Scatter/Gather: A Clusterbased Approach

by Cutting et al.

Handan Kulan – Troya Çağıl Köylü

Outline

- Introduction
- Scatter/Gather Browsing
- Document Clustering (Previous + Purposed)
- Application to Scatter/Gather
- Conclusion

Introduction

• Browsing vs. Searching

Textbook analogy: "If one has a specific question in mind, and specific terms which define that question, one consults the index [...]. However, if one is simply interested in gaining an overview, or has a general general question, one peruses the table of contents, which lays out the logical structure of the text." [1]

Scatter/Gather Browsing

- 1. A large document collection (after the general query)
- 2. Scattering \rightarrow Gathering

Smaller document collection (that the user is interested in)

[1]

Previous Work on Clustering

- Document similarity measures
- Different clustering types
 Flat partition
 Can be iterated for better results
 Some have rectangular (O(kn)) running times
 Computational benefits disappear with increasing size
 Hierarchical clustering
 They are agglomerative & global → Running time:Ω(n^2)

Purposed Document Clustering

- Present 2 partitioning algorithms : Buckshot, Fractionation
 - Find k cluster centers
 - Assign each document in collection to a center
 - Refine the partition so constructed
- The result is a set P of k disjoint document
- Assume the existence of some algorithm which clusters well, but run slowly. Each of algorithms uses this cluster subroutine over small sets, and builds on its results to find the k centers

Finding Initial Centers

Buckshot

- Applies the cluster subroutine to a random sample to find centers
- Rectangular time clustering algorithmO(kn) Fractionation
- Successive application of the cluster subroutine over fixed sized groups to find centers (more accurate)

Assigning Documents to Centers

- Iteratively, assign- to- Nearest algorithm assigns each document to the nearest center
 - Divide collection into k groups and in each group find nearest document looking similarity btw document and centers
- Split algorithms seperates poorly defined clusters into two well seperated parts
- Join merges clusters which are two similar

Application to Scatter/Gather

Offline corpus

Slower but more accurate clustering algorithm (very slow) OR Fractionation + Great deal of refinement (with Split, Join, Iterated Assign-to-Nearest)

Online corpus Buckshot + Bare minimum of refinement (Not deterministic)

Conclusion

- Areas of Application
- Development