Self-Indexing Inverted Files for Fast Text Retrieval

by Alistair Moffat, Justin Zobel

Onur Taşar, Murat Yusuf Taze

Overview

- Background Information
- Query Processing Boolean and Ranking
- Compression
- Motivation
- Fast Inverted Index
- Skipping
- Implementation, Experimental Results
- Conclusion

Indexes

- Indexes are data structures designed to make search faster
- Text search has unique requirements, which leads to unique data structures
- Most common data structure is inverted index
 - general name for a class of structures
 - "inverted" because documents are associated with words, rather than words with documents

Inverted Index

- Each index term is associated with an inverted list
 - Contains lists of documents, or lists of word occurrences in documents, and other information
 - Each entry is called a posting
 - The part of the posting that refers to a specific document or location is called a *pointer*
 - Each document in the collection is given a unique number
 - Lists are usually document-ordered (sorted by document number)

Example "Collection"

- S_1 Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.
- S_2 Fishkeepers often use the term tropical fish to refer only those requiring fresh water, with saltwater tropical fish referred to as marine fish.
- S_3 Tropical fish are popular aquarium fish, due to their often bright coloration.
- S_4 In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.

Four sentences from the Wikipedia entry for *tropical fish*5/23

Example "Inverted Index"

Simple Inverted Index

and	1	only	2
aquarium	3	pigmented	4
are	3 4	popular	3
around	1	refer	2
as	2	referred	2
both	1	requiring	2
bright	3	salt	$\begin{bmatrix} 1 & 4 \end{bmatrix}$
coloration	$\boxed{3}$	saltwater	2
derives	$\overline{4}$	species	1
due	3	term	2
environments	1	$_{ m the}$	1 2
fish	1 2	1 their	3
fishkeepers	2	this	4
found	1	$_{ m those}$	2
fresh	2	to	2 3
freshwater	1 4] tropical	$\boxed{1} \boxed{2} \boxed{3}$
from	$\overline{4}$	typically	4
generally	$\boxed{4}$	use	2
in	1 4] water	$\boxed{1} \boxed{2} \boxed{4}$
include	1	while	4
including	1	with	2
iridescence	4	world	1
marine	2		
often	2 3		

Example "Inverted Index"

Inverted Index with counts

supports better ranking algorithms

and	1:1	only	2:1
aquarium	3:1	pigmented	4:1
are	3:1 $4:1$	popular	3:1
around	1:1	refer	2:1
as	2:1	referred	2:1
both	1:1	requiring	2:1
bright	3:1	salt	1:1 4:1
coloration	$\boxed{3:1} \boxed{4:1}$	$_{ m saltwater}$	2:1
derives	4:1	species	1:1
due	3:1	term	2:1
${ m environments}$	1:1	$_{ m the}$	1:1 2:1
fish	1:2 2:3 3:2 4:	2 their	3:1
fishkeepers	2:1	$_{ m this}$	4:1
found	1:1	${ m those}$	2:1
fresh	2:1	to	2:2 3:1
freshwater	$\boxed{1:1} \boxed{4:1}$	${ m tropical}$	1:2 $2:2$ $3:1$
from	4:1	typically	4:1
generally	4:1	use	2:1
in	$\boxed{1:1} \boxed{4:1}$	water	1:1 2:1 4:1
include	1:1	while	4:1
including	1:1	with	2:1
iridescence	4:1	world	1:1
marine	2:1		
often	$\boxed{2:1} \boxed{3:1}$		

Example "Inverted Index"

Inverted Index with positions

supportsproximity matches

and	1,15	marine	$\boxed{2,22}$
aquarium	3,5	often	$\boxed{2,2} \boxed{3,10}$
are	$\boxed{3,3} \boxed{4,14}$	only	2,10
around	1,9	pigmented	4,16
as	2,21	popular	3,4
both	1,13	refer	2,9
bright	3,11	referred	2,19
coloration	$\boxed{3,12} \boxed{4,5}$	requiring	$\boxed{2,12}$
derives	4,7	salt	$\boxed{1,16} \boxed{4,11}$
due	3,7	saltwater	2,16
environments	1,8	species	1,18
fish	$\boxed{1,2} \boxed{1,4} \boxed{2}$,7 [2,18] [2,23] term	2,5
	3	$\begin{array}{c c} 3,6 \end{array}$ $\begin{array}{c c} 4,3 \end{array}$ the	$\boxed{1,10} \boxed{2,4}$
		,13 their	3,9
fishkeepers	2,1	this	4,4
found	1,5	those	2,11
fresh	[2,13]	to	$\boxed{2,8}$ $\boxed{2,20}$ $\boxed{3,8}$
freshwater	$\boxed{1,14} \boxed{4,2}$	$\operatorname{tropical}$	$ \begin{array}{c c} 1,1 & \boxed{1,7} & \boxed{2,6} & \boxed{2,17} & \boxed{3,1} \end{array} $
from	4,8	typically	4,6
generally	4,15	use	$\boxed{2,3}$
in	$\boxed{1,6} \boxed{4,1}$	water	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
include	1,3	while	4,10
including	1,12	with	$\boxed{2,15}$
iridescence	4,9	world	1,11

Information Retrieval

- Two main mechanisms for retrieving documents
 - Boolean Queries
 - a set of query terms connected by the logical operators AND, OR, and NOT
 - Range Queries
 - matching an informal query to the documents
 - allocating scores to documents according to their degree of similarity to the query

Query Processing

- inverted lists are read from disk
- the lists are merged,
- taking the intersection of the sets of document numbers for AND operations, the union for OR, and the complement for NOT

Example

$$I_{\text{"index"}} = \langle 5, 8, 12, 13, 15, 18, 23, 28, 29, 40, 60 \rangle$$

$$I_{\text{"compression"}} = \langle 10, 11, 12, 13, 28, 29, 30, 36, 60, 62, 70 \rangle$$

$$I_{\text{"algorithm"}} = \langle 13, 44, 48, 51, 55, 60, 93 \rangle,$$

- their conjunction are documents 13 and 60
 - Terms are connected by AND operator.

Ranking vs Boolean

- More memory is required because in a ranked query there are usually many candidates
 - In a conjunctive Boolean query the answers lie in the intersection of the inverted lists, but in a ranked query, they lie in the union
 - In a conjunctive Boolean query, the number of candidates need never be greater than the frequency of the least common query term
- More time is required because conjunctive Boolean queries typically have a small number of terms, perhaps 3–10, whereas ranked queries usually have far more

Compression

- for space efficiency, the inverted lists are stored compressed
 - For example, the list
 - 5, 8, 12, 13, 15, 18, 23, 28, 29, 40, 60
 - corresponding d-gaps:
 - 5, 3, 4, 1, 2, 3, 5, 5, 1, 11, 20 (good for variable-length encoding)
- Without compression, an inverted file can easily be as large or larger than the text it indexes

Compression

- Advantage
 - net space reduction of as much as 80% of the inverted file size
- Disadvantage
 - even with fast decompression it involves a substantial overhead on processing time

Motivation

- Problem: How to reduce these space and time costs if we compress indexes.
- Solution: A mechanism called Self-Indexing
- For typical conjunctive Boolean queries processing time is reduced by a factor of about five.
- the overhead in terms of storage space is small, typically under 25% of the inverted file, or less than 5% of the complete stored retrieval system

FAST INVERTED FILE PROCESSING

Skipping

Consider the set of $\langle d, f_{d,t} \rangle$ <5, 1><8, 1><12, 2><13, 3><15, 1><18, 1>...

Stored as d-gaps:

Skipping continued

Synchronization points

Skip over every three pointers:

- . <<5, a2>><5, 1><3, 1><4, 2><<13,a3>><1,3><2,1> <3,1>...
- Still redundancy, code differently:
- <<5, a2>><1><3, 1><4, 2><<8, a3-a2>><3>
 <2,1><3,1>...
- Find the correct block

Implementation

Storage

Let L be the value of k

Size of skipped inverted files for a dataset becomes:

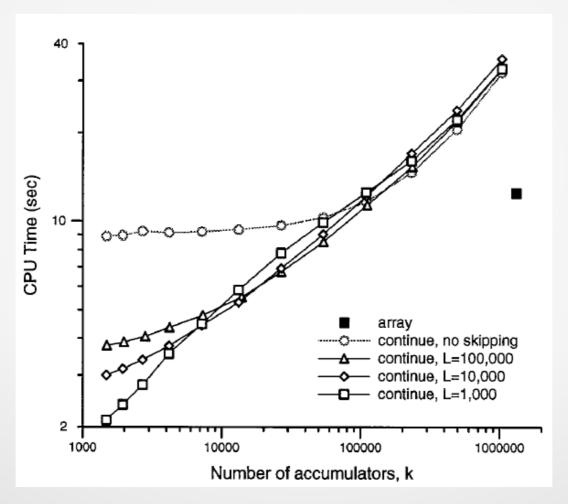
Size of Skipped	Inverted Files
-----------------	----------------

	Size	
Parameter	MB	%
No Skipping	184.36	100
L = 1	186.14	101
L = 10	188.95	102
L = 100	194.74	106
L = 1,000	205.38	111
L = 10,000	220.33	120
L = 100,000	230.21	125

Implementation

Performance on Boolean Queries

19/23


Implementation

Ranked Queries

- Any document containing any of the terms is considered as a candidate.
- We need to restrict the number of accumulators
- Two algorithms:
- Quit
- Continue

Experimental Result

Top 200 documents are returned

Conclusions

Advantages:

- CPU time is reduced
- Only compressing the pointers save the space but increase the processing time
- The idea can be applied to both the boolean queries and the ranked queries

References

- . Addison Wesley, 2008
- G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading, Massachusetts, 1989.
- G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New York, 1983.