Table of Contents

Inverted Files for Text Search ENGINESccoocuiiiiiiiiiiiiinieceeiectesteee ettt e s 2
JUSTIN ZOBEL And ALISTAIR MOFFATooiiiiiiieiteetereete sttt ettt siee e 2
DY M. LeVent KOC......coiiiiiiieeieeieeiteste ettt et sttt e e sae e st e ste e s teebeessabaeessssbaessnsnbaessnnses 2
Sample Collection for eXamPIeS:........cciciiriiieiieeiieiieeieerte ettt e e ste et e s teesereeeseebeeeessnsaeaennns 2
Collection with only case-folding...........ccoceeriiriiiiniinieeieetete et 2
Collection with case-folding and StemMMING............cccveeviieiieeiiieiieeieeeee e 2
Collection with case-folding, stemming and StOPPING..........cecverierruerrierrieenieeieenieeesreee s 2
Some terms used iN the PAPET.......ccc.iiiiiiiiieeceecee e 2
SOME CONVEIMLIONS. ..cc.uvtiiiiiiiiiiiiiieeteete ettt sttt sre e s rar e e e s s anaaeeeee s 2
COSINE SIMIIATILY .c..uvieeiiieeiiiecie ettt ste e e re e s sate e e saae e e saaeesateaeeesssnsanaeasesssnnsesnes 3
An algorithm for computing similarity using inverted files...........cccccocerviriiininneniencnieneenns 4
INAEX CONSIIUCTION. .. eeiiutieeeiieeriteerieeesteeesteeesreessteeesteeesbeesssseesssseesssseesssseessssaesssnssseeesssnnnnns 5

1. IN-MemOTY INVEISION.......cttiiiiiiierieiteeeeeitteeeettee e et e e ereeeeesnreeesseanreeesesnsneeeessreeesns 5

2. SOTt-Based INVEISION.....cccuiiiiiiiriieeriieeeite et e et e esreessteesiaeeseteeesaaeessseeeeessssssssnaeaeens 5

3. Merge-Based INVETISION.........ccciiriiiriiinieiiteeieeit ettt sae et e s e saeesabeesaaessaenaeenes 5
CODING THEORIES.......cootiititetteeetesieete ettt ettt st saeeste st e st et e satesbeete s st esbesntesaseesans 6
Efficient Index RepPreSentations............ccevueeruierierniienieeiiesiessieesieeieesaessseessireeesssneeeesnasneeas 6
Parameterless COAES.........uiiruieiriieeiieeeiieeertee et e e steeesreessareeesaaeessaeeesseeesssaeessseessssssaeeeens 6

|8 1T 1y 2O PO PR PP OOO PR PP PPPPPPPPPPP 6

Elias’ GAIMIMIA......ccciiiieiiieeeiieeeiteesite et e ssteesereessate e s steeeaeeessaeesssaaesssaaesssaeesssnsssseeesenns 6

ELHAS" DLLA. ...ttt st s 7
Another algorithm for COdINGcccveeviieiiiiiiieieceeeeeeee e 8

GOlOmD RiCE COUES.......eeiiriiiiiieeiteeiteieeteset ettt ettt st sre et s sar e e enee e 9
Limiting Memory ReqQUITEIMENLS.cccevuteeirriiieeeeiiiieeierireeeessteeeessineeesssnrreeessssseeesssssssssnnns 10

1. Accumulator LIMIting.......ccceeeieriieenieniienienie ettt st et sresseeeseee s ssbreesssnneeesaes 10
2.Accumulator Thresholding.........ccoeeeuieiriiiiiiiiiiiieeeeece e s e 10
Reducing Retrieval COStS.cccutiriirriienieeiterieeieeste et esteseeesieesseesasesteesstessseessnsaeessnseeenas 11

Inverted Files for Text Search Engines

JUSTIN ZOBEL And ALISTAIR MOFFAT
by M. Levent KOC

Sample Collection for examples:

1. The cleaner job is clean

The cleaner cleans the big old house in the town
The old cleaners like sleeping

It is only big old house that is clean

The cleaner cleans houses that are not clean

The clean operations are performed at only night

SRR ANl

Collection with only case-folding

are at big clean cleaner cleaners cleans house houses in is it job like night not old only operations
performed sleeping that the town

Collection with case-folding and stemming

are at big clean house in is it job like night not old only operations performed sleeping that the town

Collection with case-folding, stemming and stopping

big clean house job like night old operations performed sleeping town

Some terms used in the paper

—fd,t , the frequency of term t in document d ;

—fq,t , the frequency of term t in the query;

—ft , the number of documents containing one or more
—Ft, the number of occurrences of term t in the collection;
—N, the number of documents in the collection; and

—n , the number of indexed terms in the collection.

Some conventions

(1) Less weight is given to terms that appear in many documents;
(2) More weight is given to terms that appear many times in a document; and
(3) Less weight is given to documents that contain many terms.

Cosine similarity

N
Wy = In (l + f_) wag;=1+1In fa,
[;
_ { @ P I:'I o
W, = ‘HI'IIE wy, W, =y ., we,
4

E: Lig g« Wy g
-' Wa-W,

Equation 1: Cosine similarity

To rank a document collection with regard to o query g and identify the top r
mtehang documents:

(1] Caleulate w, ; for each query term ¢ in g.
(21 For each document o in the collection,
[a) Set S5+ 0
(b] For each query term f,
Calculate or read w4, and
Beb Sgo— S e X W
[e) Caleulate or read Ty,
(d) Set S4 — Sq/Wa,

(3) ldentify the r greatest 54 values and return the corresponding documents.

Figure 1: Exhaustive computation of cosine similarity between a query q and every document in a text
collection. This approach is suitable only when the collection is small or is highly dynamic relative to
the query rate.

However, this exhaustive approach is not efficient, because we have to process all documents
even if some documents do not contain that term. Therefore, inverted files are used. An example
inverted file for given sample collection is like in Figure 2.

term t f, Inverted list for t
are 2 <5,1><6,1>

at 1 <6,1>

big 2 <2,1><4,1>

clean 3 <1,1><5,1><6,1>
cleaner 3 <1,1><2,1><5,1>
cleaners 1 <3,1>

cleans 2 <2,1><5,1>
house 2 <2,1><4,1>
houses 1 <5,1>

in 1 <2,1>
is 3 <2,1><4,2>
it 1 <4,1>
job 1 <1,1>
like 1 <3,1>
night 1 <6,1>
not 1 <5,1>
old 3 <2,1><3,1><4,1>
only 2 <4,1><6,1>
operations 1 <6,1>
performed 1 <6,1>
sleeping 1 <3,1>
that 2 <4,1><5,1>
the 7 <1,1><2,3><3,1><5,1><6,1>
town 1 <2,1>
d | 1 2 3 4 5 6

Wy ‘ 2 3.38 224 245 283 283

Figure 2: Complete document-level inverted file for the sample database. The entry for each term t is
composed of the frequency f, and a list of pairs, each consisting of a document identifier d and a
document frequency fy, . Also shown are the W, values as computed for the cosine measure shown in
Equation 1.

An algorithm for computing similarity using inverted files

To use an inverted index to rank o document collection with regard to o guery
g and wdentify the top r matching documents:

(1) Allacate an accuomulator Ay for each document o and set Ag — 0.
(2] For each guery term £ in g,
(a) Caleulate w, . and feteh the inverted list for f.
(b} For each pair {d, [0 in the mverted list
Caleulate wy,, and
Set Ay — Ag + g ¥ g
(31 Read the array of W values
(4) For each Ag =0, a0t 5y — Agq /W
(0] ldentify the r greatest 5; values and return the corresponding documents,

Figure 3: Indexed computation of cosine similarity between a query q and a text collection.

Index Construction

1. In-Memory Inversion

To build an mverfed inder wsing the in-memory technigque:

(1) Make an initial pass over the eallection,
For each term £ connt its document frequency fy, and determine an upper
bound u; on the length of the inverted list for £

(2} Allocate an in-memaory array of Z: g bytes, and, for each term f, create a
pointer o to the start of a corresponding block of w, bytes.

(3} Process the collection a second time.
For each document d, and for each term ¢ in d, append a code representing
and fip at ¢, and update .

(4) Make a sequential pass over the in-memory index that has been constructed.
For each £, copy the fi representations of the {d, fi:) pointers from the
allocated @, byvtes to the inverted file, compressing if desired.

Figure 4: In-memory inversion

2. Sort-Based Inversion

3. Merge-Based Inversion

T build an inverfed mdex woing a merge-bosed technigue:

(1) Until all documents have been processed.,

[a) Initislize an in-memory index, using & dynamic structure for the
vocabularies and a static coding scheme for inverted lists; store lists either
in dynamically resized arrays or in linked blocks.

(b1 Head documents and insert {d, {3} pointers into the in-memaory index,
continuing until all allocated memaory s consumed.

[¢] Flush this temporary index to disk, incloding its vocabulary.

(2) Merge the set of partial indexes to form a single index, compressing the
inverted lists if required.

Figure 5: Merge-based inversion

CODING THEORIES

Efficient Index Representations

Parameterless Codes

Those are Unary, Elias' Gamma (y), and Elias' Delta ()

Unary

If number is x, there will be 1 as (x — 1), then it will terminate with 0.
Example: unary code of 4 is: 1110 (There are 3 (4 — 1) 1, then 0)

Some more examples on Unary Code:

Number Unary Code
0

10

110

1110

11110
111110
1111110
11111110
111111110

1111111110
Figure 6: Examples for Unary Coding

O 0 3 | Ul || W N |-

[y
S

Elias' Gamma

If number is like x = 2" + t, we will write (N + 1) as unary code, than we will state t in binary as N bits.

Example: If number is 5, 5 = 2> + 1. Representation of 5 in unary code is 11110. Representation
of 1 in binary is 1. So we will write, 11110:01. Here, we wrote 1 as 01, because N = 2. Therefore, we
have to write 1 in 2 bytes.

If number is 1, 1 = 2° + 1. (0 + 1) in unary code is 0. We have to write 1 in binary as 0
bytes. So it's 0: . We cannot write anything after :, because representation of 1 in binary with 0 bytes is
nothing.

Some more examples on Elias' Gamma Code:

Number Elias' Gamma Code

1=2°+1 0:

2=2'+0 10:0
3=2'+1 10:1
4=2°+0 110:00
5=2%+1 110:01
6=2°+2 110:10
9=2+1 1110:001
15=23+7 1110:111
17=2*+1 11110:0001
35=2"+3 111110:00011

Figure 7: Examples for Elias' Gamma Coding

Elias' Delta

If number is x = 2V + t, we say that N = N + 1. We write N in Gamma, then write t in binary as N ' bits.

Example: If number is 7, 7 = 2> + 3. Here N 'is 2, so N = 2 + 1 = 3, We write N = 3 in Elias'
Gamma which is 10:1. Then we write 3 as 2 bytes, that is 11.

If numberis 1 =2+ 1. Here N ' =0,s0 N =0+ 1 = 1. We write N = 1 in Elias' Gamma
which is 0: , then we write t = 1 as 0 bytes, that is nothing. So 1 representation in Elias' Delta is 0::

Some more examples on Elias' Delta Code:

Number Elias' Delta Code
1=2°+1 0:

2=2'+0 10:0:0

3=2'+1 10:0:1

4=2*+0 10:1:00

15=2*+7 110:00:111

45=2°+13 110:10:01101

324 =2°+68 1110:111:01000100

381 =2%+125 1110:111:01111101

24412 = 2"+ 8028 |1110:111:01111101011100
66291 =2'°+ 755 |11110:0001:0000001011110011

Figure 8: Examples for Elias' Delta Coding

Another algorithm for coding

This algorithm gives advantages for variable-length coding. For example, numbers less than 128 are
represented with one byte, whereas numbers greater than 127 are represented at least two bytes.

To encode integer x> 1

(1) Setx—mx—1.

(2) While = = 125,
(o) write_byple(128 + & mod 128).
(b} Set z— (& div 128) = 1.

(3 write_byte{x).

'Tll'.i' -I'.I!I':'-!'I'.H'.tl':’ Tk H.'lF.l":!_H'T' o

(1) Set b+ read_byte(), x +— 0, and p — 1.
(2) While b = 128,
[a) Set & — &+ (h— 127) = p and
po—pox 128,
(b)) Set b +— read byfe().
(3) Setx+— a2+ (b+1) = p

Figure 9: Encoding and decoding variable-length byte-aligned codes. Input values to the encoder must
satisfy x > 1.

Decoding examples for this algorithm:

1) If encoded number is 3, represented as 0000 0011,
We write,
b=3,x=0,p=1
Sinceb > 128 is false, x=x+(b+1)*p=0+4*1=4

So encoded 3 represents 4.

2) If encoded number is 138:5, represented as 1000 1010: 0000 0101
We write,
b=138,x=0,p=1
since b > 128,
x=x+(b-127)*p=0+11*1=11
p=p*128=128
b=5
since b > 128 is false, it exits loop
x=x+b+1)*p=11+(5+1)*128=11+6*128=779

Encoding examples for this algorithm:
1) If number is 4,
x=x-1=3

x > 128 is false,
So, we write 3

2) If number is 1045,
x=x-1=1045-1=1044

X > 128 is true
write 128 + 1044 mod 128 = 128 + 20 = 148
x=x/128-1=8-1=7

7 > 128 is false
write 7

So encoded form of 1045 is: 148:7
3) If number is 779,
x=x-1=779-1="778
X > 128 is true
write 128 + 778 mod 128 = 128 + 10 = 138
x=x/128-1=6-1=5

5> 128 is false
write 5

So encoded form of 779 is 138:5

Golomb Rice Codes

To encade tndeger o = 1 wsing parameter b

(1) Factor > 1 into g-b4+ r+ 1 where 1 < r < b
(2] Code g+ 1 in unary.
(3] Bet e [log, b] and g« 2° = b
(47 IF0 < ¢ < g then code # in binary using @ — 1 bits; otherwise, if g < ¢ < b, then
code v 4+ g in binary using e hits.
Fig. 10: Encoding using a Golomb code with parameter b. Input values must satisfy
x>1.

Golomb and Rice Codes are not so different. Rice Code is special form of Golomb code. Golomb code
with parameter b, is called as Rice Code if b = 2,

Examples:

1) If valueis 3and b =5,
3=0*b+2+1,wherer=2andq=0
Unary codeof (0+1)=11is0
e is 3, since log,5 is approximately 2.322, g =2°-5=3

9

Since, 0 <r < g is true, because 0 < 2 < 3, we code r = 2 in binary which
is 10 using e — 1 = 2 bits.
So it's 0:101

2) If valueis 15and b = 3,
15=4*3+2+1,wherer=2andq=4
Unary code of (4 + 1) =51is 11110
e is 2, since log,3 is approximately 1.585, g=2?-3 =1
Since, g <1 < b is true, because 1 < 2 < 3, we code r + g = 3 in binary
which is 11 using e = 2 bits.
Soit's 11110:11

3) If value is 38 and b = 8,
38=4*8+5+1,wherer=5andq=4
Unary code of (4 + 1) =51is 11110
e is 3 since log,8is 3. g=2*-8=0
Since, g <1 < b is true, because 0 < 5 < 8, we code r + g = 5 in binary
which is 101 using e = 3 bits.
So it's 11110:101

Limiting Memory Requirements

1. Accumulator Limiting

To use an inverted index ond an accumwlator fmit L fo rank a document col-
lection wnth regord fo a guery g and identify the top v mafching documents:

(1) Create an empty set A of accumulators,
(2) For each query term £ in q, ordered by decreasing wg .,
(a) Fetch the nverted list for &
(b For each pair {d, fa,) mn the mverted list
i I0 Ay does nod exizt and [A| < L, ereate accumulator Ag.
i, IF Ag exists, caleulate wyy and set Ag — Aa + g % e,
(3) Read the array of W values.
(4) For each accummlator Ag £ A, set Sq — Aq /W

(3} ldentify the v greatest 5y values and return the corresponding documents,

Figure 11: The limiting method for restricting the number of accumulators during ranked query
evaluation. The accumulator limit L must be set in advance. The thresholding method involves a
similar computation, but with a different test at step 2(b)i.

2. Accumulator Thresholding

Here, a threshold value is chosen and this value is used to create accumulators. If similarity is
not less than threshold, an accumulator is created.

10

Reducing Retrieval Costs

1. Skipping

2. Frequency-Ordered Inverted Lists
3. Impact-Ordered Inverted Lists

To wse an smpact-sorted inverted inder and an accumulotor il L fo rank a
docwment collection with regard to a guery g and identify the top v matching
documents:

(1] Create an empty set A of accumulators.
(2] Fetch the first block of each term £'s inverbed list. Let s be the stored impact
soore for that block.
(3] While processing time is not exhausted and while inverted list blocks remain
ia) Identify the inverted list block of highest w, ¢ = #, breaking ties arbitrarily.
Let © b the integer contribution decived from g e = 5.
(b For each document d referenced in that block,
i. I Ay does not exist and |A] < L, create an accumnlator A
i, If Ag exists, set Ag — Ag + €,
(c} Ensure that the next equi-impact block for term £ is available, and
npdate &, .

(4] Identify the r greatest Az values and return the corresponding documents.

Figure 12: Impact-ordered query evaluation.

11

	Inverted Files for Text Search Engines
	JUSTIN ZOBEL And ALISTAIR MOFFAT
	by M. Levent KOC
	Sample Collection for examples:
	Collection with only case-folding
	Collection with case-folding and stemming
	Collection with case-folding, stemming and stopping
	Some terms used in the paper
	Some conventions
	Cosine similarity
	An algorithm for computing similarity using inverted files
	Index Construction
		1. In-Memory Inversion
	2. Sort-Based Inversion
	3. Merge-Based Inversion

	CODING THEORIES
	Efficient Index Representations
	Parameterless Codes
	Unary
	Elias' Gamma
	Elias' Delta
	Another algorithm for coding
	Golomb Rice Codes

	Limiting Memory Requirements
	1.Accumulator Limiting
	2.Accumulator Thresholding

	Reducing Retrieval Costs

