Emotion Detection from Tweets

Didem Demirağ

Anisa Halimi

Nora von Thenen

Problem Description

- Twitter users post valuable information every day which contain their opinions about certain topics
- It is of great importance to analyze this information on a big scale
- Our aim is to label certain emotions to a user's post

Problem Description

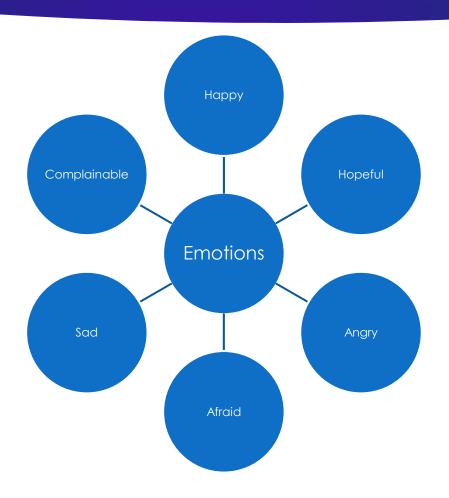

Tweet	Emotion
Enjoy the little things in life!	Нарру
In the end you have to be your own hero because everyone else is too busy trying to save themselves.	Sad
Tomorrow will be a better day!	Hopeful
Bought 5 things from whole foods and it cost \$230	Complainable
Can't wait to work again!	Complainable

Table 1: Examples of emotions in tweets

Motivation

- Market researchers and companies
- Political campaigns
- People's reactions in a crisis
- Keeping track of the emotional state of a patient with a certain disease
- Define certain psychological disorders
- Sociologist can infer the life quality of a population.

Selected Emotions Based on Ekman's Model

Methodology

Classify the tweets into three groups

 Use 'Natural Language Toolkit' of Python

Process tweets

- Change hashtags into normal words
- Apply stemming and filter out stop words

Use keyword lists to assign a more specific emotion

 Find the keyword list with the most matches within the tweet

Methodology

- After labeling:
 - Use Variance Threshold as feature reduction algorithm with different thresholds
 - Use different machine learning algorithms to train and test our dataset
 - Decision Tree
 - KNN (K-Nearest Neighbor)
 - Compute the recall and precision rates to measure the accuracy of the algorithms.
 - Compare these algorithms to decide which works most efficiently.

Data

Datasets	Number of tweets
positive labeled tweets	2.949
negative labeled tweets	3.293
neutral labeled tweets	6.353
total	12.595

Table 2: Dataset size

Results - pre-labeled Tweets

Tweet	Label
Enjoy the little things in life!	positive
In the end you have to be your own hero because everyone else is too busy trying to save themselves	negative
Tomorrow will be a better day	positive
Bought 5 things from whole foods and it cost \$230	negative
Can't wait to work again!	negative

Table 3: Some examples of pre-labeled tweets

Distribution of Emotions

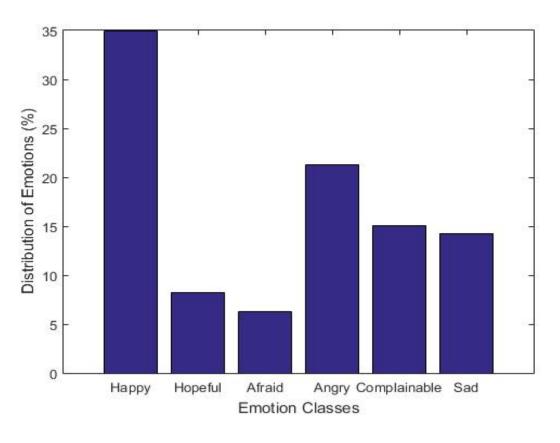


Figure 1: Distribution of the emotions in the collected data

KNN

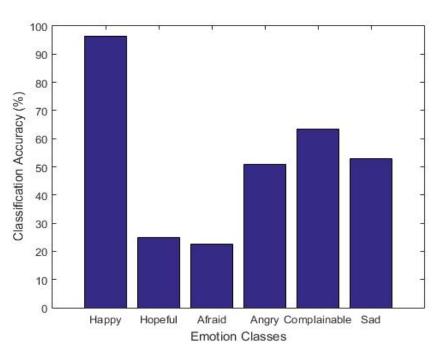


Figure 2: The accuracy of KNN using unigrams with threshold 0.01

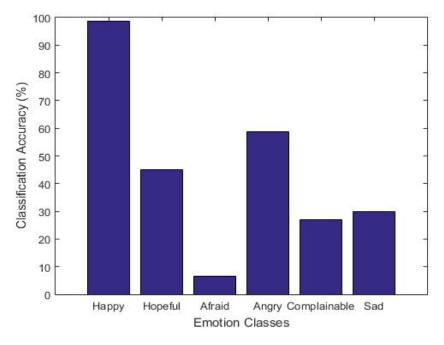


Figure 3: The accuracy of KNN using unigrams with threshold 0.008

Decision Tree

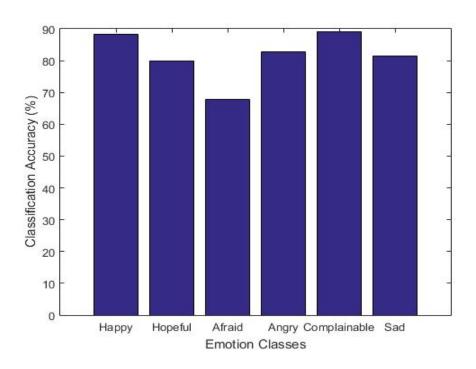


Figure 4: The accuracy of Decision Tree using unigrams with threshold 0.01

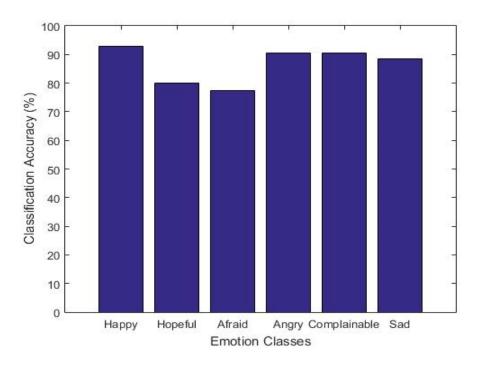


Figure 5: The accuracy of Decision Tree using unigrams with threshold 0.008

Recall and Precision Values

	KNN	Decision Tree	KNN	Decision Tree
Threshold	0.01		0.008	
Precision	80.51	88.09	76.03	89.98
Recall	51.9	81.56	44.33	86.65
F-measure	63.11	84.7	56	88.28

Table 4: Precision, recall and F-measure of KNN and Decision Tree

Conclusions

- Tweets are grouped into six emotions automatically
- Variance Threshold was found to be the most suitable for feature reduction
- Decision tree provides better accuracy than KNN

References

- [1] M. Hasan, E. Rundensteiner, and E. Agu. Emotex: Detecting emotions in twitter messages. In *ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference*, pages 27–31, May 2014.
- [2] P. Ekman. Basic emotions. Handbook of Cognition and Emotion, 98:45-60, 1999.