
Robust Social Event 
Detection in Twitter

S. E. Bekçe & F. Amira
CS533 Spring 2016

1



Motivation & Goals

• Protests in Turkey are common but they don’t often 
broadcasted by news agencies because of political 
pressure

• It is often not possible to understand the intensity and 
effects of a protest via an external view of point

• Twitter is highly used amongst people to report nearby 
activity

• We can use those tweets to detect such events

• Our input data contains 100M Turkish-only tweets from 
2011 to 2014

2



Preprocessing: Pre-filtering

1. Discard ‘retweet’s
Retweets contain no original information

2. Discard very short tweets
Short tweets usually offer no information at all

3. Discard replies to other tweets
Replies often introduce information redundancy 
and offer no original information

RT @

Original Tweet

Retweet Reply

3



Preprocessing: Standardization

1. Replace links with ‘URL’
Keep tweets with links because they may be 
photos or other important things, such as 
location or emergency link, etc

2. Convert tweet content to lowercase

3. Trim tweet content (remove excess whitespace)

4. Tokenize tweets via Zemberek [1]
Important for finding stems for our classifier: 
‘protestolar’ -> ‘protesto’

4



Classifier

• Design a simple classifier to classify each tweet as 
‘eventful’ or ‘not eventful’

• Based on possible keywords: (protesto, eylem, 
toma, saldırı, barikat, direniş, olay)

• Also search for present tense ‘-yor’ in the tweet
“Ankara Kızılay'da madenci heykeli önünde Soma'daki iş
cinayeti protesto ediliyor.”

• Prefer tweets with embedded photos
• First class (eventful) contains the Tweets which mention 

the keywords
• Second class (not eventful) contains irrelevant Tweets

5



Detection – Characteristic Func.

• Generate time series (histogram) data by 
aggregating tweets by 15 second intervals and 
counting them

• Apply Characteristic Function
• C(t) = STA/(mLTA+b) [2]
• Short Term Average (STA): 1 minute -> possible event
• Long Term Average (LTA): 1 hour -> background noise
• m and b are parameters
• Declare event when C(t) > 1
• C(t) requires higher signal levels (STA) to trigger at 

higher noise levels (LTA)

6



The Algorithm

7



Online Algorithm

• Instead of working on existing tweets to detect existing 
events, work on ‘unseen data’ to detect ‘new events’ as 
they occur on the fly

• Connect to Twitter Streaming API and work on each 
new tweet sequentially as they arrive

• STA / LTA semantics works nicely with streaming data: 
Only store the last LTA window (1 hour) amount of 
histogram (count per window)

• It is important that standardization (tokenization, etc) 
operations are optimized so that the system can sustain 
high amount of live tweets

8



Online Algorithm

9



Location Estimation

• Use tweet’s geo-tag if possible

• Most tweets have no location information

• In this case, infer a location from
1. User’s profile information

2. Moving average of last 10-20 geo-tag tweets 
from same user

• Events will be mapped to area(s) by using 
tweets that are mapped to this event

10



Evaluation

• Precision is calculated by checking the correctness 
of the detected events
• P = TP / TP + FP

• Can be done by looking at news archives

• Calculating Recall is a challenge: Need a structured 
and reliable way to get list of events
• Can be done by manually crawling some (reliable) news 

sites or by human annotators

• Tune parameters (m and b) by using feedback from 
the evaluation

11



References

[1] Zemberek NLP 
https://github.com/ahmetaa/zemberek-nlp 

[2] P. Earle, D. Bowden and M. Guy, "Twitter 
earthquake detection: Earthquake monitoring in a 
social world", Annals of Geophysics, vol. 54, no. 6, 
pp. 708-715, 2011

12


