
1974. A C M Tur ing
Award Lecture

[The Tnring Award citation read by Bernard A. Galler, chairman
of the 1974 "ll'~lring Award Committee, on the presentation of this
lecture on November 11 at the ACM Annual Conference in San
Diego.]

The A.M. Turing Award of the ACM is presented annually
by the ACM to an individual selected for his contributions of a
technical nature made to the computing community. In particu-
lar, these contributions should have had significant influence on
a major segment of the computer field.

"The 1974 A.M. Turing Award is presented to Professor
Donald E. Knuth of Stanford University for a number of major
contributions to the analysis of algorithms and the design of
programming languages, and in particular for his most significant
contributions to the 'art of computer programming' through his
series of well-known books. The collections of techniques, algo-
rithrus and relevant theory in these books .have served as a focal
point for developing curricula and as an organizing influence on
computer science."

Such a formal statement cannot put into proper perspective
the role which Don Knuth has been playing in computer science,
and in the computer industry as a whole. It has been my expeli-

ence with respect to the first recipient of the Turing Award, Pro-
fessor Alan J. Perlis, that at every meeting in which he participates
he manages to provide the insight into the problems being dis-
cussed that becomes the focal point of discussion for the rest of
the meeting. In a very similar way, the vocabulary, the examples,
the algorithms, and the insight that Don Knuth has provided in
his excellent collection of books and papers have begun to find
their way into a great many discussions in almost every area of
the field. This does not happen easily. As every author knows,
even a single volume requires a great deal of careful organization
and hard work. All the more must we appreciate the clear view
and the patience and energy which Knuth must have had to plan
seven volumes and to set about implementing his plan so care-
fully and thoroughly.

It is significant that this award and the others that he has
been receiving are being given to him after three volumes of his
work have been published. We are clearly ready to signal to
everyone our appreciation of Don Knuth for his dedication and
his contributions to our discipline. I am. very pleased to have
chaired the Committee that has chosen Don Knuth to receive the
1974 A.M. Turing Award of the ACM.

Computer Programming
by Donald E. Knuth

as an Art

When Communications of the ACM began publi-

cat ion in 1959, the members of ACM'S Editorial Board
made the fol lowing remark as they described the

purposes of acM's periodicals [2]: " I f compute r pro-
g ramming is to become an impor t an t part of computer

research and development , a t ransi t ion of p rogramming
from an art to a disciplined science mus t be effected."
Such a goal has been a cont inua l ly recurr ing theme

dur ing the ensu ing years; for example, we read in 1970

of the "first steps toward t rans forming the art of
p rog ramming in to a science" [26]. Meanwhi le we have
actually succeeded in mak ing our discipline a science,

and in a remarkab ly simple way: merely by deciding

to call it " compu te r science."
Implici t in these remarks is the no t ion that there is

something undesi rable abou t an area of h u m a n activity
Copyright @ 1974, AsSociation tbr Computing Machinery, Inc.

General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery,

Author's address, Computer Science Department, Stanford
University, Stanford, CA 94305

667

that is classified as an "a r t " ; it has to be a Science
before it has any real stature. On the other hand, I
have been working for more than 12 years on a series

of books called "The Art of Compute r P r o g r a m m i n g / '
People frequently ask me why I picked such a title; and
in fact some people apparen t ly don ' t believe that I
really did so, since I 've seen at least one bibl iographic

reference to some books called "The Act of Compute r
P rog ramming . "

In this talk I shall try to explain why I th ink "Ar t "

is the appropr ia te word. I will discuss what it means
for something to be an art, in contras t to being a science;
I will try to examine whether arts are good things or
bad th ings; and I will try to show that a proper view-

po in t of the subject will help us all to improve the
qual i ty of what we are now doing.

One of the first times I w a s ever asked abou t the
t i t le of my books was in 1966, dur ing the last previous
ACM nat ional meet ing held in Southern California. This

was b e f o r e any of the books were published, and I

recall having lunch with a fr iend at the conven t ion

hotel. He knew how conceited t was, already at that

Communications December 1974
of Volume 17
the ACM Number 12

time, so he asked if I was going to call my books "An
Introduct ion to Don K~uth ." I replied that, on tile
contrary, I was nam.ing the books after hi~. His name:
Art Evans. (The Art o f Computer Programming, in
person.)

F r o m this story we can conclude that the word
"a r t " has more than one meaning. In fact, one of the
nicest things about the word is that it is used in rnany
different senses, each of which is quite appropriate in
connection with computer programming. While pre-
paring this talk, ii went ~o the library to find out what
people have written about tire word "ar t" through the
years; and aRer spending several fascinating days in the
stacks, I came to the conclusion that "ar t" must be one
of the most :interesting words in the English language.

The Arts of O]d
I f we go back to Latin roots, we find ars, artis

meaning "skill." It is perhaps significant that the
corresponding Greek word was r~x~:q, the root of both
" technology" and "technique."

Nowadays when someone speaks of "ar t " you
probably think first of "fine arts" such as painting and
sculpture, but before the twentieth century the word
was generally used in quite a different sense. Since this
older meaning of "ar t " still survives in many idioms,
especially when we are contrasting art with science, I
would like to spend the next few minutes talking about
art in its classical sense.

In medieval times, the first universities were es-
tablished to teach the seven so-called "liberal arts,"
namely grammar, rhetoric, logic, arithmetic, geometry,
music, and astronomy. Note that this is quite different
f rom the curriculum of today 's liberal arts colleges, and
that at least three of the original seven liberal arts are
impor tant components of computer science. At that
time, an ";art" meant something devised by man's
intellect, as opposed to activities derived f rom nature
or instinct; "l iberal" arts were liberated or free, in
contrast to manual arts such as plowing (cf. [6]). During
the middle ages the word "ar t" by itself usually meant
logic [4], which usu.ally meant the study of syllogisms.

Science vs. Art
The word "science" seems to have been used tbr

many years in about the same sense as "ar t" ; for ex-
ample, people spoke also of the seven liberal sciences,
which were the same as the seven liberal arts [1].
Duns. Scotus in the thirteenth century called logic "the
Science of Sciences, and the Art of Arts" (cf. [12, p.
34f]). As civilization and learning developed, the words

took on more and more independent meanings, "scJ,.
ence" being used to stand for knowledge, and "ar t"
for the application of know~edge. Thus, the science of
astronomy was the basis for the art of navigation. The
situation was almost exactly like the way i'n which we
now distinguish between ~science" and "engineering."

Many authors wrote about the relationship between
art and science in the nineteenth century, and I believe
the best discussion was given by John Stttart Mill. He
said tile following things, among .others, :in 1843 [28]:

Several sciences are often necessary to fnrm the groundwork
of a single art. Such is the complication of human affairs, that to
enable one thing to be dc~t~e, it is often requisite to k~2ow the nature
and properties of many things . . . Art in general consists of the
truths of Science, arranged in the most convenient order for practice,
instead .of the order which is the most convenient for thought.
Science groups and arranges its truths so as to enable us to take
in at one view as much as possible of the general order of the
universe. Art . . . brings together flom parts of the field of science
most remote fi:om one another, the truths relating to the production
of the different and heterogeneous conditions necessary to each
effSct which the exigencies of" practical life require.

As I was ILooking up these things about the mean-
ings of "ar t ," I found that authors have been calling
fbr a transition from art to science {'or at least two
centuries. For example, the preface to a textbook on
mineralogy, written in 1784, said the f'ollowing [171:
"Previous to the year t780, mineralogy, though toler-
ably understood by many as an Art, could scarce be
deemed a Science."

According to most dictionaries "science" means
knowledge that has been logically arranged and system-
atized in the form of general "laws." The advantage of
science is that it saves us from the need to think things
through in each individual case; we can turn our
thoughts to higher-level concepts. As John Ruskin
wrote in 1853 [32]: "The work of science is to substitute
facts for appearances, and demonstrat ions tbr impres-
sions."

it seems to me that if the authors I studied were
writing today, they would agree with the following
characterization: Science is knowledge which we under-
stand so welt that we can teach it to a computer ; and
if we don ' t fully understand something, it is an art to
deal with it. Since the notion of an algorithm or a
computer program provides us with an extremely useful
test for the depth o f our knowledge about any given
subject, the process of going from an art to a science
means that we learn how to automate something.

Artificial intelligence has been making significant
progress, yet there is a huge gap between what com-
puters can do in the foreseeable future and what
ordinary people can do. The mysterious insights that

668 Communications December 1974
of Volume 17

" the ACM Number 12

people have when speaking, listening, creating, and
even when they are programming, are still beyond the
reach of science; nearly everything we do is still an art.

From this standpoint it is cer[ainly desirable to make
computer programming a science, and we have indeed
come a long way in the 15 years since the publication
of the remarks I quoted at the beginning of this talk.
Fifteen years ago computer programming was so badly
understood that hardly anyone even thought about
proving programs correct; we just fiddled with a pro-
gram until we "knew" it worked. At that time we didn't
even know how to express the cor~cept that a program
was correct, in any rigorous way. It is only in recent
years that we have been learning about the processes of
abstraction by which programs are written and under-
stood; and this new knowledge about programming is
currently producing great payoffs in practice, even
though I}w programs are actually proved correct with
complete rigor, since we are beginning to understand
the principles of program structure. The point is that
when we write programs today, we know that we could
in principle construct formal proof~ of their correctness
if we really wanted to, now that we understand how
such proof~ are formulated. This scientific basis is re-
sulting in programs that are significantly more reliable
than those we wrote in former days when intuition was
the only basis of correctness.

The field of "automatic programming" is one of
the major areas of artificial intelligence research today.
Its proponents would love to be able to give a lecture
entitled "Computer Programming as an Artifact"
(meaning that programming has become merely a relic
of bygone days), because their aim is to create machines
that write programs better than we can, given only the
problem specification. Personally t don' t think such a
goal will ever be completely attained, but I do think
that their research is extremely important, because
everything we learn about programming helps us to
improve our own artistry, in this sense we should
continually be striving to transform every art into a
science: in the process, we advance the art.

Science and Art
Our discussion indicates that computer programming

is by now both a science and an art, and that the two
aspects nicely complement each ,other. Apparently most
authors who examine such a question come to this same
conclusion, that their subject is both a science and an
art, whatever their subject is (cf. [25]). I found a book
about elementary photography, written in 1893, which
stated that "the development of the photographic image
is both an art and a science" [13]. tn fact, when I first

picked up a dictionary in order to study the words "ar t"
and "science," I happened to glance at the editor's
preface, which began by saying, "The making of a
dictionary is both a science and an art." The editor of
Funk & Wagnall's dictionary [27] observed that the
painstaking accumulation and classification of data
about words has a scientific character, while a well-
chosen phrasing of definitions demands the ability to
write with economy and precision: "The science without
tile art is likely to be ineffective; the art without tile
scier~ce is certain to be inaccurate."

When preparing this talk I looked through the card
catalog at Stanford library to see how other people
have been using tile words "ar t" and "science" in the
titles of their books. This turned out to be quite inter-
esting.

For example, I found two books entitled The Art
of Playing the Piat~o [5, 15], and others called The
Sciel~ce of Pianoforte 7"echtlique [10], The Science of
Piaezofi)rte Practice [30]. There is also a book called
The Art oJ" Piano Playing: A SciemiJTc Approach [22].

Then I found a nice little book entitled 7"he Gentle
Art cf Mathematics [31], which made me somewhat
sad that I can't honestly describe computer program-
ming as a "gentle art ."

I had known for several years about a book called
The Art of Computation, published in San Francisco,
1879, by a man named C. Frusher Howard [14]. This
was a book on practical business arithmetic that had
sold over 400,000 copies in various editions by 1890.
1 was amused to read the preface, since it shows that
Howard 's philosophy and the intent of his title were
quite different from mine; he wrote: "A knowledge of
the Science of Number is of minor importance; skill in
the Art of Reckoning is absolutely indispensible."

Several books mention both science and art in their
titles, notably 7"he Science of Being and Art of Living
by Maharishi Mahesh Yogi [24]. There is also a book
called The Art of Scientifi'c Discovery [11], which
analyzes how some of the great discoveries of science
were made.

So much for the word "ar t" in its classical meaning.
Actually when I chose the title of my books, I wasn't
thinking primarily of art in this sense, I was thinking
more of its current connotations. Probably the most
interesting book which turned up in nay search was a
fairly recent work by Robert E. Mueller called The
Science of Art [29]. Of all the books I 've mentioned,
Mueller's comes closest to expressing what I want to
make the central theme of my talk today, in terms of
real artistry as we now understand the term. He ob-
serves: "I t was once thought that the imaginative

669 Communications December 1974
of Volume 17
the ACM Number 12

out look of the artist was death for' the scientist. And
the logic of science seemed to spell 'doom to all possible
artistic flights of fancy ." He goes on to explore the
advantages which actually do result from a synthesis of
science and art.

A scientific approach is generally characterized by
the words logical, systematic, impersonal , calm, ra-
tional, while an artistic approach is characterized by the
words aesthetic, creative, humani tar ian , anxious, ir-
rat ional. It seems to me that both of these apparent ly
contradic tory approaches have great value with respect
to compu te r p rogramming .

E m m a Lehmer wrote in 1956 that she had found
coding to be "an exacting science as well as an in-
triguing ar t" [23]. H.S.M. Coxetcr remarked ira 1957
that he somet imes felt " m o r e like an artist than a
scientist" [7J. This was at the t ime C.P. Snow was
beginning to voice his a larm at the growing polarization
between " two cul tures" of educated people [34, 35].
He pointed out that we need to combine scientific and
artistic values if' we are to make real progress.

Works of Art
When i ' m sitting in an audience listening to a long

lecture, my at tent ion usually starts to wane at about
this point in the hour. So I wonder, are you getting a
little tired of my harangue about *'science" and "a r t "?

really hope that you ' l l be able to listen carefully to
the rest of this, anyway, because now comes the part
abou t which I fled mos t deeply.

When I speak abou t compute r p rogramming as an
art, I am thinking pr imari ly of it as an art form, in an
aesthetic sense. The chief" goal of my work as educator
and au thor is to help people learn how to write beau-
tiJM programs. It is for this reason 1 was especially
pleased to learn recently [32] that my books actually
appear in the Fine Ar ts Library at CorneI1 University.
(However , the three volumes apparent ly sit there neatly
on the shelf, without being used, so I ' m afraid the
l ibrarians may have made a mistake by interpreting my
title literal!y.)

My feeling is that when we prepare a program, it
can be like compos ing poetry or music; as Andrei
Ershov has said [9], p rog ramming can give us both
intellectual and emot iona l satisfaction, because it is a
real achievement to mas te r complexi ty and to establish
a system of consistent rules.

F u r t h e r m o r e when we read other people 's programs,
we can recognize some of them as genuine works of
art. I can still r emember the great thrill it was for me
to read the listing of Stan Poley 's SOAp II assembly

670

program in 1958; you probably thi>,k t % cruzy, and
styles have certainly changed grcaltiy since then, but at
the time it meant a great deal to me to see how elegant
a system program could be, especially by compar i son
with the heavy-handed coding found in other listings I
had been studying at the same time. 'l 'hc possibility of
writing beautiful programs, even ii1 asscmbiy h.mguage,
is what got me hooked on p r o g r a m m i n g in the first

place.
Some programs are elegant, some are exquisite,

some are sparkling. My claim is that it is possible to
write grand programs, treble programs , truly magnifi-
cent ones[

Taste and Style

The idea of" style in p r o g r a m m i n g is now coming to
the forefront at last, and 1 hope that mos t of" you have
seen the excei1et~t little book on t2/emeHts' of Program..
ruing Style by Kernighan and Ptauger [16]. in this
connection it is most impor tan t for us all to r e m e m b e r
that there is no one "be s t " style; eve rybody has his
own preferences, and it is a mis take to try to force
people into an unnatural mold. We often hear' the
saying, "I don ' t know anything abou t art, but I know
what I like." The impor tan t thing is that you really
l/fie the styIe you are using; it should be the best way
you prefer to express yourself,

Edsger Dijkstra stressed this point in the pretence
to his Short Irltrodt~ction to the Art ~d Programming [8[:

It is my purpose to transmit the irnportance of good taste and
style in programming, [but] the specific elements of style presented
serve only to illustrate what benefits can be derived from "style"
in general. In this respect I feel akin to the teacher of" composition
at a conservatory: He does not teach Ms pupils how to compose a
particular symphony, he must help his pupils to find their own
style and must explain to them what is implied by this. (It has been
this analogy that made me talk about "The Art of Programming.")

Now we must ask ourselves, What is good style,
and what is bad style? We should not be too rigid
about this in judging other people ' s work. The early
nineteenth-century phi losopher Je remy Ben tham put it
this way [3, Bk. 3, Ch. t1:

Judges of elegance and taste consider themselves as benefactors
to the human race, whilst they are really only the interrupters of
their pleasure... Ti~ere is no taste which deserves the epithet good,
unless it be the taste for such employments which, to the pleasure
actually produced by them, conjoin some contingent or Ajture
utility: there is no taste which deserves to be characterized as bad,
unless it be a taste for some occupation which has a mischievous
tendency.

When we apply our own prejudices to " r e f o r m " some-
one else's taste, we may be unconsciously denying him
some entirely legitimate pleasure. Tha t ' s why I don ' t

Communications December 1974
of Volume 17
the ACM Number 12

condenm a lot of things programmers do, even though
t would never enjoy doing them myself. The important
thing is that they are creating something they feel is
beautiful.

in the passage I just quoted, Bentham does give us
some advice about certain principles of aesthetics which
are better than others, namely the "utility" of the
result. We have some freedom in setting up our personal
standards of beauty, but it is especially nice when the
things we regard as beautiful are also regarded by other
people as useful. I must confess that I really enjoy
writing computer programs; and I especially enjoy
writing programs which do the greatest good, in some
sense.

There are many senses in which a program can be
"good," of course. In the first place, it's especially good
to have a program that works correctly. Secondly it is
oken good to have a program that won't be hard to
change, when the time %r adaptation arises. Both of
these goals are achieved when the program is easily
readable and understandable to a person who knows
the appropriate language.

Another important way for a production program
to be good is ~or it to interact gracefully with its users,
especially when recovering fl'om human errors in the
input data. lt's a real art to compose meaningful error
messages or to design flexible input formats which are
not error-prone.

Another important aspect of program quality is
the efficiency with which the computer's resources are
actually being used. I am sorry to say that many people
nowadays are condemning program efficiency, telling
us that it is in bad taste. The reason for this is that we
are now experiencing a reaction from the time when
efficiency was the only reputable criterion of goodness,
and programmers in the past have tended to be so
preoccupied with efficiency that they have produced
needlessly complicated code; the result of this unneces-
sary complexity has been that net efficiency has gone
down, due to difficulties of debugging and maintenance.

The real problem is that programmers have spent
far too much time worrying about efficiency in the
wrong places and at the wrong times; premature
optimization is the root of all evil (or at least most of it)
in programming.

We shouldn't be penny wise and pound foolish, nor
should we always think of efficiency in terms of so
many percent gained or lost in total running time or
space. When we buy a car, many of us are almost
oblivious to a difference of $50 or $100 in its price,
while we might make a special trip to a particular
store in order to buy a 50¢ item for only 25#. My point

is that there is a time and place for efficiency; I have
discussed its proper role in my paper on structured
programming, which appears in the current issue of
Computing Surveys I21].

Less Facilities: Mere Enjoyment
One rather ,curious thing I've noticed about aesthetic

satisfaction is that our pleasure is significantly enhanced
when we, accomplish something with limited tools.
For example, the program of which I personally am
most pleased and proud is a compiler I once wrote for
a primitive minicomputer which had only 4096 words
of memory, t6 bits per word. It makes a person feel
like a real virtuoso to achieve something under such
severe restrictions.

A similar phenomenon occurs in many other con-
texts. For example, peopIe often seem to fall in love
with their Volkswagens but rarely with their Lincoln
Continentals (which presumably run much better).
When I learned programming, it was a popular pasthne
to do as much as possible with programs that fit on
only a single punched card. I suppose it's this same
phenomenon that makes APL enthusiasts relish their
"one-liners." When we teach programming nowadays,
it is a curious fiact tlhat we rarely capture the heart of a
student for computer science until he has taken a course
which allows "hands on" experience with a minicom-
puter. The use of our large-scale machines with their
fancy operating systems and languages doesn't really
seem to engender any love for programming, at least
not at first.

It 's not obvious how to apply this principle to
increase programmers' enjoyment of their work. Surely
programmers would groan if their manager suddenly
announced that the new machine wilt have only half as
much memory as the old. And I don't think anybody,
even the most dedicated "programming artists," can be
expected to welcome such a prospect, since nobody
likes to lose facilities unnecessarily. Another example
may help to clarify the situation: Film-makers strongly
resisted the introduction of talking pictures in the 1920's
because they were justly proud of the way they could
convey words without sound. Similarly, a true program-
ming artist might well resent the introduction of more
powerful equipment; today's mass storage devices
tend to spoil much of the beauty of our old tape sorting
methods. But today's film makers don't want to go
back to silent films, not because they're lazy but because
they know it is quite possible to make beautiful movies
using the improved technology. The form of their art
has changed, but there is still plenty of room for artistry.

How did they develop their skill? The best film

Communications December 1974
of Volume 17
the ACM Number 12

makers through the years usually seem to have learned
their art in comparatively primitive circumstances, often
in other countries with a limited movie industry. And
in recent years the most important things we have been
learning about programming seem to have originated
with people who did not have access to very large
computers. The moral of this story, it seems to me, is
"that we should make use of the idea of" limited resources
in our own education. We can all benefit by doing
occasional " toy" programs, when artificial restrictions
are set up, so that we are forced to push our abilities
to the limit. We shouldn't live in the lap of luxury all
the time, since that tends to make us lethargic. The art
of tackling miniproblems with all our energy will
sharpen our talents for the real problems, and the
experience will help us to get more pleasure From our
accomplishments on less restricted equipment.

in a similar vein, we shouldn't shy away From "art
for art 's sake"; we shouldn't fed guilty about programs
that are just for fun. I once got a great kick out of"
writing a one-statement ALGOL program that invoked
an innerproduct procedure in such an unusual way that
it calculated the ruth prime number, instead of an
innerproduct [19]. Some years ago the students at
Stanford were excited about finding the shortest ~OR-
TRAN program which prints itself out, in the sense that
the program's output is identical to its own source text.
The same problem was considered for many other
languages. I don ' t think it was a waste of time for them
to work on this; nor would Jeremy Bentham, whom t
quoted earlier, deny the "utility" of such pastimes [3,
Bk. 3, Ch. 1]. "On the contrary," he wrote, "there is
nothing, the utility of which is more incontestable.
To what shall the character of utility be ascribed, if
not to that which is a source of pleasure?"

Providing Beautiful Tools
Another characteristic of modern art is its emphasis

on creativity. It seems that many artists these days
couldn't care less about creating beautiful things; only
the novelty of an idea is important. I 'm not recom-
mending that computer programming should be like
modern art in this sense, but it does lead me to an
observation that I think is important. Sometimes we
are assigned to a programming task which is almost
hopelessly dull, giving us no outlet whatsoever for any
creativity; and at such times a person might well come
to me and say, "So programming is beautiful? It 's all
very well fbr you to declaim that I should take pleasure
in creating eIegant and charming programs, but how
am i supposed to make this mess into a work of art?"

672

Welt, it's true, not all programming tusks are going
to be fun. Consider the "trapped housewiR,," who has
to clean off the same table every day: there's not room
f'or creativity or artistry in e~ery situation. But even in
such cases, there is a way to make a :) g improvement:
it is still a pleasure to do routine.iobs it" we have beau-
tiful things to work with. For exa~nple, a person will
really enjoy wiping off" the dining room table, day after
day, if' it is a beautifully desig~lcd ruble made from some
fine quality hardwood.

Theref'ore 1 warlt to address my closing remarks to
the system programmers and the macMne designers who
produce the systems that the rcst of us must work with.
.P/eas'e, give us tools that are a pleasure to use, especially
for our roudne assignments, instead of providing some-
thing we have to fight with. Please. give us tools that
encourage us to write better programs by enhancing
our pleasure when we do so.

It 's very hard for me to convince college fleshmen
that programming is beautiful, when the first thing I
have to tell them is how to punch "sh~slh slash JOB
equals so-and-so." Even job control languages can be
designed so that they are a pleasure to use, instead of
being strictly functional.

Computer hardware designers can make their ma-
chines much more pleasant to use, {'or exampte by
providing floating-point arithmetic which satisfies sim-
ple mathematical laws. The facilities presently available
on most machines make the job of rigorous error
analysis hopelessly difficult, but properly designed
operations would encourage numerical analysts to
provide better subroutines which have certified accuracy
(cf. [20, p. 204]).

Let's consider also what software designers can do.
One of the best ways to keep up the spirits of a system
user is to provide routines that he can interact with.
We shouldn't make systems too automatic, so that the
action always goes on behind the scenes; we ought to
give the programmer-user a chance to direct his crea-
tivity into useful channels. One thing all programrners
have in common is that they enjoy working with ma-
chines; so let's keep them ira the loop. Some tasks are
best done by machine, while others are best done by
human insight; and a properly designed system will find
the right balance. (I have been trying to avoid mis-
directed automation for many years, cf. [18],)

Program measurement tools make a good case in
point. For years, programmers have heel] unaware of
how the real costs of comput ing are distributeci in their

prograrns. Experience indicates that nearly everybody

has the wrong idea about the real bottlenecks in his

Comrnuaicatiorns December 1974
of' Volume 17
the ACM Num[x:r /2

prog rams ; it is no wonder that a t tempts at efficiency
go awry so often, when a p rog rammer is never given a
b reakdown of costs according to the lines of code he
has writ ten. His j o b is something Eke that of a newly
marr ied couple who try to plan a balanced budget
wi thout knowing how much the individual items like
food, shelter, and clothing will cost. All that we have
been giving p rog rammers is an optimizing compiler ,
which n~ysteriously does something to the p rograms it
t rans la tes but which never explains what it does. For-

tuna te ly we are now finalIy seeing the appearance of
systems which give the user credit for some intellb
gence; they au tomat ica l ly provide ins t rumenta t ion of
p r o g r a m s and app rop r i a t e feedback about the real
costs. These exper imental systems have been a huge
success, because they produce measurable improve-
meats , and especial ly because they are fun to use, so l
am confident that it is only a mat ter of time before the
use of such systems is s tandard operat ing procedure.
My paper in ComputitTg Surveys [21] discusses this fur-
ther, and presents some ideas for other ways in which
an a p p r o p r i a t e interact ive routine can enhance the
satisf 'action of user programmers .

L a n g u a g e designers also have an obl igat ion to
p rov ide languages that encourage good style, since we
all know that style is s t rongly influenced by the language
in which it is expressed. The present sttrge of interest
ira s t ruc tured p r o g r a m m i n g has revealed that none of
our exist ing languages is really ideal for dealing with
p r o g r a m and da ta structure, nor is it clear what an
ideal l anguage should be. Therefore 1 look forward to
many careful exper iments in language design dur ing
the next few years.

Summary
T o summar ize : We have seen that computer pro-

g r a m m i n g is an art , because it applies accumulated
knowledge to the world, because it requires skill and
ingenui ty , and especially because it produces objects of
bea t l ty . A p r o g r a m m e r who subconsciously views him-
self as an ar t is t will enjoy what he does and will do it
be t ter . Therefore we can be glad that people who lec-
ture at compute r conferences speak about the state o f
the Ar t .

References
1. Bailey, Nathan. The Universal Etymological English Dictionary.
T. Cox, London, 1727. See "Art," "Liberal," and "Science."
2. Bauer, Walter F,, Juncosa, Mario L., and Perils, Alan J.
ACM publication policies and plans. J. ACM 6 (Apr. 1959),
121-122.
3. Bentham, Jeremy. The Rationale of Reward. Trans. from
Thdorie des peiltes et des rdcompenses, t811, by Richard Smith,
J. & H. L. Hunt, London, 1825.

4. The Cetm~ry Dictiotlary atd Cyclopedia 1. The Century Co.,
New York, I889.
5. Clementi, Muz[o. The Art of Playing the Piano. Trans. from
L'art de]ouer le pianq/brte by Max Vogrich. Schirmer, New York,
1898.
6. Colvin, Sidney. "Art?' Eircyclopaedia Britatmica, eds 9, 11,
12, 13, 1875-1926.
7. Coxeter, H. S. M. Convocation address, Proc. 4th Canadian
Math. Congress, 1957, pp. 8-40.
8, Dijkstra, Edsger W. EWD316: A Short l~rtrodaction to the Art
02/ Programmit~g. T. H. Eindhoven, The Netherlands, Aug. 1971.
9. Ershov, A. P. Aesthetics and the human factor in programming.
Comm. ACM 15 (July 1972), 501--505.
10. Fielden, Thomas. The Science o/" Piano/brte Technique.
Macmillan, London, 1927.
11. Gore, George. 771e Art of Scientific Dis'covery. Longmans,
Green, London, 1878.
12. Hamilton, William. Lectures on Logic 1. Wrn. Blackwood,
Edinburgh, 1874.
13. Hodges, John A. Elementary Photography: The "Amateur
Photographer" Library 7. London, 1893. Sixth ed, revised and
enlarged, 1907, p. 58.
14. Howard, C. Frusher. Howard's Art of Computation and
golden rule for equation of payments for schools, business colleges
and seligculture C.F. Howard, San Francisco, 1879.
15. Hummel, J.N. 17re Art o/" Playing the Piano Forte. Boosey,
London, 1827.
16. Kernighan B.W., and Plauger, P.J. The Elements oJ" Program-
milrg Style. McGraw-Hill, New York, 1974.
17. Kirwan, Richard. Eleme,Tts o/" Mineralogy. Elmsly, London,
1784.
18. Knuth, Donald E. Minimizing drum latency time. J. ACM 8
(Apr. 1961), 119-150.
19. Knuth, Donald E., and Merner, J.N. ALGOL 60 confidential.
Comm. ACM 4 (Jane 1961), 268--272.
20. Knuth, Donald E. Seminumerical Algorithms: The Art o/"
Computer Programming 2. Addison-Wesley, Reading, Mass., 1969.
21. Knuth, Donald E. Structured programming with go to state-
ments. Computbrg Surveys 6 (Dec. 1974), pages in makeup.
22. Kochevitsky, George. The Art of Piano Plwing: A Scientific
Approach. Summy-Birchard, Evanston, II1., 1967.
233. Lehmer, Emma. Number theory on the SWAC. Proc. Syrup.
Applied Math. 6, Amer. Math. Soc. (1956), 103-108.
24. Mahesh Yogi, Maharishi. The Science q/'Being and Art qf
Living. Allen & Unwin, London, 1963.
25. Malevinsky, Moses L. The Science of Playwriting. Brentano's,
New York, 1925.
26. Manna, Zohar, and Pnueli, Amir. Formalization of properties
of functional programs, d. ACM 17 (July t970), 555-.569.
27. Marckwardt, Albert H. Preface to lqmk and Wagnall's Stan-
dard Colh, ge Dictionary. Harcourt, Brace & World, New York,
1963, vii.
28. Mill, John Stuart. A System off Logic, Ratiocinative and
brductive. London, 1843. The quotations are from the introduction,
§2, and from Book 6, Chap. 11 (12 in later editions), §5.
29. Mueller, Robert E. The Science of Art. John Day, New York,
1967.
30. Parsons, Albert Ross. The Science of Piano/brte Practice.
Scbirmer, New York, 1886.
31. Pedoe, Daniel. The Gentle Art of Mathematics. English U.
Press, London, 1953.
32. Ruskin, John. The Stones of Venice 3. London, 1853.
33. Salton,. G.A. Personal communication, June 21, 1974.
34. Snow, C.P. The two cultures. The New Statesman and Nation
52 (Oct. 6, 1956), 413-414.
35. Snow, C.P. The Two Cultures: and a Second Look. Cambridge
University Press, 1964.

673 Communications December 1974
of Volume 17
the ACM Number 12

