
1/23

Self-Indexing Inverted Files

for Fast Text Retrieval
by Alistair Moffat, Justin Zobel

Onur Taşar, Murat Yusuf Taze

2/23

Overview

● Background Information

● Query Processing – Boolean and Ranking

● Compression

● Motivation

● Fast Inverted Index

● Skipping

● Implementation, Experimental Results

● Conclusion

3/23

Indexes

● Indexes are data structures designed to make search

faster

● Text search has unique requirements, which leads to

unique data structures

● Most common data structure is inverted index

– general name for a class of structures

– “inverted” because documents are associated with

words, rather than words with documents

4/23

Inverted Index

● Each index term is associated with an inverted list

– Contains lists of documents, or lists of word

occurrences in documents, and other information

– Each entry is called a posting

– The part of the posting that refers to a specific

document or location is called a pointer

– Each document in the collection is given a unique

number

– Lists are usually document-ordered (sorted by

document number)

5/23

Example “Collection”

6/23

Simple Inverted

Index

Example “Inverted Index”

7/23

Inverted Index
with counts

• supports better

ranking algorithms

Example “Inverted Index”

8/23

Inverted Index
with positions

• supports

proximity matches

Example “Inverted Index”

9/23

Information Retrieval

● Two main mechanisms for retrieving documents

– Boolean Queries

● a set of query terms connected by the logical

operators AND, OR, and NOT

– Range Queries

● matching an informal query to the documents

● allocating scores to documents according to their

degree of similarity to the query

10/23

Query Processing

● inverted lists are read from disk

● the lists are merged,

● taking the intersection of the sets of document numbers for

AND operations, the union for OR, and the complement for

NOT

11/23

Example

● their conjunction are documents 13 and 60

– Terms are connected by AND operator.

12/23

Ranking vs Boolean

● More memory is required because in a ranked query there are
usually many candidates

– In a conjunctive Boolean query the answers lie in the
intersection of the inverted lists, but in a ranked query, they
lie in the union

– In a conjunctive Boolean query, the number of candidates
need never be greater than the frequency of the least
common query term

● More time is required because conjunctive Boolean queries
typically have a small number of terms, perhaps 3–10, whereas
ranked queries usually have far more

13/23

Compression

● for space efficiency, the inverted lists are stored

compressed

– For example, the list

– 5, 8, 12, 13, 15, 18, 23, 28, 29, 40, 60

– corresponding d-gaps:

– 5, 3, 4, 1, 2, 3, 5, 5, 1, 11, 20 (good for variable-length

encoding)

● Without compression, an inverted file can easily be as

large or larger than the text it indexes

14/23

Compression

● Advantage

– net space reduction of as much as 80% of the inverted

file size

● Disadvantage

– even with fast decompression it involves a substantial

overhead on processing time

15/23

Motivation

● Problem: How to reduce these space and time costs if we

compress indexes.

● Solution: A mechanism called Self-Indexing

● For typical conjunctive Boolean queries processing time is

reduced by a factor of about five.

● the overhead in terms of storage space is small, typically

under 25% of the inverted file, or less than 5% of the

complete stored retrieval system

16/23

FAST INVERTED FILE PROCESSING

Skipping

Consider the set of

●<5, 1><8, 1><12, 2><13, 3><15, 1><18, 1>...

●Stored as d-gaps:

●<5, 1><3, 1><4, 2><1, 3><2, 1><3, 1>...

17/23

Skipping continued

Synchronization points

Skip over every three pointers:

● <<5, a2>><5, 1><3, 1><4, 2><<13,a3>><1,3>

<2,1> <3,1>...

● Still redundancy, code differently:

● <<5, a2>><1><3, 1><4, 2><<8, a3-a2>><3>

<2,1><3,1>...

● Find the correct block

18/23

Implementation

Storage

Let L be the value of k

Size of skipped inverted files for a dataset becomes:

19/23

Implementation

Performance on Boolean Queries

20/23

Implementation

Ranked Queries

● Any document containing any of the terms is considered

as a candidate.

● We need to restrict the number of accumulators

● Two algorithms:

● Quit

● Continue

21/23

Experimental Result

Top 200 documents are returned

22/23

Conclusions

Advantages:

● CPU time is reduced

● Only compressing the pointers save the space but

increase the processing time

● The idea can be applied to both the boolean queries and

the ranked queries

23/23

References

• Addison Wesley, 2008

• G. Salton. Automatic Text Processing: The

Transformation, Analysis, and Retrieval of Information

by Computer. Addison-Wesley, Reading,

Massachusetts, 1989.

• G. Salton and M.J. McGill. Introduction to Modern

Information Retrieval. McGraw-Hill, New York, 1983.

