Parallelization of Cover-Coefficient-based Clustering Methodology

M. Ozan KARSAVURAN

CS 533 – Spring 2015

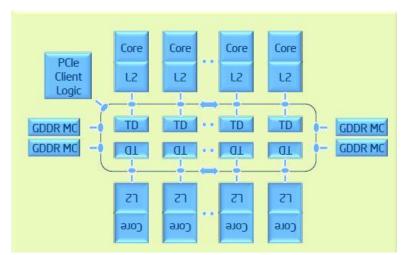
Outline

- •Problem description
- Motivation
- Methodology
- •Results

Problem Description

- •Cover-Coefficient-based Clustering Methodology [1]
 - •Effective
 - •Efficient?
 - •Even if efficient parallelize
 - •Mostly independent computations on large similarity matrices

Motivation


- Moore's Law [2]
 - Smaller but many core
 - Need parallelism

Motivation

- Intel Xeon Phi [3]
 - •Many Integrated Core (MIC) Architecture
 - •60 Cores @ 1.053 GHz with 512 KB L2 cache
 - •Ring interconnect
 - •4 hardware threads per core
 - •1 Teraflop/s performance
 - •Will work on any other shared memory architercture

Methodology

- Native vs Offload
 - Small cores
 - I/O
- OpenMP[4]Pragmas and Directives
- Loops with independent iterations are main source of parallelizm

Methodology

• Compute S matrices

- inverse row and column sums
- Compute cover coefficient matrix
- Compute the number of clusters
- Compute seed power for every document
- Select cluster seeds
- Assign documents to clusters

Results

- Baseline
- Speed up
- TREC financial times dataset
- Not data dependent

References

[1] F. Can and E. A. Ozkarahan. Concepts and effectiveness of the covercoecient-based clustering methodology for text databases. ACM Transactions on Database Systems (TODS), 15(4):483-517, 1990.

[2] Schaller, Robert R. "Moore's law: past, present and future." *Spectrum, IEEE*34.6 (1997): 52-59.

[3] Intel Xeon Phi Coprocessor - the Architecture. https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessorcodename-knights-corner. Accessed: 2015-03-20.

[4] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming. Computational Science & Engineering, IEEE, 5(1):46{55, 1998.

Questions and Answers

Parallelization of C³M