
CS 533 Spring 2014
Assignment 3
Devrim Şahin

1.

Using Dice coefficient

f(X, Y) = 2 |X ∩ Y| / (|X| + |Y|)

we can calculate and sort pairwise similarities as below:

CD BD AE DE BC AB BE AC AD CE
0.67 0.57 0.50 0.50 0.33 0.29 0.29 0.00 0.00 0.00

Then, starting from CD, we incrementally add similarities to the dendogram:

Then we add BD. Since this is the single-link dendogram; we do not wait to add B to CD cluster 
until there is a BC similarity (unlike complete-link):

Similarly, we keep adding; and we have a complete dendogram at the 4th iteration already:

Note that none of the connections is above the threshold; therefore all points are connected into one 
cluster: ABCDE.



2.

Similarly, add CD:

Next is BD, but we cannot add it to the CD cluster because we do not know the BC relation yet. 
Since this is the complete-link dendogram, we should know every pairwise similarity between two 
clusters  in  order  to  combine  them in  a  similarity  value,  unlike  the  single-link  case  where  we 
immediately merge. Just keep the BD relation in mind (shown with dashed lines):

AE:

DE (again, no connection because we don't know AD, AC, CE):



Adding BC, now we have a complete list of relations between B and CD clusters (we know both 
BC and CD). Therefore we can use the minimum of these (BC = 0.33) to combine the two clusters. 
Note that we have already passed the threshold, and any similarity after this will be smaller than the 
threshold, so we can actually stop here for the clustering purposes:

Below is the full dendogram  (observe  that we should visit every pairwise similarity to construct 
this, as shown by the dashed lines):

C
Note that in this case we have 3 clusters instead of 1: AE, CD and B.

3. a.

C =

0.50 0.25 0.00 0.00 0.25
0.10 0.63 0.07 0.13 0.07
0.00 0.33 0.33 0.33 0.00
0.00 0.33 0.17 0.33 0.17
0.25 0.17 0.00 0.17 0.42

b. Sum up the diagonal entries -> 0.50 + 0.63 + 0.33 + 0.33 + 0.42 = 2.22 -> nc = 2.

c. Seed powers are calculated via pi = cii (1 – cii) / αi. Then pi values are 0.50, 1.16, 0.22, 
0.44, 0.49 respectively for documents 1 to 5.

d. Since the seed power formula is a multiplication of coupling factor, decoupling factor and 
depth of indexing; we want to pick documents with highest pi, so that out cluster seeds can be both 
similar to other items and dissimilar from each other. We are to pick the two documents with 
maximum pi, because nc = 2. Then our cluster seeds should be d2 (p2=1.16) and d1 (p1=0.50).

e. Below is the IISD:

t1 => <1, 1>, <2, 1> t2 => <2, 1> t3 => <2, 1>
t4 => <1, 1> t5 => <2, 1> t6 => <2, 1>



f. d5 = {t3, t4}.
Start with c51 = 0, c52 = 0

Take t3 from IISD: <2,1>

c52 = c52 + α5 (d53 β3 d23) = 0.17

Take t4 from IISD: <1,1>

c51 = c51 + α5 (d54 β4 d14) = 0.25

 Then, c51 = 0.25 > 0.17 = c52; therefore d5 belongs to cluster of d1.

g. Since we already have the C matrix, I avoid the calculations in part f:
d3 -> 2nd cluster
d4 -> 2nd cluster
d5 -> 1st cluster

Clusters, using the terminology in Q1, are AE and BCD. When we cut the complete-
link dendogram from a threshold between 0.00 and 0.33, we obtain the same clustering.

h. (1) We have to find all cii values: m
assign all non-seeds to seeds: (m-nc) nc

in total: m + m nc – nc
2

     (2) m = 5, nc = 2; m+(m-nc)nc = 11.

4. a. If all documents are unique, then two different documents will never have a common 
term. Thus, either dik or djk will be zero; meaning that dik*djk = 0 only when i = j. Therefore

c ij=α i∑
k=1

n

βk (d jk d ik )=αi∑
k=1

n

βk 0=0 for i≠ j.

For cii, though;

c ii=αi∑
k=1

n

βk d ik
2

Now, if no documents have common terms, every term will occur in only one document. 
Therefore all the column sums are 1, meaning, all the βk are 1. Also notice that dik being 1, dik

2 = dik:

C ii=α i∑
k=1

n

βk d ik
2
=α i∑

k=1

n

1d ik=
1

∑
k=1

n

d ik

∑
k=1

n

d ik=1

Therefore, if all documents are unique, we get an identity matrix.

b. If all documents are identical; then dik = djk for all i, j. That is dikdjk = dik
2:. Also note that 

all documents will have m terms, and  all the βk are 1/m:

C ij=α i∑
k=1

n

βk d ik
2
=α i∑

k=1

n
1
m
d ik=

1
m

1

∑
k=1

n

d ik

∑
k=1

n

d ik=
1
m



5. a. m=6, n=5, t = 12; nc = mn/t = 30/12 = 2.5 -> 2. The two formulae are consistent.
    Assume all items are unique, m>>n, and (m-n) of terms never appear in any

document.

Then cii = 1; therefore nc = n*cii = n. However t = n; then mn/t = m. Since m>>n, 
they are inconsistent.

b.
Here nc is clearly 3; but mn/t = 3*9/3 = 9. Obviously this is not a practical issue, 
because if some of the terms did not appear in any document, we would have 
discarded them already.

1 0 0 0 0 0 0 0 0
D = 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

6. The incremental clustering algorithm C2ICM is an extension of C3M. First, we start with m1
documents, and cluster them using C3M. Then, as new documents arrive, we follow these 
steps:

Extending  the  single-link  clustering  algorithm  is  simple.  We  can  find  the  similarities  
between the new document to every other document and add the document to the cluster in 
which the item providing maximum similarity is.

7. The given paper does not cover the clustering tendency concept and refers to Dubes [1987]
and Cheng [1995] for further information. Clustering tendency is the inclination of a dataset 
to be separated into clusters; that is, a dataset with a low clustering tendency might better be
not represented as separate clusters. It is important because we don't want to cluster things 
where there is no clustered structure. We can use the sum of cii values, that is, nc; to have 
an idea about the clustering tendency. After all, cii are also known as the decoupling 
coefficients, and if they are low, then the points are not decoupled, meaning that the 
clustering tendency is low.

8. Since m = 150, nc = 10; and all clusters are of the same size, then each cluster will have 15
documents. mj = 150 – 15 = 135. 
For all clusters, pj would be equal, since all |Ci| are the same; meaning that the expected 
target clusters will be:

n tr=nc p j=nc (1−∏
i=1

k m j−i+1
m−i+1

)=10−10∏
i=1

5
136−i
151−i

=10−10
135
150

134
149

133
148

132
147

131
146

=4.14

Then ntr = 4.



9.
The similarity matrix implied by the dendogram:

S =

1.00 0.50 0.50 0.50 0.50
0.50 1.00 0.57 0.57 0.50
0.50 0.57 1.00 0.67 0.50
0.50 0.57 0.67 1.00 0.50
0.50 0.50 0.50 0.50 1.00

Variance is calculated as 0.94.

The original similarity matrix:

S =

1.00 0.50 0.50 0.50 0.50
0.50 1.00 0.57 0.57 0.50
0.50 0.57 1.00 0.67 0.50
0.50 0.57 0.67 1.00 0.50
0.50 0.50 0.50 0.50 1.00

Variance is calculated as 3.00.

Covariance of these two matrices is 1.44; therefore cov(x,y)/sqrt(var(x) var(y)) = 0.86.

10. The total number of True Positives and True Negatives divided by the total will give us the
cluster purity. That is, purity = (TP+TN) / (TP+TN+FP+FN).

Using the example given in the classroom; if our ground truth has two clusters {a,b,c} and 
{d,e,f}; and the constructed clusters are {a,b} {c,d} and {e,f}; then we will have TP=2, 
TN=8, FP=1, FN=4. Therefore purity = (2+8)/15 = 0.67. This is true because 1/3 of the 
samples are misclassified.

11. The word corpus:

ÖDEV, UZUN, UZADI, YORGUN, YORULDUM, BİTMEK, BİTİR, BİTEN,
BİTMİYOR, NEDEN, YETER, YETMEK, YETİŞTİRMEK, YAZIK, BİZE

Words to analyse:
YORGUN, YETMEK

Prefix Letters Successor Variety Prefix LettersSuccessor Variety
Y A,E,O 3 Y A,E,O 3
YO R 1 YE T 1
YOR U,G 2 <- CUT HERE YET E,M,İ 3 <- CUT HERE
YORG U 1 YETM E 1
YORGU N 1 YETME K 1
YORGUN - 0 YETMEK - 0

Stems obtained: YOR, YET



12. n-gram method seems more robust because SV requires a proper corpus (is highly prune to 
errors in the corpus), cannot detect prefixes (e.g.: “namümkün”) and it is somewhat vague where to 
'cut' the word. On the other hand, n-grams are not dependent on the language, and can successfully 
detect prefixes.

13. Below are the sistrings (rows: sistring #, cols: bit pos.):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1
2 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 ...
3 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 ...
4 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 ...
5 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 ...
6 1 1 0 1 0 1 1 0 1 0 0 1 1 1 ...
7 1 0 1 0 1 1 0 1 0 0 1 1 1 ...
8 0 1 0 1 1 0 1 0 0 1 1 1 ...
9 1 0 1 1 0 1 0 0 1 1 1 ...
10 0 1 1 0 1 0 0 1 1 1 ...
11 1 1 0 1 0 0 1 1 1 ...
12 1 0 1 0 0 1 1 1 ...

Instead of showing the trees step by step; I determined the bits that require branching as 
above  (how: I sort the first bit, for both the 1 and 0 groups I do the sorting within, and descend 
recursively until each call has only 1 items. Then I remove the intermediate bits that are common 
for each of these cases, because we need not test them) and using this I construct the final tree at 
once:

Note that for every inner node, the left-hand side branch is for 0, and vice versa.


