: 66<68 check
compare 66!=64, also 66>64 therefore break

skip chunk5 because all elements in it are greater than 68 anyway,
and we are looking for 66

(5 comparisons with no matches)

Similarly;

for 40: 7 comparisons with no matches
for 12: 5 comparisons with 2 matches

In total we make 17 comparisons with skipping, and 57 comparisons without.

b. 1. <4, 1> <75, 1> <22, 2> <64, 2> <88, 2> <9, 3> <18, 3> <55, 3> <10, 4>
<12, 4> <17, 4> <24, 4> <33, 4> <68, 4> <1, 5> <38, 5> <43, 5> <72, 5>

     2. <1:2:4,75> <2:3:22,64,88> <3:3:9,18,55> <4:6:10,12,17,24,33,68> <5:4:1,38,43,72>
And if we take differences as well for further compression:
<1:2:4,71> <2:3:22,42,24> <3:3:9,9,37> <4:6:10,2,5,7,9,35> <5:4:1,37,5,29>

Ordering terms by frequency increases performance because one can disregard terms with 
frequencies below a level, greatly reducing disk I/O. Prefix construction is costy, but allows further 
compression by avoiding repetition of frequency values.

4. In Cranfield approach to IR experimens, we treat the evaluation problem as if we work in a 
laboratory environment. That is, we have a test collection consisting of a set of documents, a set of  
queries, and relevant documents for each query. One example to this is the TREC test collection. To 
determine relevant documents for each query, one can devise a pooling approach, in which a set of 
assessers (or 'annotators') deem the top results retrieved by several information retrieval systems for 
a given query relevant or irrelevant.  The union of the relevant document set is then picked as the 
ground truth for future experiments.

5. The empirical investigations that were conducted by Justin Zobel in the relevant paper show 
that TREC results that are obtained through the pooling approach are reliable in terms of measured 
relative performance; but fails to meet demands in terms of recall; that is, many relevant documents 
were amiss in the merged result sets.

bpref is  the  binary preference  based evaluation  measure that  considers  whether  relevant 
documents are ranked above irrelevant ones.  bpref can be used once relevant and irrelevant items 
are defined, that is, a relevance judgement must be passed on a pool of IR systems by assessers, as 
defined above.

6. a. Unlike traditional IR environments, a data stream is potentially unbounded; that is, there 
might be massive amount of data arriving sequentially, whereas in the traditional IR environments 
there exists a  finite  dataset  in which the instances can be processed in an order defined by the 
algorithm rather than the stream itself. Furthermore, traditional IR environments have fairly static 
probability distributions, although that is not necessarily the case for a data stream.

b. A time window is a frame in which recent instances are stored. The definition of 'recency' 
here defines the characteristics of the time window. For example we can define a time window that 
stores the last 10 elements. Similarly, we can limit our time window with respect to the timestamp 
of the packages that arrive and say that we want to keep the instances that arrived in the last 3 
seconds.  One of the advantages of keeping a time window is that it  allows our operator  to be 



stateful. Also, under certain assumptions, one can treat the dataset inside a time window as if it was 
a traditional IR dataset.

c. Data abstraction in this concept refers to on-line summarization of the data that is input to 
the stream such that the produced summary represents the necessary information for the clustering 
system without having the satellite data.

d. Feature vectors: Also named as the Clustering Feature (CF) vector, it has 3 components:

N: the number of data objects
LS: the linear sum of data objects (n-dim array)
SS: the squared sum of data objects (n-dim array)

These are selected for being common terms in the equations calculating cluster centroids, 
radii and diameters:

e. Since the data abstraction step provides summary statistics, of which the size is much less 
than  the  streaming  data;  one  can  employ offline  algorithms  such  as  k-means  to  work  on  the 
streaming data that is chunked into windows.

8. a. Nominal data is a form of discrete data where  possible values are finite and unordered. 
That  is,  the  user  chooses  one of  the  options,  of  which  the  order  does  not  mean anything.  An 
example is  gender: M/F (this is also called  dichotomous, for it has only two categories).  Another 
example is “your favourite car brand”. There are also Ordinal, Interval and Ratio data. Below is a 
chart depicting their features:

b. The data in a binary D matrix is ordinal, for the set of terms are discrete and their order is 
important.

c. We cannot, because we do not know how similar each of the nominal values to each other. 
Bin Wang suggested  in his paper “A New Clustering Algorithm On Nominal Data Sets”  to use 
'Olary code' (a binary sequence which has k+1 possible values given k bits) for assigning numeric 
values to nominal data. Then using this Olary transform, he applies an algorithm similar to k-means, 
however uses the Hamming distance between two Olary codes instead of the Euclidean distance. 


