
1

Assignment 3 Solutions

1.

 a. Sequential signature method assigns 512 bits to all objects. Therefore, the file size becomes:

In this equation, N represents the number of objects and F represents signature size.

b. In bit-sliced signature method, each memory element holds the bits of the associated columns of

object signatures. Therefore, there are F number of elements (as it is the total number of columns)

where each element is N bits long (as there are N objects). The file size therefore becomes:

 which is the same result as previous method.

2.

We have:

- A query with 1s in 5 bit positions (1, 2, 50, 51, 60) and 0s otherwise

- 512 bit signatures

- 60,000 objects

- Page size of 0.5 kbyte

In SS, as each object signature is 512 bits, there are

 signatures per

page, which results in

 pages.

2

As long as the page signatures comply with the query signatures, the page must be accessed. As the

query is mostly 0, a high portion of the pages will be accessed. In the worst case, all 7500 will be

accessed.

In BS, there are

 pages. As there are 5 nonzero bit positions, 5 of

these pages will be accessed for further operation.

3.

a.

00 01 10 11

S4 S2 S1

 S5 S3

 S6 S7

b.

 where the processing time of each query is assumed to be 1 tu (time unit).

Sequential: (all queries are assumed to arrive at time 0)

Q1: time of arrival = 0tu, time of completion = 1tu => tat = 1tu

Q2: time of arrival = 0tu, time of completion = 3tu => tat = 3tu

Q3: time of arrival = 0tu, time of completion = 4tu => tat = 4tu

Q4: time of arrival = 0tu, time of completion = 8tu => tat = 8tu

3

 Parallel: (each prefix is handled in a different processor)

Q1: time of arrival = 0tu, time of completion = 1tu => tat = 1tu

Q2: time of arrival = 0tu, time of completion = 2tu => tat = 2tu

Q3: time of arrival = 0tu, time of completion = 3tu => tat = 3tu

Q4: time of arrival = 0tu, time of completion = 4tu => tat =4tu

4.

a. In EPP (extended prefix partitioning) with z = 2, all signatures are interchanged with keys that

include 2 zeros, from the beginning. As a result:

S1: 1100

S2: 1010

S3: 1100

S4: 00

S5: 1010

S6: 10110

S7: 1100

4

 The resulting partition is as follows:

00 1010 1100 10110

S4 S2 S1 S6

 S5 S3

 S7

b. In FKP (floating key partitioning) with k = 2, each signature is reduced to length 2. This reduced

signature is selected to start anywhere that includes minimum number of 1s. Therefore the

signatures become (numbers include the starting position of the key & resulting key) (in ties, leftmost

possible keys are selected):

S1: 3 - 00

S2: 5 - 00

S3: 3 - 00

S4: 1 - 00

S5: 1 – 10

S6: 7 – 00

S7: 3 – 00

 And the resulting partition:

5

1 - 00 3 - 00 5 - 00 7 - 00 1 - 10

S4 S1 S2 S6 S5

 S3

 S7

c. Q1 becomes 11100 in EPP and 5 – 00 in FKP (notice the separation). No page signatures comply

with 11100 in EPP, so no pages are accessed. In FKP, three pages are accessed (5 – 00, 7 – 00, 1 - 10).

As these pages do not contain Q1, they can be labelled as false matches. Therefore, for this

operation, it can be stated that EPP is more efficient.

 Note that the pages that are accessed are selected by applying the logic ‘AND’ operation

between the query signature and the page signature. If the result equals to the query signature, the

page is accessed.

5.

Extendible hashing starts with 1 prefix bits. As overflows occur, either table’s depth is increased by

one or data blocks are split under following conditions; if the overflowing data block’s height is equal

to table’s height, the table is doubled (height is increased by one). If it is smaller compared to the

table, the data block is split in higher height. The resulting steps therefore are as follows:

Initially:

0

1 S1 S2 S3

1

1

1

6

Overflow in “1”, table is doubled.

00 S4

01

10 S2 S5 S6

11 S1 S3

Overflow in “10”, table is doubled.

000 S4

001

010

011

100

101 S2 S5 S6

110 S1 S3

111

Overflow in “101”, table is doubled.

1

2

2

2

1

2

3

3

3

7

0000 S4

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010 S2 S5

1011 S6

1100 S1 S3 S7

1101

1110

1111

Overflow in “11”, block is split to a higher height.

1

4

2

3

4

4

8

0000 S4

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010 S2 S5

1011 S6

1100 S1 S3 S7

1101

1110

1111

Overflow in “110”, block is split to a higher height.

1

4

3

3

4

4

3

9

0000 S4

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010 S2 S5

1011 S6

1100 S1 S3 S7

1101

1110

1111

Overflow in “1100”, table is doubled.

00000 S4

00001

00010

00011

00100

00101

1

4

4

3

4

4

3

4

5

1

10

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100 S2 S5

10101

10110 S6

10111

11000 S1 S3

11001 S7

11010

11011

11100

11101

11110

3

4

4

4

3

5

5

11

11111

No overflows – operation complete.

 To determine which pages will be accessed, we must determine page signatures that

produce query signatures when logic “AND” operation is applied, with also considering block lengths.

For Q1, “111” page is accessed. For Q2, again “111” page will be accessed.

6.

We have Bkfr = 2 and LF = 0.5. In representation, first column indicates the suffix, second and third

column indicate prime data areas and the last column indicates the overflow locations. Current

boundary value (bv) and current load (Lf) will be indicated at each step.

Initially (bv starts from 0):

0 S1

1 S2 S3

Now,

 and LF is surpassed. As bv = 0, “0” registry or row will be split.

00

1 S2 S3

10 S1

bv became 1.

 so there is no need to split. S4 is added.

00

12

1 S2 S3 S4

10 S1

and S4 became overflow. Now,

 and a split is needed. As bv = 1, “1” registry will be

split.

00

01

10 S1

11 S2 S3 S4

S4 became overflow again. As h = 4 (height of the directory), bv becomes 0 again. ,

 so

no split is needed, another document is added.

00

01

10 S1 S5

11 S2 S3 S4

Now,

 so “00” registry will be split.

000

01

10 S1 S5

11 S2 S3 S4

13

100

and bv becomes 1. Now, another document is added as

 .

000

01

10 S1 S5

11 S2 S3 S4

100 S6

Now,

 so “01” registry will be split & another document will be added.

000

001

10 S1 S5 S7

11 S2 S3 S4

100 S6

101

Now, bv = 2, S7 became overflow and

 . “01” registry will be split.

000

001

010 S7

11 S2 S3 S4

14

100 S6

101

110 S1 S5

and this finalizes the operation. Finally, bv = 3,

 and h = 7. Also, S4 is in an overflow

location.

 For queries Q1 & Q2, we must look at page signatures that comply with their query

signatures. Therefore, for Q1, “11” is accessed and for Q2 “010”, “11” and “110” pages will be

accessed.

 As both Q1 and Q2 are not present in document list, recall rate is automatically 0 for both of

them. As a direct result, false drop resolution does not change recall rates.

 Lastly, the false drop resolution is the operation after obtaining a block match, to check

whether the query signature is included in the contents of the block. If not checked, one can assume

that the recall rate is higher by assuming that the block contains related documents. However, false

drop resolution can find that there are no related documents, so the recall rate is actually smaller.

7.

The formula for calculating false drop probability of a Bloom Filter:

 Finally, (theoretical) total cost of making 10,000 lookups is:

8.

15

 Reciprocal rank:

1. Rank of each document is calculated by the formula

r(a) = 0.353

r(b) = 0.600

r(c) = 0.333

r(d) = 4.000

r(e) = 4.000

r(f) = 4.000

2. When these values are sorted in ascending order, we obtain the rank in descending order:

Rank(c) > Rank(a) > Rank(b) > Rank(d) = Rank(e) = Rank(f)

Borda count:

1. Borda value of each document is calculated by assigning votes for each retrieval system,

depending on their position.

2. Sorting these values on descending order gives the rank order of the documents.

Rank(c) > Rank(a) > Rank(b) > Rank(d) = Rank(e) = Rank(f)

 Condorcet:

1. In this method, we must first construct the pairwise competition matrix (win, lose, tie).

16

 a b c d e f

a - 3, 1, 0 2, 2, 0 1, 0, 0 1, 0, 0 1, 0, 0

b 1, 3, 0 - 0, 3, 1 1, 0, 0 1, 0, 0 1, 0, 0

c 2, 2, 0 3, 0, 1 - 1, 0, 0 1, 0, 0 1, 0, 0

d 0, 1, 0 0, 1, 0 0, 1, 0 - 0, 0, 0 0, 0, 0

e 0, 1, 0 0, 1, 0 0, 1, 0 0, 0, 0 - 0, 0, 0

f 0, 1, 0 0, 1, 0 0, 1, 0 0, 0, 0 0, 0, 0 -

2. Next, we must determine the total number of wins and losses for each document.

a: 4 wins, 0 losses

b: 3 wins, 2 losses

c: 4 wins, 0 losses

d: 0 wins, 3 losses

e: 0 wins, 3 losses

f: 0 wins, 3 losses

3. Finally, the ranking is based on win & loss counts.

Rank(a) = Rank(c) > Rank(b) > Rank(d) = Rank(e) = Rank(f)

9.

Ranked key method:

a P1|5|b|c|d|e|f||P2|1|b||P5|2|c|f

b P3|2|c|f||P4|1|d

17

c

d

e

f

Tree method:

10.

The formula to be used here is (taken from the source paper):

 Here, π denotes the page rank score of a page and h denote the connectivity matrix, which is

formed by taking the inverse of number outgoing links from that page, if a link exists from i to j. Else,

it is 0. Therefore, we need to form the h matrix:

a c P5|1|f

b

P2|0 c

P1|3|d|e|f

b

d

P4|0

c P3|1|f

18

 A B C D E F G H I L M

A 0 0 0 0 0 0 0 0 0 0 0

B 0 0 1.000 0 0 0 0 0 0 0 0

C 0 1.000 0 0 0 0 0 0 0 0 0

D 0.500 0.500 0 0 0 0 0 0 0 0 0

E 0 0.333 0 0.333 0 0.333 0 0 0 0 0

F 0 0.500 0 0 0.500 0 0 0 0 0 0

G 0 0.500 0 0 0.500 0 0 0 0 0 0

H 0 0.500 0 0 0.500 0 0 0 0 0 0

I 0 0.500 0 0 0.500 0 0 0 0 0 0

L 0 0 0 0 1.000 0 0 0 0 0 0

M 0 0 0 0 1.000 0 0 0 0 0 0

Normally, the definition is recursive as no page rank values are known. However, as other

pages have their values calculated, page rank values of pages A and F can be calculated easily:

(Of course, the reason for these numbers being different than indicated numbers under nodes is that

they were normalized.)

11.

19

Before passing to individual cases, we must form the similarity matrix between documents (using

Dice coefficient):

1.00 0.67 0.50 0.00

- 1.00 0.80 0.00

- - 1.00 0.00

- - - 1.00

Also, we must calculate the similarity between Q (query) and documents.

0.00 0.33 0.25 0.00

a.

 As λ = 1.00, we choose the documents that are most similar with the query and those are: d2

and d3. We can use the similarity matrix (& similarity coefficients) to state the similarity or diversity

between documents. In this case, as we only considered maximum similarity between the query and

documents, retrieved documents are inevitably pretty similar (with similarity value of 0.80 out of

1.00). The usage in this case therefore limits MMR and the results are not diversified & very close to

each other.

b.

 In λ = 0.00, we select the documents that are most distant from each other. As all similarity

values are 0.00 with d4, we can return any document (say d1) with d4. In this case, returned results

are diverse, but possibly unrelated with the query so MMR algorithm did not work well again.

c.

20

 By selecting λ as 0.50, we are now able to use all features of MMR. We first select the most

similar document to the query (d2). Then, we calculate the MMR values for other documents, by also

considering d2:

Here, we select the maximum MMR value, which is d4. Now, MMR algorithm returned both

related and diverse documents, so it can be stated that the algorithm is beneficial.

