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Problem Description
● The popularity of Twitter attracts spammers for advertising, propaganda, 

adult content etc.
● The tweets are considered as spam for following reasons:

○ Containing more than specific number of hashtags (can be considered Hashtag Abuse) and 
some of them are unrelated.

○ Containing links generated by URL shorteners. Considered as a strong indication.

○ Includes words(key stops) that are considered as spam (advertisement and adult content 
related)

○ Posted by different(or same) users in same time period (in the same minute at shortest) which 
are not by Retweeting.
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Problem Description
Examples

4/18



Hashtag Abuse

Attempt for gaining more followers
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Motivation
● There are several methods proposed in order to fight spamming which 

consider the common elements of spam tweets.
○ URL’s posted in tweets [1]
○ Number of Hashtags (BUT doesn’t consider the relation between them)
○ If the tweets are duplicate (Not RT)
○ Usage of spam words [2]

● We propose a system that checks the relationship between hashtags in 
tweets, in addition to the above parameters.

● In this way, we are aiming to improve the accuracy of spam detection on 
Twitter.
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Methods
● Tweet Link Status
● Spam and Non-Spam Words
● Number of Hashtags
● Duplicate Tweets
● Hashtag Abuse Detection

○ Relation Between Hashtags
■ Classification of Hashtags
■ Clustering of Hashtags
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Methods
Tweet Link Status

● 371 tweets contain bad 
links

● 4629 tweets have no bad 
links

Bad links can be considered as 
advertisement such as: 
Amazon, eBay.

371 out of 5000 tweets contain 
bad links. (%7.42)
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Methods
Spam and Non-Spam Words

● List of 278 spam words
● 92 spam tweets
● 4537 non-spam tweets

Spam words such as:

Percentage is: %1.98
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Methods
Number of Hashtags

● 136 tweets contain more than 7 hashtags (%2.99)
● 4401 tweets contain  less than 7  & more than 2 hashtags
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● #Selenators #TaylorSwift #encuesta #DemocracyIn5Words #like4like #likeforlike #twitter #retwitthis 
#BirdieSanders

● #ioho20anni #DemocracyIn5Words #BatmanvSuperman #BirdieSanders #ENGvSL #Amici15 #Elite8 
#saturdaykitchen #Pasqua#10YearsOfAmazingPhil

● #BernieSanders #askjack #GERENG #WAcaucus #BirdieSanders #DemocracyIn5Words #BatmanvSuperman  
#Elite8 #FinalFour 

● #GERENG #WAcaucus #DemocracyIn5Words #BatmanvSuperman #BirdieSanders #DubaiWorldCup 
#GoodFriday #AIRMAXDAY #doac

● #Love #GERENG #WAcaucus #askjack #DemocracyIn5Words #BirdieSanders #BatmanvSuperman #DCRebirth 
#Elite8 

● Cual creen q es mejor? #encuesta #twitter #retwitthis #like #DemocracyIn5Words #BatmanvSuperman 
#like4like #likes(Que prefieren?

● #twitter #instagram #likebackteam #likealways #encuesta #DemocracyIn5Words #BatmanvSuperman #Elite8
● #askjack #GERENG #DemocracyIn5Words #BatmanvSuperman #indie #singer #atlanticrecords #bmth #bvb 

#cte #om&amp;m #bands 
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● Relation Between Hashtags
○ Classification of Hashtags

■ SVM algorithm is used with weighted indexes (JAVA WEKA Tool)
■ Hashtags are classified according to a prepared dictionary
■ Each hashtag is weighted for each category in dictionary 
■ Dictionary of categories is updated with popular hashtags regularly
■ Determination of the mean weight of hashtag for each category

Methods
Hashtag Abuse Detection

Two Categories 
Name “Donald” 
Belongs

Two Categories 
Name “Lincoln” 
Belongs
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● Generation of dataset of 
Weights on Hashtags 

○ As an illustration, “Apple” 

has weight of 0.72 on 

category “tech” and weight 
of 0.28 on category “food”

Methods
Hashtag Abuse Detection
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● Clustering of Hashtags has been done by
○ Selecting a random tweet from duplicate cluster (prepared beforehand)

■ Duplicate cluster contains tweet that have more than 0.6 similarity
■ For efficiency, only one element is enough as most of them are identical

○ Extract hashtags’ terms used. Remove stop words. Apply stemming
■ Stemming created problems so it is omitted

○ Using weights of each term as category, create a D matrix as
■ Each hashtag is a document, each term is a CATEGORY weight (sum = 1)

○ Calculate number of clusters. Define a threshold for it.

● What is the threshold ? 
○ I have tried (#of hashtags/2) and nc = 1.

Methods
Hashtag Abuse Detection
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Results
● It appears that because SVM is not trained enough to cover 

too diverse categories yet, and limit of nc is high: there 
were very small amount of spam detected.

● What happened with nc > 1 is SPAM ?
○ Improvement !

● Precision is about %88 which indicates system have few 
amount of FP.

● Recall is about %48, half of the spam clusters are not 
found.

● Need to consider improving SVM (or selecting another 
approach) to recognize much more terms and obtain 
better identification of spam tweets.

● Maximum tweets in a cluster is 450, minimum is 1.
● There are SPAM 38 cluster (179 tweets) , out of 631 

clusters (4400 tweets)
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New Future Works
Throughout our research, we found out new kind of approaches for these kind of problems which 
will be brand new approach for Spam related  Twitter research topics

● Approximation algorithms, Count-Min Sketch etc. for increasing accuracy with tremendous 
data

● Deep Learning algorithms with online learning
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#Thank#You#For#Your#Listening

18/18


