A NEW CLUSTERING SCHEME
AND
ITS USE IN AN INFORMATION RETRIEVAL SYSTEM
INCORPORATING THE SUPPORT OF A DATABASE MACHINE

A DCCTOR OF PHILOSOPHY THESIS
in

Computer Engineering
Middle East Technical University

By

Fazli CAN
November, 1984

“Approval of the Graduate School of Natural and Applied Sciences.

Prof.Dr. Bilgin KAFTANOGLU
Director

-I certify that this thesis satisfies all the requirements as a thesis
for the degree of Doctor of Philosophy in Computer Engineering.

Prof.Dr. Ziya AKTAS
Chairman of the Department

We certify that we have read this thesis and that in our opinion it
is fully adequate, in scope and quality, as a thesis for the degree
of Doctor of Philosphy in Computer Engineering.

- v /fa"@/
ssé;Prof.‘Dr. Sen: A. 57KARAHAN |

Supervisor

Examining Committee in Charge :

Assoc.Prof.Dr. Mehmet BARAY

- Prof.Dr. Ziya AKTAS
‘Assoc.Prof.Dr. Mislim BOZYIGIT
Assoc.Prof.Dr. Ayse KiPER

Assoc.Prof.Dr. Aydin KOUKSAL

ABSTRACT

A NEW CLUSTERING SCHEME
AND
ITS USE IN AN INFORMATION RETRIEVAL SYSTEM
INCORPORATING THE SUPPORT OF A DATABASE MACHINE

CAN, Fazli
Ph.D. in Computer Engineering
Supervisor: Assoc.Prof.Dr. Esen A. GZKARAHAN
Nov. 1984, 288 pages

The need for immediate and accurate access to the current litera-
ture at one side and the information explosion on the other side have
caused the development of information retrieval systems. In this work,
information retrieval problem is studied and new concepts and method-

ologies are proposed for its solution.

The new proposals are cover coefficient and cluster seed power
concepts and the methodologies for estimating the number of clusters
within a collection ahd the number of members within a cluster. These
concepts and methodologies are used in a new single-pass clustering
algorithm. A multi-pass clustering algorithm is introduced to show
the validity of the cover coefficient concept for clustering purposes.
In the thesis, the complexity analysis of the algorithms, a new centroid
generation policy in connection with the new cover coefficient concept
are presented. An algorithm for the maintenance of the clusters in
expanding document collection environments and its complexity analysis

are also presented.

- i -

The. similarity and stability concepts for clustering algorithms
are introduced, then the clustering algorithms are analyzed by a set
of experiments with respect to these concepts. For the purpose of
the experiments, a document collection of 167 articles from the ACM-
TODS publications has been constructed. The characteristics of the
collection, the findings of the experiments and some observed basic

relationships are illustrated in detail.

In the thesis, an information system model which integrates the
information retrieval and database management systems 1is proposed.
Unlike the previous studies aimed at this purpose, which more or less
reduce one system into the other, the proposed model aims to accomplish
this integration by a synthesis of the techniques and methodologies
of both systems. For this purpose, a database machine, the Relational
Associative Processor (RAP), is enhanced with the new text retrieval
instructions. Context sensitive free text retrieval operations are
imp]emented by using the new instructions. In the model, a clustering
subsystem and a conceptual data model are used for information retriey-
al purposes. The performance of the database machine in text retrieval
operations and a comparative performance evaluation of the single-pass
and the multi-pass clustering é]gorithms in information retrieval are

presented.

Additional concepts/methodologies that utilize cover coefficient

concepts are also introduced in the thesis.

Keywords: Information (text,document) retrieval systems, cover coeffi-
cient, cluster seed power,clustering algorithms, complexity
analysis of algorithms, similarity and stability of cluster-
ing algorithms, centroid generation, database management
systems, text retrieval computers, RAP database machine,
term discrimination value, document significance value.

-iV

OZET

YENI BIR KUMELEME YONTEMI
VERL TABANI BILGISAYARI DESTEKLI
BIR BILGI ERISIM SISTEMINDE KULLANIMI

CAN, Fazl1
Doktora Tezi, Bilgisayar Mih. B1imii
Tez Yoneticisi: Doc.Dr. Esen A.OZKARAHAN
Kasim 1984, 288 Sayfa

Son yayinlara aninda ve dogru ulasim gereksinimi ve bilgi patla-
masi, bilgi erisim sistemlerinin gelistirilmesine yoT acmistir. Bu
calismada, bilgi erisim sorunu incelenmis ve ¢ozimli icin yeni kavram

ve yontemler Onerilmistir.

Yeni Oneriler, kapsama katsayisi ve kiime ¢ekirdek giicii kavramlari
ile bir derlemdeki kiime sayisinin ve kimelerin iye sayilarinin kestiri-
mini amaclayan yontemlerdir. Bu kavram ve yontemler, yeni bir telegecisli
kimeTeme algoritmasinda kullaniimistir. Kapsama katsayisinin kiimeleme
algoritmalarinda kullanim gecerliligini gostermek icin ¢ok-gecisli bir
kimeleme algoritmasi Onerilmistir. Tezde, algoritmalarin karmasikl1k
cozimlemesi ve kapsama katsay1s1 kavramina iliskin bir orta¢ olusturma
yontemi sunulmustur. Buyliyen derlem ortamlarinda kimelerin bakiminda
kullanilabilecek bir algoritma ve karmasiklik ¢ozlmlemesi de ayrica

verilmistir,

Kimeleme algoritmalarinda benzerl]ik ve kararli1l1k kavramlars

anlatildiktan sonra Snerilen algoritmalar bir takim deneyler ile by

_V—

kavramlar acisindan incelenmistir. Deneyler icin 167 ACM-TODS yayinin-
dan bir derlem olusturulmus; derlemin 6zellikleri, deneylerin bulgulari

ve ortaya cikardigt temel iliskiler ayrintili olarak anlatilmistir.

Tezde, bilgi erisim ve veritaban1 ydnetim sistemlerini birlesti-
ren bir bilgi sistemi modeli Gnerilmistir. Bir sistemi otekine indipr-
geyen daha Onceki calismalardan farkli olarak, nerilen model by
birlestirmeyi her iki sistemin yontemlerinin bir sentezi olarak
gerceklestirmektedir. Bu amacla, bir veritabani bilgisayart olan
Relational Associative Processor (RAP), yeni belge erisim komutlarinin
eklenmesiyle genisletilmistir. Baglama duyarli ozglir belge erisim
islemleri, yeni komutlarin kulanimiyla RAP lizerinde gerceklestirilmis-
tir. Onerilen yapida, bilgi erisim amaclari icin kavramsal bir bilgi
modeli ve kimeleme alt sistemi kullanilmaktadir. Veritabani bilgi=
sayarinin belge erisim islemlerindeki basarisi ile tek-gecisli ve cok-
gecisli kimeleme — algoritmalarinin bilgi erisimdeki basarilarinin

karsilastirmalt olarak degderlendirilmesi ayrica sunulmustur.

Kapsama katsayisi kavramini kullanan kimi kavram ve yontemler de

tezde anlatiimaktadir.

Anahtar SOzciikler: bilgi (metin, bel ge) erigim sistemleri, kapsama
katsayisi, kiime gekirdek glici, kimeleme al gorit-
malari, algoritmalarin karmasiklik ¢bzlimlemesi,
kiimeleme algoritmalarinda benzerlik ve karar-
1111k, ortag lretimi, veritabani ydnetim sistem—
leri, belge erigim bilgisayarlari, RAP veri tabana
bilgisayari, terim ayirt etme degeri, belge Snem
degeri.

- vi -

ACKNOWLEDGEMENTS

I am grateful to my supervisor Dr.Esen A. {zkarahan for his
appreciation, guidance, and the research environment provided by his

assistance.

I would also like to thank Dr.william E. Lewis for his assistance
in providing me the financial support in the form of a research
assistantship and an industrial fellowship from Arizona State Univer-—
sity. I should also thank Dr (late) Lee Wilkinson of Intel, for his
assistance in providing me the summer hire engineer position at the

Intel Corporation.

Special thanks are due to Dr. Mehmet Baray for his valuable

suggestions and corrections in some sections of the manuscript.

I would also like to thank Dr. Ziya Aktag for his assistance and

understanding for the finalization of the thesis.

I am grateful to the Department of Electrical Engineering and the
Department of Computer Engineering of Middle East Technical University

for their understanding at the various Stages of my dissertation work.

I should also thank my family, for all their Support in completing

my Ph.D. degree.

The author also wishes to express his thanks to Meral Tasdemir
for her careful typing. (The author is an admirer of her American style

job responsibility.)

- vii -

Table

2.1

LIST OF TABLES

No of Document Available in Commercial Databases
Cross Classification of Two Partitions PA and PB

Cross Classification of the Partitions PA and PB

- General Statistical Information About the Database

.4. The Term Generation Conditions in the T-experiments ...,

No of Documents in the D-experimentsoo......

Information Pertaining to the Definition of D Matrices
and the Clusters Generatedovvvvvennrennnnnnnn...

- Behavior of the Algorithms in the T-experiments

Behavior of the Algorithms in the D-experiments
Characteristics of the bocument Collection
Characteristics of the Generated Clusters and Centroids
Characteristics of the QUEriesveeveeveneenennonn...

Characteristics of the Target Clusters (nsm=3)

Summary of Search Statistics in Terms of Recall] Ceiling

and Correlation Percentageveevvvennrvnnnnnnnn...

- viii -

108

111

115

117

117

119

123-124

125-126

217

222-223

Table

8.1

8.2

8.3

The Computation Involved for the Term Discrimination
Values with Respect to Cover Coefficient (DVl) and
Similarity (DVZ) Concepts vt iiiiii ittt ieaa..

The Rank Difference Comparison of the Two Term
Discrimination Measures for the D Matrix of the T4
EXperiment oo e e,

Comparison of Average Rank for the First 25 and Last 25
Terms of the D Matrix for the T4 Experiment

_.-ix..

Page

233

235

236

Figure

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.1

3.2

4.1

4.2

4.3

.a

.b

LIST OF FIGURES

Page
Description of an information systemouuun.... 6
Functional description of an IRS R 15
General procedure for searching an inverted file 17
Partitioning of a document collection after the
Processing of @ QUErY «uevuveruunerreeenennnnnnnnnnnnnn.. 22
PTot of recall versus precisioniveveeeeeeoneennn... 22
Text retrieval computereeveviiinnneennnnnnnnn... 23
Simplified SMART system flowchartvovuun.... 35
The relationship between § and v, dc.%’=1 -8, dc==1/a
(0 < 8 <) it e e 62
The relationship between § and dc in logarithmic scale,
logd = [10g8] (0 <6< 1) veuvniin i, 62
The relationship to be observed between number of terms
assigned to a document and document's s, v, and p for an
Tdeal sTtuation ...vvieeieiiininniiiie el 67
Similarity in the T-experimentsoouvvnvnn.... 130
Similarity in the D-experimentsooeeenvrnn... 130
Stability in the T-experimentsoveveeunvnnn... 132

Figure Page

4.4 Stability in the D-experimentsc.oceeeveneenrnnnenns 132
5.1 Architecture of the RAP processoreeveeirenivenenes 140
5.2 RAP tuple STrUCLUrE t.ivrieiiiiirnenineeennnernnnenenenenns 142
5.3 Structure of @ RAP.3 cell tiiriiiirininiiiiniinrirnnnen. 142
5.4 The Tayout of a RAP.3 tuple for text retrieval 149

5.5 The formal definition of a search pattern in a RAP
DYOG A vttt ineteenneeseensentonssansasasananonnensoanns 154

5.6 Plot of number of 10° character scanned/second vs number
of subcells/cell (data rate as parameter) 169

5.7 Plot of normalized total processing time vs number of
subcells/cell (data rate as parameter)coceeeenn. 171

5.8 Plot of real processing time (RAP circulation time) vs
number of subcells/cell (data rate as parameter) 171

5.9 Plot of load factor and number of 10% character scanned/
second vs CM data rate for k=4 and 6 ...ovvivnvennnenn.. 172

5.10 Plot of in cell parallelism factor vs load factor 172

5.11 Plot of number of 10° characters scanned/second vs number
- of subcells/cell et e ee e aacee et e e a e aeanees 176

5.12 Plot of real processing time (RAP scan time) vs number

of subcells/cell ittt it ittt iinernanns 177
6.1 Abstract view of the query processing environment 182
6.2 Hierarchical clUSEEring vuuveeeveiereineerennnnneennnn. 190
I B T o = O 199

6.4 The plot of recall (R) versus precision (P) for the
DG 1] 201

- Xi -

Figure Page

6.5 Conceptual representation of the integrated application
BNV P ONMENE Lttt ittt ittt ettt tn e e 203

6.6 A relational representation of the conceptual structure 204
8.1 The feedback process in modifying the D matrix 242

8.2 Term characterization in document frequency ranges 246

- xii -

TABLE OF CONTENTS

Page

R I Y O iiid
7 v
ACKNOWLEDGEMENT S vt ittt ittt titieetineeeeennenenenneneenenanns vii
LIST OF TABLES vt tiiiiietnteeieneeaaueenrnsoenosneneoneeasnsnns viii
LIST OF FIGURES tiviiiitit it iitenneannnenennenoneneeasnsnnenns X
T INTRODUCTION tititettiittnneeenneneeneenronesneennneananns . 1
1.7, Outline of the ThesSis vieiininiiiininnneenenrennnnens 2

2. INFORMATION SYSTEMS titiiiiitinneeneenennennenneenaeensonans 5
2.1. INFORMATION SYSTEMS OTHER THAN IR SYSTEMS 6
2.1.1. Database Management SysStemseeeeeeneenn. 6

2.1.2. Question Answering SyStemsveveeunnn. 11

2.2. INFORMATION RETRIEVAL SYSTEMS vuiiinneernnennnnnnnnns 12
2.2.7. Information EXplosionccoeeiieininnnnnnnnnn. 13

2.2.2. Characteristics of Information Retrieval Systems 14
2.2.3. Performance Evaluation of Information Retrieval

R 11 21
2.2.4. Hardware Solutions for Text Retrieval 23
2.2.5. Examples for Information Retrieval System

Implementations ..ooviiiiiiiiiiiininiiinnnnnn.. 27

- xiii -

2.2.5.1. The Databases Used for Information

Retrieval .vuiiniiniinineineennnnnnn, 27
2.2.5.2. The MEDLARS (MEDLINE) Information

Retrieval Systemcvvvivnnnnnnn... 29
2.2.5.3. The STAIRS and BRS Information :

Retrieval Systemscceviivunnnn, 31

2.2.5.4. The DIALOG Information Retrieval System 33
2.2.5.5. The SMART Experimental Information

Retrieval Systemccvvivivnnnnn.. 34

3. CLUSTERING ALGORITHMS . .vviiinitiiiien e eeeeeaennnnnnnn, . 36
3.1. CLASSIFICATION OF CLUSTERING ALGORITHMS cee. 38
3.1.1. Evaluation of Clustering Algorithms 43

3.1.2. Centroid Generation for the Clusters 44

3.2. THE USE OF CLUSTERING IN INFORMATION RETRIEVAL SYSTEMS 46

3.3. TWO PARTITIONING TYPE CLUSTERING ALGORITHMS 47
3.3.1. A Model for Seed Oriented Clustering 49
3.3.2. Concepts of the Algorithmsovuunnn... 50

3.3.2.1. Cover Coefficient Matrix:C 51
3.3.2.2. Properties of the Cover Coefficient

L 53
3.3.2.3. Decoupling (Coupling) Coefficient :

6i(wi) 58
3.3.2.4. Number of Clusters within a Collec-

tion: M e 60
3.3.2.5. The Relationship Between C and C'

- o= 61
3.3.2.6. Cluster Seed Power (pi) and Cluster

Seed Selectionevvviiviinnnnnnnn... 63
3.3.2.7. Modifications in the Clustering Con-

cepts for a Weighted D Matrix 68

3.3.3. The ATgorithms ...vvvvirinrnnnneeeennnnnn, 70

3.3.3.1. An Algorithm to Eliminate the False

Cluster Seeds v.vuvvviiniiinnnnnennnnnn. 70
3.3.3.2. The Single-pass Algorithm 72

- Xiv -

4.2,

3.3.4.

3.3.5.

3.3.6.

3.3.7.

3.3.3.3.
3.3.3.4.
Centroid
3.3.4.1.
3.3.4.2.

3.3.4.3.
3.3.4.4.

3.3.4.5.

The Multi-pass Algorithm

Some Refinements on the Clustering
ATQOrithms vuviernneniiiieiieiinnnennns

Generation Policy of the Algorithms ...

Centroid Generation Policy for the
Single-pass Algorithm

Centroid Generation Policy for the
Multi-pass Algorithm

Evaluation of Cluster Representatives .

Document Assignment and Centroid Forma-
tion for the Single-pass Algorithm

Document Assignment and Centroid Forma-
tion for the Multi-pass Algorithm

Complexity Analysis of the Algorithms

3.3.5.1.

3.3.5.2.

Complexity Analysis of the Single-pass
Algorithm ..veeinnieneniinenennnnnnn..

Complexity Analysis of the Multi-pass
Algorithm .oveviniinniiiiiinnnnnnn..

The Use of the Algorithm Concepts for Cluster
Maintenance ..vieeiiviiiii ittt

4.1.3. An Example for Cluster Similarity Calculation ..

EXPERIMENTAL PROCEDURE FOR THE ANALYSISovvun...

4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.

Document

Collection and the Indexing Approach ..

Generation of D Matrices ...vvvveeennnnnnnnnnn.,

Behavior

of the Algorithms in the Experiments .

Similarity of the Algorithms
Stability of the Algorithms

Page

75
77

77

/8

80
81

83
85

86

87

90

112

114
116
118
128
131

S

Page
4.3. BASIC RELATIONSHIPS OBSERVED IN CONNECTION WITH THE
EXPERIMENTS et e e e e 132
4.4, SUMMARY AND CONCLUSIONS FOR THE EXPERIMENTAL-ANALYSES . 135
5. TEXT RETRIEVAL WITH THE RAP DATABASE MACHINE 139

5.1. A CHRONOLOGICAL OVERVIEW OF THE RAP DATABASE MACHINES . 139
5.2. RAP ASSEMBLER LANGUAGEv'evnveeenenenaninnnnn, 144
5.3. TEXT RETRIEVAL OPERATIONS WITH THE RAP DATABASE MACHINE 146

5.3.1. Text String and the Physical Data Structure

Formats ..ot e 146
5.3.2. The New RAP Instructions for Information

Retrievaliiiiiiiiiiiiiiiiiii e, 150
5.3.3. Realization of the New RAP Instructions 153
5.3.4. Implementation of the Text Retrieval Operations

with the New RAP Instructions 159

5.4. PERFORMANCE EVALUATION OF RAP IN TEXT RETRIEVAL
ENVIRONMENT .ttt e e e e 164

5.4.1. Performance of RAP.3 Version-I in Text Retrieval 164
5.4.2. Performance of RAP.3 Version-II in Text Retrieval 174

5.5. SUMMARY AND CONCLUSIONS ..vvvunnnserennnnnnnnn ., 178

6. A MODEL FOR INTEGRATED FACT/DOCUMENT INFORMATION SYSTEMS ... 179

6.1 INTEGRATION MODEL ©\ovviniineiseeennanesen 180
6.1.7. A Mathematical Modelc.ovvnvrnnvnnn. ... 183
6.1.2. Creation of System Queries 184
6.1.3. Context'Sensitive Boolean Query Structure 186
6.1.4. Clustering Subsystem and Cluster Hierarchy 187
6.1.5. Cluster Search and Matching Function 191
6.1.6. Query Feedbackcuveuuiiiuninnnnnnnninnnnnin., 196
6.1.7. Evaluation et te ettt ettt e 197

6.2. CONCEPTUAL MODELLING AND AN EXAMPLE APPLICATION 202

6.3. SUMMARY AND CONCLUSIONS FOR THE INTEGRATION MODEL ,.... 207

- xvi -

Page

7. THE PERFORMANCE OF THE TWO PARTITIONING TYPE CLUSTERING

ALGORITHMS IN INFORMATION RETRIEVAL wuvvvcrieTeenenvnnnnnen. 209
7.1, EVALUATION MEASURES tttiitiiiineaerreeeeeennnnnnnnnnns 210
7.2, MATCHING FUNCTIONS \uutiiiiiiiiennenneneerennneernnnnn 214
7.3. THE EVALUATION EXPERIMENTS \uuriiiiinrnnnnenrnnnnnnnnn, 216
7.4. SUMMARY AND CONCLUSIONS \uiiiiiieneineneneenrnnnnnnnnns 224
8. ADDITIONAL CONCEPTS/METHODOLOGIES THAT UTILIZE COVER
COEFFICIENT CONCEPT etesecesrteeeaetrietaiasncesaaas 225
8.1. ON THE CORRESPONDENCE OF DOCUMENT AND TERM CLUSTER 226
8.2. THE USE OF COUPLING. COEFFICIENT CONCEPT FOR TERM
DISCRIMINATION PURPOSES t.vevunnnnennnnnninneneennnnnns 228

8.2.1. An Experiment for Checking the Cons1stency of
the Two Term Discriminator Measures 234

8.3. AN APROACH FOR FINDING THE OPTIMUM WEIGHTS FOR INDEXING

TERMS ettt e e e, 237
8.4. THE USE OF THE C' MATRIX FOR THE CONSTRUCTION OF EFFEC-
TIVE INDEXING VOCABULARIES .uvvvivinennnnnnennnnnnannn, 245
9. SUMMARY AND CONTRIBUTIONS OF THE THESIS AND DIRECTIONS FOR
FUTURE RESEARCH .\ttt tiiiiieieiniienieeeenannnnnn, 248
9 T SUMMARY ottt e e e e e et 248
9.2. CONTRIBUTIONS OF THE THESIS tvvvuvrvevnneenennnnnnnnnn. 250
9.3. DIRECTIONS FOR FUTURE RESEARCH ..uvvvvvneerrrennnnnnnns 252
REFERENCES 1ttt et e s ittt et 256
APPENDIX-A : TYPICAL FREE TEXT RETRIEVAL OPERATIONS 266

APPENDIX-B : STOP WORD LIST USED IN THE EXPERIMENTS OF CHAPTER 4 268
APPENDIX-C : TIMING ANALYSIS OF THE RAP.3 VERSION-I CELL

OPERATIONS v\ttt it eetie ittt eeannnns 269
APPENDIX-D : A BRIEF SUMMARY OF RAP INSTRUCTIONS .veevuvvenn... 271
APPENDIX~E : TEXT RETRIEVAL MACROS FOR THE RAP SYSTEM 275
L 288

- xvii -

I. INTRODUCTION

The expansion of the scientific Titerature, which is usually
referred to as "information explosion", is a generally accepted fact.
Because of its size not all of the available information can be
examined. As a resylt researchers are usually unaware about the find-
ings of others. On the other hand, industry and government are waiting
for the immediate solutions to their problems. This Ted to the imple-
mentation of the information systems, especially information retrieval
systems. In short, an information retrieval system provides fast and
accurate access to bibTiographic data. By doing so, it helps to
researchers by making them aware of the current Titerature and the

current state of knowledge.

This thesis is about information retrieval systems. Its main

contributions will be illustrated in Chapters 3 through 8.

During the dissertation work, the author had the opportunity of
Studying and enjoying the facilities of two different academic institu-
tions Tocated in two different countries. After the observations made
in these institutions, it became the idea of the author that, the best
way of achieving good works from dissertations is to have good research
facilities and a mechanism of rewarding. The latter wil] give the

motivation, the former wil] provide the results.

-1 -

1.7, OUTLINE OF THE THESIS

The thesis consists of nine chapters. A brief summary of Chapters

2 through 9 is given in the following.

Chapter 2 is an overview chapter. Firstly, a definition for
information systems is given. In this chapter, information systems are
divided into three parts. The objective of these systems, the method-
ology of information representation, and systems' characteristics are
given in a comparative manner. In this chapter information retrieval
systems are presented in detail. The reasons ¢f existence of informa-
tion retrieval systems and information explosion are reviewed. Perfor-
mance evaluation criteria and the hardware solution for information
retrieval systems are also illustrated. In the Jast section of Chapter
2, the characteristics of the databases used in these systems and some
commercial and experimental information retrieval systems are also

presented.

Chapter 3 covers the new clustering algorithms and the related
concepts. In this chapter, firstly the notion of clustering problem
is introduced. This is followed by a classification of clustering
algorithms, an illustration of evaluation criteria of clustering algo-
rithms, and an overview of generation of cluster representatives. The
use of clustering in information retrieval is also emphasized in this
chapter. The remainder of the chapter is devoted to the presentation
of some new concepts for clustering and two new clustering algorithms.
The first one is a single-pass algorithm, the second one is a multi-
pass algorithm. The initiation of the algorithms depends on the same
concepts. However, document assignment to the cluster seeds is done by

using two different criteria. For document assignment to the seeds, the

-2 -

single-pass algorithm uses the new concept called "cover coefficient";

the multi-pass algorithm uses a conventional "similarity" concept.

A new cluster representative generation policy, the complexity analysis
of the algorithms are also presented. An algorithm for cluster majnte-

nance and the characteristics of the illustrated algorithms are

presented in detail.

éhapter 4 contains the similarity and stability analysis of the
two algorithms presented in Chapter 3. Firstly, an informal definition
for similarity and stability of clustering algorithms are given.
Secondly, two metrics for similarity and stability analysis are
illustrated. This is followed by experiments whose main purpose 1is
to test the similarity and stability of the two clustering algorithms.
A document collection from 167 ACM-TODS (Association for Computing
Machinery-Transactions on Database Systems) was constructed for the
experiments. The general characteristics of the document collection
and the findings of the experiments and the basic relationships
observed in connection with indexing and clustering are illustrated

in detail.

Chapter 5 first gives a thono]ogica1 overview of the RAP database
machine, which is a cellular parallel associative processor for data-
base management, current version of which is called RAP.3. This over-
view also presents a brief timing analysis of the RAP.3. The relationally
complete RAP Assembler Language is briefly explained in this chapter. |
This is followed by the illustration of the téxt retrieval operations
with the RAP database machine. For this purpose, the text string and
the physical data structure formats in RAP, the new RAP instructions

for information retrieval, the realization of these instructions, and

the performance evaluation of RAP in information retrieval

instructions are presented.

Chapter 6 is devoted to an information system model which integ-
rates the information retrieval and datahase management systems. The
model relies on a clustering subsystem for database partitioning
and relation fragmentation. For the implementation, the single-pass
algorithm, which is presented in Chapter 3 is proposed. The support

architecture for the search operations is the RAP.3 database machine.

Chapter 7 contains a comparative performance analysis of the
single-pass and the muiti-pass clustering algorithms in information
retrieval. For this purpose the experimental document collection,
which is introduced in Chapter 4, is used. The performance of the
single-pass algorithm validates its usage for information retrieval

purposes.

Chapter 8 contains some additional concepts/methodologies that
utilize cover coefficient concept. These are the following: some
methodologies for testing the correspondence of document and term
clusters, the use of the coupling coefficient concept for term discrim-
ination purposes, an approach for finding the optimum weights for
indexing terms, and a method of using the new concepts introduced i

the thesis for the construction of effective indexing vocabularies.

The summary of the thesis along with the contributions of the

thesis and directions for further research are given in Chapter 9.

2. INFORMATION SYSTEMS

A generally accepted functional definition of an information
system is the following: An information system retrieves an informa-
tion from its database according to a used query. The form of the
information depends on the type of the ﬁnformation system. There are
variety of systems that satisfy this definition. Basically, there are
three types of information systems. These are Information (Text or
Document) Retrieval Systems (IRS), Database Management Systems (DBMS),
and Question Answering Systems (QAS). In this study our concern is
IRS and a combination of IRS and DBMS. In the text, Information
Retrieval (IR), Text Retrieval (TR), and Document Retrieval (DR)
phrases will be used interchangeably. Some other kind of information
systems, are management information systems and office information

systems.

A description of an information system can be given as in Figure
2.1. In this figure "Data" represents the raw information which is
stored in the database of the information system. Here, the database
means the collection of "organized" data which is used to respond to
the queries submitted to the system. The "Updates" indicates the
addition of new data, or deletion of the old data, or modifications

on the already existing data. The "Query", which is submitted by a

-5 -

R et

updates

I

Data -yl & Query

Information
System % Output

Figure 2.1 - Description of an information system

user, indicates the information need of the user. The "@utput" is
produced according to the specifications of the query. This functional
description for an information system is valid for all varieties.

However, each system will have its unique features in each component.

In an IR system the output will be the citations or whereabouts
of a document which satisfies the user query. However, in case of a
DBMS, the output is an factual information, and in a QAS system a
knowledge is produced for the user query (or more correctly, user

question).

2.1. INFORMATION SYSTEMS OTHER THAN IR SYSTEMS

In this section, a brief description of the information systems

other than IR systems will be given.

2.1.1. Database Management Systems

A database can be defined as a collection of structured opera-
tional data stored in the secondary storage and used by the applica-

tion systems of a particular organization. A DBMS is the software

-6 -

that proyides all the accesses and manipulations on the database of

an enterprise |28].

In a DBMS, information is kept in data fields with some specific
type and Tength constraints. These data fields (or the attributes)
are stored together to form record types. It is evident that there
might be more than one record type. A record type's value extension
is called a record occurrence. All of these record occurrences will

form the database of an enterprise.

For the organization and manipulations on an enterprise's data
there are various file management methods |56|. However, a DBMS is
different than a file management system. Its major distinctive fea-

tures are the following |28]:

(a) Data independence is achieved. This achievement is in two
respects : Physical data independence and logical data independence.
Within this context, physical data independence means the ability to
modify the storage structures and the related access paths for the
stored data without affecting the applications and users. Simi]ar]y,
logical data independence provides the capability of a DBMS to support
various view of the database and modifications of these views or the

underlying conceptual schema without affecting the physical structures.

(b) The amount of redundancy in the stored data is reduced, since

the data is stored only once.

(c) Problems of inconsistency because of redundancy can be

avoided to a certain extent.

(d).The stored data can be shared by different applications,
and new applications can be developed to operate on the existing

database.

(e) Standars can be enforced.
(f) Security restrictions can be applied.

(g) Data integrity can be maintained.

Remembering the features of a file management system the above
characteristics of a DBMS will be more meaningful. In a file manage-
ment system, every application has its own private file and correspond-
ingly stored data and related programs. However, in the case of a
DBMS the data of the organization is stored only once and the system
shades the storage structure from the users. Each user is concerned
with some part of the stored data which is relevant to him. The user
do not need to know the physical data strucfures in order to write

programs. This is achieved by data independence.

Furthermore, a DBMS provides a data definition language (DDL) to
map the Togical data structures into the physical data structures and
a data manipulation language (DML) or a query language to specify data

management operations on the database.

DBMSs can be classified according to their data models. The most

recognized data models are the following:

a) the relational data model ;
b) the hierarchical data model ;

c) the network data model.

The relational data model is based on the mathematical theory
of relations. A relation can be defined as follows : Given a collec-

tion of sets D, D ., Dn (not necessarily distinct), R is a

28 .0
relation on these n sets if it is a set of ordered n-tuples

<d;, dys eus d > such that d,eD,, d,eD . dneDn. Sets

2
Dys Dyy e, Dn are the domains of R. The value of n indicates the
degree of R. In other words, R is a relation on the sets D1>Dz=---=Dn
if it is a subset of the Cartesian product D, xD, x ... x Dn |18, 28].
In the relational model terminology, record fields are referred to

as an "attribute". Associations among relations (record types) are

provided by data values in attributes having intersecting domains.

The relational data model consists of relations. Unlike the
mathematical relations, database relations are time varying since

tuples may be inserted, deleted -or updated.

In the hierarchical data model, data is arranged into tree
structures. Each record type represents a node of a tree. The 1inks

between the nodes specify 1:N connections.

The rules to be obeyed in forming a hierarchical definition tree
are the following |30]:

a) There 1is a single root record type.

b) The root record type may have any number of child record types.

c) Each child record type may also have any number of child

record types.

d) For one occurrence of a given record type there may be any

number of occurrences of each of its children.

e) No child record occurrence can exist without its parent.

The hierarchical definition tree forms a template to arrange
the data. If information structure is hierarchical by nature, then it
would be suitable to use the hierarchical data model, otherwise it

has some disadvantages [30].

In the network model there are two important concepts : record
types, and the set types. Firstly record types are formed. The rela-
tionships between record types are represented by links. A T1ink
cbnnecting two record types constitude a set type. Each set type has
two record types : Owner record type, and member record type. Within
a set type, there is 1:N relationship between the owner and member
record occurrences. This means that each set occurrence has an owner
and zero or more member record occurrences. For the implementation
of many-to-many relationships, a link record type being the member

of two set types can be introduced.

An owner record type of a set type may be a member record type

of another set type.

The network data model is more general than the hierarchical
data model, since certain restrictions of the hierarchical data mode1

are removed (a record type my have more than one owner).

As can be seen from these descriptions a DBMS contains structured

data.

For a query submitted, a factual information is provided by a
DBMS (DBMSs are also referred to as fact retrieval systems). The same

query can be formulated in different, but semantically equivalent ways.

- 10 -

The query processing is completely deterministic in a DBMS. Therefore,
semantically equivalent queries will always generate the same output.

A tybica1 query to a DBMS can be the following : which is the largest

~ city of the USA? If the database of the DBMS is equipped with the

related information the "fact" (New York) will be returned.

2.1.2. Question Answering Systems

QA systems provide access to factual information about some
specific area in a natural Tanguage environment. In QAS environment
the natural Tanguage system queries of the users are analyzed. In
this analysis linguistic methods are used. The meaning of the user
query is understood by the system. The information stored in the
system, i.e. knowledge, is searched by using heuristic methods. Which
requires an inference. Following this a natural language response is
generated and given back to the usér. In the heuristic search, a QAS

makes a deductive reasoning.

The representation of knowledge is a critical task and it can
be done in a number of ways in a QAS. The most commons are the

following :

(a) Semantic nets : 1In this method, graph theory is used. The
nodes of the system represent the concepts, branches among the nodes

specify the relationships between concepts.

(b) Procedural representation : Instead of having a complicated
data structure for representing the knowledge, the same thing is done
by procedures. Programs or procedures know the things, concepts. They
simulate the thinking process. The artificial intelligence programming

language PLANNER is an example for this approach |10].

-1 -

(c) Production based representation : In this representation
the thinking process is defined as a prespecified sequence of trans-
formation rules. A classical production system has three major com-
ponents [10]. (1) global data base: stores the rules having the
general form IF <condition> THEN <action> and facts or assertions
about the particular pfob]em being solved; (2) a rule base that con-
tains the general knowledge about the problem domain; and (3) a rule

interpreter that carries out the problem solving process.

It seems that the production based representation is the most
hot subject in QAS or expert systems. There are various research
activities on this subject, particularly on special architecture
suited for production systems |64]. A brief 1ntrodu¢tion for the
other kind of representations (such as predicate calculus and frames)

are provided in reference |97].

A QAS usually works in an interactive mode it gives some knowledge
to the user, and gets some knowledge from the user. By this 1nferaction
process it extends both the knowledge of the user and knowledge stored
in the system. A user can ask a question that requires deductive
reasoning, such as : Why New York is the biggest city in the USA? If
the QAS under use is equipped with necessary information, the system

will produce a reasonable answer.

2.2. INFORMATION RETRIEVAL SYSTEMS

IRSs consider the retrieval of textual data, i.e. the information

being processed consists of documents (such as papers, technical

reports, patents, court decisions). Since their area of concentration

is documents or text of documents, in general they are also referred

- 12 -

g

to as document retrieval or text retrieval systems. In this section
IR systems will be introduced in a somewhat detailed manner. Before
introducing the IR systems the reader will be familiarized with the

reasons of existence for them which is information explosion.

2.2.1. Information Explosion

The proliferation of the scientific Titerature, which is generally
referred to as "information explosion", is a real problem for the
scientists. The most remarkable example for this is the increase in
the size of a collection of typical series. The number of different
periodicals in typical library collections grew in number from 1000
in 1960 to about 1700 in 1974. This increase corresponds to a shelf
length growth from 67 to 124 meters. By Tooking at this, one may say

that the scientific literature doubled in bulk within 15 years [108].

It is estimated that for an established field of science, it
will take about 50 years to double its literature. A new field can
grow enourmously, such that doubling will occur within every 4 or 5
years for several decades [108|. In short, it can easily be said that
there is a huge increase in the size of scientific Titerature. Because
of this, a scientist should narrow down his field of interest assuming
that the amount of knowledge that can be assimilated by a scientist
remains fixed. On the other hand, the immediate needs of technology
and unavoidable growth of scientific literature necessitates a fast
an accurate access to the Titerature. The answer for this need is
the computerized access to the already existing information in an
efficient and effective manner. This means that an individual should
be able to reach to the latest pubTication which is related to his

interest as fast as end as accurate as possible.

- 13 -

2.2.2. Characteristics of Information Retrieval Systems

Characteristics of IR systems can be observed by Tooking at
their implementations. The design and use of an IR system involves
four basic activities: information analysis, information organization,
query analysis and search, and information retrieval and dissemina-
iton |90]|. In fact, these are the activites observed in any type of
information system with the peculiarities relevant to the type of
the information system. The forth of the activities 1is appearent,

the rest will be explained in the remainder of this section. .

A functional description of an IR system is depicted in Figure
2.2. The following explanation will follow the concepts introduced

in that figure.

In terms of Figure 2.1, data are the document collection. Each
document is fetched by the IR system with respect to its title,
abstract, full text, and other relevant features of the document. In
Figure 2.2 the phrase "selected documents" is used, since none of
the databases for IR systems can be absolutely exhaustive. This means
that they do not include all the documents of their specialization
area. This is because some of the documents have very marginal
contribution to its field. Furthermore, the inclusion of all the
documents of a field requires the scanning of enormous number of

periodicals.

The task of information analysis is also known as indexing. In
this phase a conceptual analysis of the documents takes place and
various subject indexes or identifiers are assigned to the documents.

Corresponding to each document an indexing term vector is generated.

- 14 -

Each entry of this vector indicates either the existence (nonexistence)

~ of the corresponding term, or the importance (weight) of the term for

the document. The former is a binary indexing strategy, the latter is

a weighted indexing strategy. The indexing process either can be done

automatically or manually by human experts.

e

Selected
Documents

A

Information
Analysis:
Indexing

Tele(communication)

h

channels

information
Organization

User
Terminal

#

2

Reformulated
Query

Query Analysis
&
Searching

. Information

Query
Reformulation

£

” Dissemination

Feedback

Figure 2.2 - Functional description of an IRS.

- 15 -

An information organization process follows the indexing task.
In commercial systems inverted file structure is used. In the experi-
mental systems (where substantial amount of IR research is done on
them) a document clustering is done. In clustering, the set of related
documents are put into the same cluster.(A formal treatment of the
term "clustering" will be done in the clustering chapter of the
thesis). Document clusters are normally formed to facilitate the
matching process that compares analyzed search requests with document
identifiers and to simplify the retrieval of relevant documents. At
the end of the clustering process a cluster representative or a
"centroid" is formed to identify each cluster. The centroid of a
cluster is a one dimensional vector, where each element of it shows

the existence and/or weight of an indexing term.

The query analysis is made to initiate the necessary searching
activity. The complexity of this analysis mainly depends on the form
of the query. The query formulation (i.e., the way of expressing the
query) can be done basically in two ways: by natural language sentences,

or by Boolean expressions. Variations on these are possible |8,9,93|

In natural language query formulation a query vector, which
indicates the existence and/or weight of the search terms, is generated
after query analysis. This vector is compared with the document cluster
centroids and the documént'c1usters which are found similar to the user
request are selected (possibly for further processing of similarity

with the documents of the selected clusters).

In IR systems, which provide Boolean query formulation, the
typical queries might be as follows: "A and B", "A or B", "A and not

B", or "(A and B) or C". In these queries, the documents to be retrieved

- 16 -

must include, respectively, both terms A and B, either term A or B,
term A but not B, and in the last one,’documents must include the
terms A and B or C. If the document indexes are organized as an
inverted file, the operator "and", and "or" will be implemented by
intersection and union operations of index pointers. The general
procedure of searching an inverted file is summarized in Figure 2.3

190] .

QUERY
l

%

Search of a directory producing a list of
document accession numbers (i.e., pointers to
documents) for each query term.

Merge or intersect the directory Tists in
accordance with query statements.

Access to main document file to retrieve all

documents corresponding to the query term
combination.

ANSWER

Figure 2.3 - General procedure for searching an inverted file.

- 17 -

In some of the text retrieval systems, the task of information
analysis might be Tightened: in such an approach, the documents are
represented directly by their text. These kind of systems are called
"free" or "full" text systems. Implementation of free text systems
on von Neumann type machines introduces a heavy load of indexing
requirement. Some possible query formulations in case of free text

systems are given in the following:

(ENTITY adjacent RELATIONSHIP)
within sentence

(DATA adjacent MODEL)

The above query implies that the terms "ENTITY", "RELATIONSHIP",
"DATA", and "MODEL" should occur within a sentence. The additional
requirement is that terms "ENTITY" and "RELATIONSHIP" should appear
adjacent to each other within a sentence. The same is valid for "DATA"
and "MODEL". In the free text systems it is also possible to enforce
fixed length don't care (FLDC) characters and variable length don't
care (VLDC) characters to appear within the query terms. Assuming

that the character? indicates one don't care character and the term

* indicates a variable number of don't care characters, the following

queries

(DISTRIBUTED? PROCESSING)
(DISTRIBUTED* PROCESSING)

will try to match, in the first query, the documents which contain
the terms "DISTRIBUTED" and "PROCESSING" and between these two terms,
one character with any value can appear; in the second query, between

the same two terms, any number of characters (i.e., VLDC) can appear.

- 18 -

Another approach‘in query formulation is to assign weights to
the terms. Instead of retrieving all of the documents, the documents,
which exceed a predefined threshold value might be retrieved. Con-

sidering the query:

GENERALIZED(2) DATABASE(5)
FILE(2) ORGANIZATION(5)

In this query the numbers which appear in parentheses indicate the
weights assigned to the terms which appear to the left of the number.
If the retrieval threshold is 9, the output generated will be as

follows:

a) documents containing all the four terms (sum of weights=14);

b) documents containing the terms “"generalized", "database", and

"file (sum of weights=9);
c) and etc.
In the above query, the documents which contain the single terms
will not appear in the answer set, since their individual weights do
not exceed the threshold value, which is 9. It is also possible to

express a weighted threshold query in a semantically equivalent

Boolean query form |3].

The text retrieval systems also facilitate the use of truncated

terms. Consider the following query:
COMPUT* and PROG*

In this query, the terms are truncated and * indicates that they

might match with any character at the right hand side. Therefore,

- 19 -

these terms might match with the following words: "computer", "computa-
tion", "computability", and "programming", "programmed", etc. The
typical text retrieval operations, which are especially used in free
text systems, are listed in Appendix-A |46]. As it is pointed out
previously, in free text systems search strings can have "don't care"
characters with fixed length and variable length. The search terms

can be combined using Boolean operations, and threshold functions.
Ranges can be specified, indicating that the terms must all appear
in the same context (sentence) or within a given number of words.

The order of the search terms (such as B after A) can also be specified.
A1l of these make a very powerful query language. The proximity
capability (alias context sensitivity) provides more meaningful use

of "common" words. For example, if one searches for the documents
which contain the phrase "National Science Foundation", only the
documents containing the three consecutive words "National", "Science"
and "Foundation" would be retrieved. The proximity is much stronger
than the "and" operation. This is because all the documents which
contain all of these three words do not satisfy the query. The free
text retrieval operations increase precision and decrease ambiguity

by permitting context sensitive queries as opposed to individual

words (The text retrieval capability added to the RAP database machine
in this work permits the context sensitive free text operations, see

Chapter 5 and 6).

In a text retrieval environment the output of a single search
effort may not lead to a satisfactory result. In such a case, a
sequence of search operations might be carried out to approach the
desired documents 1ittle by Title. This porcess of query reformula-

tion to access the desired documents is called as "browsing" |92].

- 20 -

During browsing, the original query is made more similar to the
documents which are found relevant and more dissimilar to the document
whith are found nonrelevant by the user. The query reformulation is
done either automatically or by the users. Generally, the former
approach is used in experimental systems and the latter approach is
used in commercial systems. The strategies of formulating better

queries for information retrieval can be seen in |4].

2.2.3. Performance Evaluation of Information Retrieval Systems

For the evaluation of IR systems six main measurable quantities

are set |55,92,106];
a) The recall of the system, i.e., the ability of the system to
find the relevant documents for the users.

b) The precision of the system, i.e., the ability of the system
not to retrieve the documents which are not relevant for

the users.

c) The user effort, this is both physical and mental activity

of the user in obtainihg answers to his query.

d) The response time, which is the average time between the

submission of user query and getting back the answers.
e) The form of presentation of the output.
f) The coverage, i.e., the extent with which the collection of

the system includes the relevant material.

The above points are usually relevant to the evaluation of the
commercial systems. An experimental system usually concentrates its

attention to the first two topics, i.e., recall and precision.

- 21 -

They are the means of measuring the effectiveness of an IR system.
Recall is the ratio of the number of relevant documents retrieved~to
the total number of relevant documents in the collection, and preci-
sion is the ratio of the number of relevant documents retrieved to
the total number of documents retrieved. In terms of Figure 2.4, the

definitions of recall and precision are as follows:

C
Recall =
b+ ¢
c
Precision =
c +d
relevant nonrelevant
b c d a
~ not - retrieved not
retrieved retrieved

Figure 2.4 - Partitioning of a document collection after the processing
of a query

Recall and precision tend to vary inversely in searching. An
effort to increase the recall will degrade precission. A typical plot

of recall versus precision is show in Figure 2.5.

A Recall
114

S

~——

e

a —¥ Precision

JFigure 2.5 - Plot of vrecall versus precision

- 22 -

Other effectiveness measures for IR systems, such as the Swets
model, the Robertson model, the Cooper modé], the Smart's measures,

and Van Rijsbergen's effectiveness measure can be seen in |106].

2.2.4. Hardware Solutions For Text Retrieval

Text retrieval related hardware varies from partial to reasonably
complete solutions to the problem. In the partial category, one can
mention the proposals on constructing fast index processors to speed

inverted 1ist intersection and merge |43,45].

QUERIES SEARCH COMMANDS DISK CONTROL
CONTROLLER CONTROLLER ~
TO HOST PROGRAMMING
COMPUTER ~
SYSTEM ‘1
ANSWERS QUERY TERM RELEVANT //;;:;CH
RESOLVER COMPARATOR [¢——ror——{ | SEARCH.

Figure 2.6 -~ Text retrieval computer

The hardware organizations specializing in text retrieval opera-
tions are called "text retrieval computers". In general, the text
retrieval computers have the basic architecture presented in Figure

2.6 and this architecture is especially suitable for free text systems

146,47 ,49].

In this organization, the text retrieval query issued by the
user is taken by the "search controller" which controls the overall
operation of the system. It sends the programming information to

the units called "query resolver" and "term comparator". Search

- 23 -

controller also sends some commands to a disk controller; these
commands will fetch relevant data from the search database into the
term comparator unit. The task of term comparator unit is very heavy,
since it must perform a fast matching operation with the terms and
phrases specified in the query on a very high volume of data. Further
qualification tests (such as to see if the match occurs in the proper
context, i.e., to see if the proximity of the match is proper with
respect to a previous match, etc.) on data are done in the query
resolver. The fully qualified data items are returned to the host
computer as the answers. The answer set can be either pointers to

documents or actual text of documents matching the query.

In the complete system architecture, the two major system com-
ponents are the term comparator (or term matcher) and query resolver
subsystems. Because the query resolver does not require much novel
hardware and the system bottleneck rest in the term comparator,
various proposals have concentrated on the term comparator. The
following are the techniques used by the various proposals made to

date:

a) Parallel comparators,
b) Associative memories,
c) Cellular arrays,

d) Finite state automata.

The items (a) and (b) can be considered together. In the parallel
comparators approach, the term comparator sits in series with the data
stream which is read off a mass memory such as disk. The data in
passing, is buffered in a window and simultaneously made available

to a number of parallel comparators |98|. The associative memory

- 24 -

technique is a more advanced version of the former. Search terms are
stored in an associative memory which acts as a term matcher synchronous
with the data. The advantage of this is the ability to store a large
number of search terms each of which corresponds to a comparator in

the former approach. In reality, one uses a fast réndom access memory
that emulates an associative ﬁemory. The majority of commercial systems
of text retrieval hardware use this associative memory approach |6].Two
points to realize in this approach are: thé difficulty of implementing
context sensitive full text operations, especially fixedand variable don't

cares and serial:-nature of the system.

In the cellular array approach, the basic building block 1is a
cell element which can match single character of the searched term.
The system is serial with data and cells operate by communicating
with their immediate neighbours so that when a match occurs a number
of consecutive cells produce match signals |19,61|. This approach
requires too much dynamism and a large number of cells. The dynamic
interconnection problem and data streaming for a large number of

cells are non-trivial and costly issues.

The finite state automata (FSA) has some similarities with the
cellular approach. Since ach state of the FSA is a term comporator.
According to the input stream the FSA traces the states and if
reaches to the final (target) state this means that the search term
is matched. The FSA approach is used by the Central Intelligence
Agency (CIA) in its High Speed Text search system |46,83|. There
have been various optimizations for FSA implementations ranging
from constructing separate FSA's for the starter, sequential, and

index states to efficient addressing of the state blocks. A protitioned

- 25 -

FSA (PFSA) has also been proposed with the aim to synchronize with
the data stream at disk speed using a minimum amount of buffer

memory |43].

In addition to the above efforts there is the database machine
approach initiated in the progress of this dissertation work. For
this purpose, the structure of the RAP, which can be classified as
a parallel associative array, has been utilized. Several associative
full text match instructions are added into the RAP language. For
query resolution macro programs are written using the relational DBMS
and the new text retrieval commands of RAP. The RAP combines the
advantages of associativity, parallelism, programmable query resolu-

tion, and operation flexibity (due to its programmability).

The Tatest version of RAP, which is RAP.3, database machine uses
parallel cells and parallel microprocessors in each cell. Each mic-
roprocessor executes firmware of query routines implementing DBMS and
IR instructions. The entire device memory which is equal to the union
of cell memories is made to work 1ike an associative memory. The
difference between the associative memory approach discussed earlier
and the RAP.3 (associative) database machine approach is that in the
former, search terms are p1aced in the associative memory and the
text is streamed through it, whereas in the database machine the
text is stored in the device memory which is a quasi associative
memory so that it can be large to accommodate bulk data. In the

microprocessors of each cell, efficient string search is performed.

The advantage of the RAP.3 database machine approach is the

ability to provide both a relational DBMS and the IR system in an

- 26 -

integrated manner in the basic architecture and the elimination of
the query resolver which is an important component in the other
system. The details of the implementation for the RAP.3 approach

will be given in Chapter 5.

2.2.5. Examples for Information Retrieval System Implementations

It is hard to give an exhaustive 1ist of information retrieval
system implementations. Here some important and well known implementa-
tions will be mentioned after some introductory information. The
commercial systems are MEDLARS (MEDLINE), STAIRS, BRS, and DIALOG.

As an example for the experimental systems, the SMART system will be

illustrated.

2.2.5.1. Databases Used for Information Retrieval

Currently there are more than 500 (online) databases available
for the use of commercial IR systems |31|. About 200 of them are
highly recognized |39|. The number of documents covered by them is
about 70 million with an annual update rate of about 10 million {items.
Disregarding the duplications, one will be faced with a collection of
40 million unique documents with an update rate of 6 million unique
new documents per year |39|. The growth of database& is given in

Table 2.1.

The fields covered by IRS databases are in the whole range of
knowledge with an emphasis on (i) Applied Sciences, (ii) Pure Sciences,
and (1ii) Medicine. The number of documents for these subjects is
about 34 milion, 23 million, and 11 million documents, respectively.

The other subjects covered by the databases and the number of documents

- 27 -

in them are as follows: Agriculture (5.5 million); Social Sciences
(including Statistics, Political Science, Economics, Law, Public
Administration, Education, Commerce; etc.) (4 million); Philosopy,
PSycho1ogy (635,000), History, Geography, Biography (380,000);
Linguistic, Languages (300,000); Literature (300,000); Arts, Recrea-
tion, Music, etc. (220,000); Religion, Theology (50,000) [39|. The
interdisiplinary databases contribute to more than one field. An

extreme example for this is some theological documents in the NASA

database |39].

If one looks at the time span covered by the databases, it will
be seen that 86% of them cover the last five years. About half of
them cover the decate 1970-1980. Only 8% of them cover the last 20

years.

TABLE 2.1 - No.of Documents Available in Commercial Databases

1968 1972 1976 1980

<1/4 mitlion- -~ 3 million: 24 million 65-million .

If one classifies the database sizes as small, medium and large
according to the number of documents in them, the percentages of the
number of databases in each class, respectively, are 46, 43, and 11.
In this classification the databases which contain up to 100,000
records is assumed as small sized. The sizes of medium and large
databases are arbitrarily taken as 100,000 up to 1 million, and

higher than 1 million, respectively |39].

- 28 -

The.majority of online database vendors are from the US, they
are followed by the vendors of the UK, other European countries, and

Canada.

An access charge for these databases is usually mandatory. For
example, an access to National Library of Medicine's (NLM) MEDLINE
database is 10 to 80 dollars per connect hour. A detailed information

for recognized online databases can be found in |39,60].

2.2.5.2. The MEDLARS (MEDLINE) Information Retrieval System

In Tate 1950's it is recognized by the NLM that a mechanized
search on ever-intreasing volume of library Tfterature is necessary.
The efforts resulted with MEDLARS (Medical Literature Analysis and
Retrieval System) in 1964. The MEDLARS was a batch system. In 1970,
approximately 18,000 searches made, and the turnaround to users was

40-60 days |31]. In 1971 MEDLINE (MEDLARS online) became operational.

There are 19 databases maintained by the NLM. MEDLINE and other
commercial IR systems are conducting about 1.5 million searches each
year |31]. About 860,000 documents are kept accessible online. Each
month about 20,000 new documents are added fo these databases by
scanning 3000 periodicals. The number of documents in the databases
is 3 million. The average time delay between the receipt of an item
and its appearance in the database is 80 days. Seventy percent of
the documents are in English. The annual cost of building the MEDLARS
database was $ 2,000,000 in 1977 |59].

The MEDLARS (MEDLINE) system has three inverted files:
the INDEX file the POSITINGS file, and the DATA (also called

HEADER) file, The DATA file contains the complete information for a

- 29 -

document, Each document 1is identified by a unique number called

computer assigned number (CAN).

The INDEX file contains all the search terms (such as terms
from controlled vocabulary, dates, author names MeSH classification
codes). An identifier attached to the search term indicates location
of this term in the documents (author, or text, etc.). Another
attached field gives the position in the posting file where informa-
tion about this term begins, and the number of poétings with this

term.
!

The POSTINGS file gives the CAN number of documents related

with a term.

The Boolean algebra rules are used for searching. The user is
also allowed to use results of previous steps. Such as the following

queries 1 and 2:

1: COMPUTER or PROGRAMMING and LANGUAGE
2: DATABASE and QUERY

To combine the results of query 1 and 2 one may say: 1 and 2.

The user is also allowed to do string search. A preliminary
search is first conducted, then a string search is performed on the
documents which are selected by this preliminary search. A string
search can be very expensive, that is why the system employs this
feature on restricted documents. Furthermore, the stringksearch is
allowed for a time slice, at the end of each time slice the user is
informed by the system with an output containing the number of

documents found so far containing the search string.

- 30 -

2.2.5.3. The STAIRS and BRS Information Retrieval Systems

The STAIRS (Storage and Information Retrieval System) is a
program product of IBM. The users of the STAIRS uses the commercially
available databases, since no database is supplied with the STAIRS

system by IBM. STAIRS runs on the user's own computer 192].
The STAIRS system consists of two programs:

a. Utility for database creation and maintenance;

b. An online retrieval system called AQUARIUS (a query and

retrieval interactive utility system).

The system has the ability of doing both DBMS and IRS operation.
For these SELECT and SEARCH modes are used, respectively. SELECT and
SEARCH modes cannot be mixed. However, the output of one may be used

by the other.

In the STAIRS system the inverted file approach is used. An
entry is introduced into the directory file for each unique word;
From this directory file there is a pointer to an inverted file
containing information for each occurrence of the word; such as the
document containing the word,\within the document the paragraph, the
sentence, and the word positions for the word. Synonym information

for the words can also be introduced into the directory file.

The STAIRS retrieval system uses the free text of the documents
or document abstract for searching. The search mode is entered by the
SEARCH command. The query formulation is done by Boolean algebra. The

followings are legitimate search statements:

- 3] -

PROGRAM
PROGRAM OR QUERY
PROGRAM$ AND QUERYS$3

The § sign indicates truncation, $3 indicates truncation with up to
three unspecified characters. Some of the other operators are ADJ
(indicating that two terms must be adjacent to each other), SAME
(specifying that two terms must appear in the same paragraph), WITH

(indicating that two terms must appear in the same sentence).

The select mode of the STAIRS system is used to perform DBMS
operations on the formatted fields of data containing the values of
record attributes. Another IBM product, IMS, is usually associated

with SELECT mode.

The criticism on STAIRS system contains the following:it requires
a large IBM system, a database software for DBMS operations, and a very

large disk storage for the inversion of the free text.

Because of the above criticism on STAIRS a streamlining operation
on it was performed and BRS (Bibliographic Retrieval Services) has

resulted. It is a product of BRS Inc.

BRS does not have DBMS features, it is a document retrieval

system. A search statement 1ike the following is legal
1: PROGRAMMING ADJ LANGS$

This query (query number 1) will find all the documents which contain
the words PROGRAMMING and LANG (T1ike LANGUAGES, LANGUAGE). This search

statement can be modified Tike as follows:

- 32 -

2: 1. TI

In this case the search will be conducted only on the titles of the

documents.

The BRS is now operating on about forty databases. The BRS users

do not need to have their own IBM systems.

2.2.5.4, The DIALOG Information Retrieval System

The DIALOG 1is a product of Lockheed Information Systems. In 1980,
122 databases were available through the DIALOG system |92]. Like any

other commercial system it is based on inverted files.

The system creates sets of documents by using the SELECT commands.
These sets can be manipulated by the COMBINE command (The pocket quide
of the DIALOG commands is also available in the appendices of |55]).
For example SELECT COMPUTER and SELECT PROGRAMMING commands in DIALOG
will create two sets of documents, set number 1 and 2 related with
these commands. One may use COMBINE 1 AND 2 to have the effect of

SELECT COMPUTER AND PROGRAMMING.

The DIALOG system allows. truncation. For example COMPUT? will
match with any of the following terms: COMPUTER, COMPUTING. The
truncation character may be embedded inside a term. For example,

WOM?N would be used to indicate both WOMAN and WOMEN.

The user can unite a select command like as follows: SELECT
ENTITY (3 W) RELATIONSHIP. This command tries to find the documents
which contain the keywords ENTITY and RELATIONSHIP, where the second

term can be at most 3 words away from the first one.

- 33 -

The DIALOG system also uses field identifiers: author (AU),
classification code (CC), corporate source (CS), document type (DT),
journal name (JN); Tanguage (LA), publication year (PY), and update
(UD).

2.2.5.5. The SMART Experimental Information Retrieval System

The SMART system was first developed between the years 1961 and
1964 at the Harward University |85|. It is the most recognized experi-
mental system. The research related with the SMART system is under

the supervision of Dr Salton and now he is at the Cornell University.

UnTike commercial systems which are restricted to inverted
files, the new methods and ideas are usually used in the experimental
systems. Here the features of the SMART system will be given very
briefly |92]: (1) the text analysis and indexing is done by fully
automatic methods; (2) the related documents are clustered; (3) the
documents to be selected are first chosen by a similarity analysis
between the query and the cluster representatives, then the query
and the documents of the selected clusters are compared and the
retrieved documents are listed in a ranked from according to their
similarity with the query; (45 a feedback procedure is employed to
improve the original user query. A simplified SMART system flowchart

is given in Figure 2.7 (adapted from |92]).

- 34 -

Automatic indexing of Automatic analysis of

document abstracts incoming query state-
(construction of term ments (construction of
vectors to represent query term vectors)

| the documents)

Automatic generation Search of clustered
of document clusters document file to

and computation of — — — =¥ identify most closely
cluster representatives — — _p| matching document

clusters

S

l

Display of output

documents indecreasing
order of query-document
similarity

Relevance feedback
operation based on
relevance assessments
for certain documents.
Automatic query
reformutation

Evaluation of final
output

Figure 2.7»— Simplified SMART system flowchart (Adapted from reference 92)

- 35 -

5. CLUSTERING ALGORITHMS

In the context of information retrieval, the term cluster
indicates a homogeneous group of objects (documents) such that the
objects within a group are more strongly associated with each other
than those in different groups. The generation of the clusters is

called clustering.

The clustering has very large application areas. A nonexhaustive
1ist will contain the following: 1ife sciences (biology, botany,
zoology, etc.); medical sciences (psychiatry, pathology, clinical
diagnostic); the behavioral and social sciences; the earth sciences;
some engineering sciences (pattern recognition, artificial intelligence,
etc.); the information policy, and decision sciences (information
retrieval, political sciences, economics, etc.) |2]|. Possible uses
of the generated clusters are the following (1) finding a true
typology, (2) model fitting, (3) prediction based on groups, (4)
hypothesis testing, (5) data exploration (6) hypothesis generation

and (7) data reduction |36].

At first sight one may think that an expert of a field will be
able to judge the clustering of the observations at hand. Then it

might be practical to enumarate all possibilities and simply choose

- 36 -

the one which Tooks the best. However, the problem is not that simple.
The number of ways clustering n observations into m nonempty subsets

is a Stirling number of second type and given as follows |34, p.162]

k=m

(m) _ -k
S (=" (K"

0 o~1

ml k=1

If n >>m, the Tast term is more significiant. For n=19 and m=3, the

number of possible subsets is
s(3) 1,98 x 10°
19

This is an unbelievably Targe number and it shows that all cluster
possibilities cannot be described with an expression having length

bounded by a polynomial function of the input Tength.

It is very expectable that any given set of data may result
with many different number of meaningful clusters, each emphasizing
a different feature of the data. It is also possible that the set may
not contain any cluster, i.e. the objects are unique by themselves.
Similarly the data set may contain only one cluster. In cluster

analysis these two possibilities are usually overlooked 12].

For clustering or clustering analysis different terms are used.
Numerical toxonomy is used among 1ife scientists. Social scientist
usually prefer "typology". In pattern recognition and cybernetics
the terms "Tearning without teacher" and "unsupervised learing" are
usually related to cluster analysis [2,35]. Some of the other words
used for this purpose are taximetrics, taxonorics, morphometrics,

botryology, nosology, nosographly, and systematics |[42].

- 37 -

The remainder of this chapter is reviewed in the following:
Firstly a classification for the clustering algorithms is given. This
is followed by the evaluation ofvc1ustering algorithms and the process
of generating cluster representatives is briefly reviewed. The use of
clustering in information retrieval is emphasized once more and it is
made clearer by a brief explanation. The remainder of the chapter
deals with the illustration of some new clustering concepts which
are published and got considerable recognition in the IR community
|12,13,14|. These concepts are used in two new clustering algorithms.
The concepts introduced also facilitate the cluster maintenance in
dynamic collection environments. The complexity of the algorithms is
also illustrated. Lastly, the superior characteristics of the algo-

rithms and the algorithm concepts are emphasized and presented.

3.1. CLASSIFICATION OF CLUSTERING ALGORITHMS

In clustering, firstly the documents (or objects in general) are
represented by vectors with a length of n, where n indicates the
number of terms (attributes) to represent a document. An ith document
.t

di will correspond to the vector d1=(ti1,t), where each

i2°°°"2 " in
term tij indicates the weight1or existence of the jth term in the

ith document. For example, if all documents are described by five
terms and if a given document is described by the 1'st, 3'rd and the
4'th terms, then the corresponding binary document description vector
will be (1,0,1,1,0). A 1(0) at a term position indicates the existence
(nonexistence) of the corresponding term for the document. In the
weighted approach, the higher (lesser) weight for a term indicates

the higher (lesser) importance of the term in the document. By this

- 38 -

approach_a collection of m documents will be mapped into a matrix,

say D, of mxn size.

The clustering process can be abstracted by an ordered tuple

(D, C, A) |38]. Where,

D : indicates the document (or object) collection to be clustered;

C : clusters to be formed, which is a set of sets. Each member
of C, Ci’ is a nonempty set which contains "associated"

documents;

A : indicates the method to be used for clustering the objects.
That is, the concept of "association" is materialized

according to A.

If the cardinality of a cluster is lCi|= 1, then the cluster
is called a singleton. The intersection of two different clusters,
Ci N Cj where i=j, can be null. if so the clustering scheme (algo-
rithm) is called a partitioning type. If Ci M Cj = ¢ for at least

one i,j (i=#J), then clustering algorithm is an overlapping type.

The clustering algorithms can be classified according to many
aspects |2,20,86|. One may divide the clustering algorithms into two:
hierarchical algorithms, and iterative algorithms. In hierarchical
clustering, as its rame implies, there is a hierarchy of clusters.
This means that a cluster may contain lower level cluster(s). In
this approach, at the lowest Tevel of hierarchy there are documents.
At one level higher, there are document clusters. At the upper levels,
there are cluster of clusters, or super clusters. In such a case, the

above clustering model should be modified such that, C is the nonempty

< -39 -

. sets of documents at the first level of hierarchy, them at the higher

levels there are nonempty sets of clusters.

The hierarchical algorithms utilize similarities between documents.
For this purpose the D matrix is mapped into a mxm symmetric document
similarity matrix by a chosen mapping process. The (i,j)th element of
this matrix resperesents the degree of association between the ith
and jth documents in terms of their indexing terms (attributes). A
comprehensive list of similarity (association) measures can be found
in |2, Chapter 4-5|. The most commonly used simi]arfty measures of

the literature are given in the following :

XY
(i) Dice's coefficient SE—
X+ |Y]
XM Y]
(ii) Jaccard's coefficient : —_—
XU Y]
IXM Y]

(ii1) Cosine coefficient le1/2 i [Y|1/2

X Y]
min(|X|, [¥])

(iv) Overlap coefficient

Where, in the above formulas, X and Y indicate two distinct document
vectors. |«| indicates the counting operator. In these formulas it is
assumed that the document vectors are binary. However, it is easy to

generalize them for weighted document representations 12].

- 40 -

In hierarchical clustering, concepts such as "single link",
"average 1ink", and "maximal complete graph" are used |79,86,89|. In
single link, each document is expected to be Tinked to at least one
of the other members of its cluster. In the average link, the number
of Tinks of a single element to the other members of the cluster is
expected to be at least a minimum number. In the maximal complete
subgraph, all members of a cluster are linked to all the other members
of the cluster. In this clustering algorithm, the similarity matrix
is used as follows: A similarity threshold of T1 is specified and
for any similarity matrix entry (say for d1 and dj) greater than T1
the documents i and j are assumed to be linked |38|. This test can
be repeated for other threshold values less than T1 until a small
enough Tk is reached where all the documents will be assumed to be
connected to each other. The iteration process from T2 to Tk would
show the hierarchical connections among the documents. The end
product of this porcess, hierarchical clustering tree, is called a

dendrogram |106].

In the iterative algorithms, the main idea is to use the descrip-
tions of documents. For this purpose there are several alternative
approaches |2,42,86,89|. One typica] method starts with the assignment
of documents into existing initial clusters. A document to be clustered
is compared with the available clusters and if it is found to be
similar to a cluster, then it is assigned to that c]uster.'The centroid
of the cluster is modified accordingly. After the assignment of all
document to the clusters a stopping criterion is tested. If it is
satisfied, then clustering process stops. Otherwise the same assign-
ment process is performed once more. This clustering process can be

performed for a fixed number of clusters |13]|. The number of clusters

- 47 -

"~ can also vary according to the general behavior of the clustering
process |85, Chap.11|. Notice that one may .apply the same algorithm
to the representatives of clusters, centroids, to form higher Tevel
clusters. The selection of the initial clusters (initiators or seeds)

is important, since they affect the entire clustering process |[89].

There are also some clustering algorithms which are one pass.
They may be considered a special case of iterative algorithms. A
typical one pass clustering algorithm considers the documents one
at a time. The first item is considered as a cluster, and the next
one is compared with it to see if the latter is sufficiently similar
to the previous one to join its cluster. If not, a new cluster is
generated. The assignment of the other objects is performed in the

same manner |89].

In any type of the clustering algorithms, the overlapping of
clusters may or may not be allowed. It should be noticed that overlap-
ping will increase the storage space needed to represent a cluster,
since a document's description vector will contribute to more than
one cluster's centroid. As an advantage, however, recall of the text

retrieval system will be increased.

In the above discussion 1f is assumed that the document descrip-
tions are made by using the term vectors. The description of the
documents can also be made in other ways, such as citations. In such
an approach a document will be described by the documents which are
referenced by it |92]. For example, there are some efforts for this
approach in ISI (Institute for Scientific Information) in the USA
|44, p.290|. The exploitation of the user queries for document cluster-
ing is an another approach for clustering |81,85 Chap.13].

- 42 -

3.1.1. Evaluation of the Clustering Algorithms

For the evaluation of the clustering algorithms usually the

following factors are considered |89,106]:

a. The clusters produced are unlikely to change when further

documents are added;

b. The algorithm is immune to the effects of small errors made
in the description of the documents (property (a) and (b)

show the stability of an algorithm;

c. The algorithm is independent of the initial ordering of the
documents, j.e., whatever the sequence of the documents the

same clusters will be generated.

d. The clusters produced are "well-formed", i.e., from a collec-
tion either one classification or at least one of a small

set of compatible classifications will be produced.

An additional criterion in selecting an algorithm is the efficiency

of both the computer time and memory space.

The hierarchical c1usterjng algorithms are usually considered
as theoretically more attractive, since they usually satisfy the
properties of the good clustering a1gorithms. For eXamp]e, they are
not affected by the small errors made in the description of documents;
the clustering pattern generated is independent of the initial order-
ing of the documents; they are also "well formed" since the same
thresholds are used to define the 1inks among the documents. However,
they are not very effective in terms of computation. For examp]e, the

computation of the similarity matrix is of order m®. Where, this does

- 43 -

not include the actual clustering process. However, there are some

attempts to resolve these difficulties |25,40].

The iterative methods are usually Tess satisfying, since they
usually do not satisfy the requirements of the good clustering algo-
rithms. For example, they usually do not produce "well formed" clusters;
they may depend on the initial ordering of the documents and the good-
ness of the choice of the documenté which will attract the other
documents to form the clusters. The research for the evaluation of
clustering algorithms is not ended yet and no one clustering algorithm

is chosen as the best one and a unique panacea for all problems,

3.1.2. Centroid Generation for the Clusters

The use of clusters is materialized by a cluster representative,
generally known as centroid, or profile. The géneration of the cluster
centroids is a critical task, since (1) it should allow the construc-
tion of the hierarchical cluster if they are used for hierarchical
clustering; (2) it should match with the query processing strategy.

If one considers the hierarchical clustering, for example, as one
goes up the hierarchy the number of nonzero entries in a centroid
will be Tless and less and the common terms would be emphasized. In
such a case if a top down query processing is employed (i.e., if
query vectors are first compared with the topmost cluster's centroid
and so on) the query vector and centroid comparisons would not lead
to the selection of the most appropriate clusters. In other words,
the query vectors will have difficulty 1in identifying the Tower level
clusters (For the use of centroids in query processing see the next
subsection). In the remainder of this section various centroid genera-
tion policies will be introduced.

- 44 -

A cluster-i, Ci’ is composed from nci documents; Ci={d1,d2,...,dnci}
The centroid for Ci is represented by a vector of size n, Gi (G is
the first Tetter of the word "gravitation"). Some of the most commonly

used centroid generation policies are the following [86,92,104,106]:

(a) A typical member of the cluster can be chosen as the centroid.
If some documents are used as initiators (or seeds) for the construc-
tion of the clusters then they can be used for this purpose. If Tinks
are used, then a "maximally linked" document can be chosen as the

cluster centroid [105].

(b) A centroid entry gij (j=1,...,n) is assigned one if any of
the documents of the cluster members contain a 1 at the jth term

position.

(c) A centroid entry gij indicates the document frequency of
the corresponding term in the member documents. If a weighted approach
is used for the description of documents, then an entry for a term

indicates the total weight of the terms in the member documents.

|d| A normalization factor can be introduced in case of (c).
Such as, the new 9; ; (let us show it by gij)’ gij::gij/nci or
2)1/2

in . Similarly, a

. 2 2
955= 955/ 16; 1l where [[G, = (gy,+g;,+. ..+

! -

1J

centroid entry can be assigned 1 if gij >Tog2nC , or if the document
i

frequency of a term is greater than a threshold [106, p.102].

(e) Another approach to prevent considerable variation of the
term weights by using the document frequencies is the "rank values".
In this case, the terms are sorted according to their frequency in
decending order and a centroid entry is taken as the difference

between a base value and the rank of the corresponidng term in the

- 45 -

sorted 11st, i.e., g1j=:b -)) dkj’ where b(base) is given as a
keCq

parameter,

In centroid generation one should pay attention to its usage,
i.e., the centroids should be handy for query processing strategy
under use. In other words, they must depend on an estimate of the
search requirements of the possible users. For example, short centroid
definition will increase the precision of the IR system, while decreas-
ing the recall. The inverse, i.e., longer centroid vectors will
result with completely reverse situation (higher recall, lesser
precision). In short, the centroid generation is a critical task,
and it should not overestimate or underestimate the importance of a

term within a cluster or within the entire collection.

3.2. THE USE OF CLUSTERING IN INFORMATION RETRIEVAL SYSTEMS

The use of clustering and clustered documents in information
retrieval is introduced in Chapter 2 and it will be emphasized once
more. The importance of clustering for document retrieval comes from
the "clustering hypothesis" of Van Rijsbergen. This hypothesis states
that "closely associated documents tend to be relevant to the same
request" [106]|. This fact is shown empirically on different experi-

mental retrieval collections |103].

If one clusters the documents in a reasonable way, then it is
obvious that the documents of the same cluster will be much more
relevant to each other rather than the documents of other clusters.
In query processing, the query vectors will be compared with the

cluster centroids (representatives). The clusters of the centroids

- 46 -

which show highest similarity will be chosen for further analysis

with the query vector (although this is the typical use, cluster based
searching shows variations). As it is stated in the clustering hypo-
thesis, closely associated documents (i.e., the documents in the same
cluster) will be relevant to the same request. Therefore, it is

reasonable to use clustering in information retrieval.

If a hierarchical clustering algorithm is used then query proces-
sing can be done ejther top-down or bottom-up. In the former, the
query vector is compared with the centroid of the topmost centroids
and the tree traversal is done according to a cluster selection func-
tion [104|. In the bottom-up approach, the c]uster selection process
is done in the reverse direction. Firstly, one or more lowest level
clusters are chosen using one or more documents which are known as
relevant to user request. This is followed by a cluster tree node
selection in the upper direction [26]. In both of the methods, the
documents related to the selected node(s) is considered for retrieval.
In tree traversing one or more branches can be considered. These
approaches are called the narrow and broad search strategies, respec-
tively. The query vector and centroid comparison can be done at once
and at the Towest level of c1ustering |86|. This process is also
rewarding, since the number of clusters is much less than the number

of documents.

3.3. TWO PARTITIONING TYPE CLUSTERING ALGORITHMS

In this section two new partitioning type clustering algorithms
will be introduced [12,12]. In the development of these algorithms

the new concepts Tike coupling coefficient, cluster seed power,

- 47 -

distribution of documents among the clusters, and related features
are introduced. The presentation of the algorithms will be accompanied

by an illustrative example.

For a partitioning type algorithm, different approaches can be
used. A generally accepted strategy is to choose a number of
seed points (documents) and assign the other documents to these

points to form the clusters.

In the clustering algorithms to be presented in this dissertation,
a number of documents are selected as the seed points and the rest of
the documents are assigned to these seeds according to two different
strategies. The selection of these seed points will also be introduced.
To contrast the seed selection method used in this dissertation with
those of the earlier studies, a list of existing methods used to date
is given in the following |2| (where each item in the 1ist corresponds

to a different method):

(a) Select the first Ne documents of a collection as clusted
seeds, where ne is the number of clusters to be generated.

(b) Select the seeds random1y from the collection.

(c) Randomly generate the initial cluster seeds.

(d) Divide the collection into partitions, then compute the

group centroids as. the seed points.

(e) For each term, the number of documents assigned to it (term
generality) is calculated. Then for each document, the sum of the
term generality of its terms is calculated. The documents with the

Targest sum are chosen as the initial seed points |85, Chap.12].

- 48 -

(f) Use an inverted file structure which provides a 1ist of
documents per term contained in the documents. In this file, select
the documents related with each term as the initial members of the
cluster related with the term. The centroids for these clusters can

be used as the initial seed points [86,107].

In the algorithms to be presented, a number of documents are
chosen as the cluster seeds and the others are assigned to the clusters
initiated by these seeds and a document cannot be assigned to more
than one seed. Therefore, both algorithms are of partitioning type.
However, it is very easy to change them to allow overlapping among
clusters. A model for seed oriented partitioning is given in the

following.

3.3.1. A Model for Seed Oriented Partitioning

A partitioned type clustering can be defined by an ordered pair

(D,P); where,

D : dndicates the documents to be clustered, which is

(d.‘: dz,...’ dm).

P: 1is a particu]ar'nondverlapping partitioning (clustering
pattern) of these documents, such that P= (C1, Cosnvns Cq).
Ci (1 <1 <q) indicates the clusters of the partition P.
Ci(\Cj = ¢ for i=j. Each Ci is a collection of 21 documents,

C. = (d diz”'

i1° ‘s dizi)’ such that £, > 1 and 1§1£1 = M.

In a seed oriented partitioning algorithm, there exists a
nonempty subset Do(i D, called the seed set, and an equivalence

(symmetric, transitive, and reflexive) relation RM (member of the

- 49 -

same cluster relation). This relation has the following propersties:

a. No two distinct seeds are the member of the same cluster,

i.e., d =d, and d Ryd > (d eD-D_)|(d,eD-D). Where, - and |

indicate the set difference and or operators, respectively.

b. For each of the documents which is a member of the ordinary
document set, D-DO, Eﬂ a seed document which is the member

of the same cluster. Hence,\Vfd'eD-D0—>j:ldeDO, d RM d'.

Corollary : For any ordinary document d', there exists exactly one

seed document, d1, satisfying d'RMd1.

It is stated in (b) that d' has at least one seed d1 satisfying d'RMd1.
Let us have two seeds d1 and d2 (d1aDO, dzeDO). To test the above case,

we will have d'RMd1 and d‘RMdz. Since RM is an equivalence relation,

d RMd1’ d RMd2—+d1RMd2. However, this contradicts (a) |13].

3.3.2. Concepts of the Algorithms

The algorithms introduced in this dissertation use a binary
document-by-term matrix, D. Each entry of D matrix, dij’ indicates
the existence (dij =1) or nonéxistence (d1j==0) of term-j within
document-i. The concepts are also valid for a weighted D matrix with

very minor alterations. This will be emphasized Tlater.

There are two basic properties of the D matrix

i=1,...,m (each document has at least one term),

QO
o~ =
[al
\%

—n
"

.j1 ij 2

j=1,...,n (each term is assigned to at least

o
o~ 3
o
\%

—

SR
one document).

- 50 -

Where as .it is introduced previously, m and n are, respectively, the
number of documents and the number of terms used for the description

of the documents.

The concepts of the algorithms will be accompanied with an
illustration. The D matrix to be used for this purpose is taken from
|86, p.351]. The collection contains 7 documents and each document

is described by 8 terms.

o O O O -, o0 O
-_— O e O - O O

O O O = O = e
- O O O O o o

O -0 -0 0O
O O O O O - O

O O - wa n a e
O O O = O aa a

3.3.2.1. Cover Coefficient Matrix: C

The matrices S and S', having respectively, the elements Sij and

S%j can be defined as follows:

n
Sij = dij / (kz dik) for i=1,...,m, Jj=1,...,n

Si = dig /(L 4

1l
0.
~~
—
o

where,
Sij = the significance of term-j (tj) for document-i (di);
S%j = the significance of document-i (di) for term-j (tj)’

- 5] -

The _entry Sij(S%j) is obtained by dividing the value of dij by
row-1 (column-j) sum in the D matrix. In case of the S matrix, as
the value of row-i sum decreases (increases), the significance of
the corresponding term-j increases {decreases) for document-i. Simi-
larly, for the S' matrix, as the value of the column-j sum decreases
(increases), the significance of the corresponding document-i increases

(decreases) for term-j.

From the definition of matrices S and S', the row sum of S and
the column sum of S' matrices are equal to 1. Additionally, the
nonzero row (column) entries of S(S') matrix are identical to each

other.

In order to have the information kept by these S and S' matrices

in the one single matrix, one can enumarate all the allowable cross

multiplications among matrices S, ST and S', S'T.‘Note that ST and

S'T indicate the transpose operation over matrix S and S', respectively.

The matrices generated by the product SS'T, S'ST are called C and CT,

respectively. Similarly, the products S'TS, STS' generate the matrices

c', C T. The size of C is mxm, and that of C' is nxn.

Each entry of C=SS'T, Cij (i=1,...,m, j=1,...,m), is expressed

as follows:

|

~1
w

w

. —
i
e3>

(significance of t, in di)*(significance

of dj for tk)
T

S, ci. (i=1,...,n, j=1,...,n) is

Similarly each entry of C'=S i3

expressed in the following way:

- 52 -

3

m
- T N e
ciy = kz1 SHY Skj = kz1(s1gn1f1cance of d, for tk)*(s1gn1f1cance
B of t, in di)

k

Each entry of C indicates a covering coefficient among the

documents
[to what extent document-i is covered by document-j,
for i=j.
C.., =
1 uniqueness of document-i for i=j
(extent with which di is covered by itself);

Similarly each entry of C' indicates a covering coefficient among
the terms used for the description of the documents. From this point
on, the matrix C will be referred to as the cover coefficient matrix

(of documents).

The discussion to be given in the following section is valid
both C and C' matrices. Since our consideration is the clustering of

the documents, the discussion will be made in terms of the C matrix.

3.3.2.2. Properties of the Cover Coefficient Matrix

The coverage information he]d by C is a weight information. As
stated in the previous section, its entries (Cij’ i=t,....m, j=1,...,m)
indicate the extent of coverage of document-i by document-j. The

following properties hold for the C matrix.

a) 0 <c.. <1, and c.. > 0;
= Mg s ii
m
b) For all i, } c,.=1 which implies that § ¥ c..=m,
=1 N i=1 j=1 1

- 53 -

c) For all i and j, Cii 2 Cij' However, if document-i does not
have a common term with the rest of the documents, then

Cij:O for i=2J and c11=1.

d) If Cij:O then cji=0 and similarly, if Cij > 0 then Cji<> 0

but in general Cij = Cji

The properties may be described as follows: Property (a) states
that a document-i may or may not be covered by document-j. However,
it is always covered by itself. Property (b) states that for any
document-i, the row sum will be equal to 1. The sum of all Cijls
will give the total number of documents. The property (c) states
that a document is mostly covered by itself, but there might be some
other documents which cover the document as much as itself. Lastly,
the property (d) states that, coverage among documents is mutual.
However, the extent of coverage between two documents might not be
identical when coverage is greater than 0. If a document, di is unique,
i.e., if the terms used in di are not used by any other document,
then Ci1:1' If di contains some common terms with the other documents,

then the value of C s will be less than 1.

If we consider the C matrix as a relation RC, called the coverage

relation, it is a reflexive relation as shown by:
d. R d. for all i=1,...,m
i'c
and also it is a symmetric relation as shown by:
d. R d, »>d, R _d. for i=1,...,m, j=1,...,m
i¢c] J ¢ i ‘

The proofs of the properties (a) through (d) will follow after

the following definitions of the variables to be used.

- 54 -

n
a. =1/ () d..), inverse of the sum of row-i;

i o1 ij
m
Bj =1/ () dij)’ inverse of the sum of column-j;
i=1
n
Cij: kZ1 aidikBkdjk’ general for any element of C matrix.

Proof of Property-a:

The left part of the inequality is obvious according to the
general Cij formula and the right part of the inequality is implied
by the definition of C elements which is given in terms of signifi-
cance. If a document has a set of terms and if these terms are not
shared by any other document, then the diagonal entry of the C matrix
corresponding to this document will be 1. c11:>0, this is obvious
from the properties of the D matrix and the general formula for the

C matrix.

Proof of Property-b:

m

jz1 “i3 7 %1 T G2 f 1 Cim =
n

Ciy = kz1 o5 B dipd i
n

Cip = kz1 o585 o
n

, Cim T k_& o581 i

- 55 -

I n n

Bdidqg * k; Bdygdoy + oo ¥ k; B dik Ik

H
Q
—
It e~13

k=1

= oy | (Bydydyy v Bydiyd, e+ B dyd)

(8,d5,dy, + Bydipdyy + oo+ did))+

(Bydy dng + Bpdipdny + oov + Bpdyd o)]

= oy { B1d1.1(d11 + d21 + e, + dm1) +

where o and B, are :

oy = 1/ (di1 + d1.2 + o, ¥ din)

1/ (d11 + d2i o, F dmi)

w
fl

Therefore, each B term cancels the Tong multiplication term.

After this simplification, we are left with :

o~
-
[}
[H
Q
-
-
—
—
+
o
—
N
+
4
Q.
—
=
| S
i
—

- 56 -

s

Proof of Propert-c:

n

C.. = 2 a.d.

g, d
ii k=1] ik™k

ik ~

In the general formula of Cij’ in addition to the aigkdik term,
we have the additional djk term. Therefore, Cij will be equal to Cis
if, and only if, djk= 1 for all k=1,...,n. However, from the defini-
tion of the D matrix this equality will not always hold, therefore
Cii Z C45- The case with Ciy =1 is obvious.

11

Proof of property-d:

The general formulas for the terms Cij and Cji are as follows :

%5451 Bdyx

I
o~

Ci.—
I k=1

n

C.. = z oc.d

LR

ik

From the definition of the D matrix we know that ¥ and Bi are always
greater than zero for i=1,...,m and j=1,...,n, respectively. That is,
in order to have a nonzero value for Ci3 and Cjq we must have the
product dikdjk (or equivalently djkdik) greater than zero. Since both
terms sum over the same product, if one becomes zero, the other will

also be zero. The second part of the proof, i.e., if cij:>0 then

Cji >0 is obvious from the general formula of the c terms.

The cover coefficient matrix, C, corresponding to the D matrix
shown earlier is given in the following (the row sums might not be

exactly 1 because of rounding). The entire C matrix need not to be

- K7 -

constructed for the execution of the algorithms. However, it is fully

given for illustration purposes.

.29
.22
.07
.22
.10
.00
.00

(]

il
O O O O o o o
O O O O O o o

where the values of

a, = 1/3, o
ay = 1/2, oy
B, = 1/5, 8,
8, = 1/3, 8,

.29
A7
.07
.22
.10
.00
.00

1

0.07
0.05
0.5]1
0.05
0.27
0.00
0.17
and for
1/4, o
1, oy
1/3, By
12 87

0.29 0.07 0.00 0.00
0.22 0.05 0.00 0.00
0.07 0.18 0.00 0.1
0.3 0.05 0.13 0.00
0.10 0.27 0.00 0.17
0.50 0.00 0.50 0.00
0.00 0.17 0.00 O

.67 |
the D matrix are as follows :

=13, o =1/4

4
= 1/2.
= 1/2 B, = T,
=1, 88 = 1/3.

3.3.2.3. Decoupling (Coupling) Coefficient : 8 (Yi)

It should be noted that, if a document di is unique, i.e., if

the terms used by di are not used by any other document, then Css =1,

If di contains common terms with the other documents, then Cis <1. By

the aid of this fact, the following new concepts are introduced.

O
|

(s
-~
QO
O
(]
—
(ep]
S
~
=

where j = i

- 58 -

e

m o m
¥ ='(.Z ‘Z Cij) /m=1-5s where = j

i=1 j=1
where 8 indicates the decoupling (uniqueness) coefficient of document
di' If di has Tess common terms with the other documents, then ai will
be higher. The reverse situation, i.e., more common terms with the
other documents will cause a decrease in 6i‘ Wi is the coupling
coefficient of document di with the other documents. It is obvious
that 61+W1=1, and 0<6151, 05W1<1. § and ¥, respectively indicate the
overall decoupling and coupling coefficient of the document collection.

Again s+¥=1, and 0<s<1, O<vy<1,

For a document collection, if decoupling of documents is high,
it would mean that the documents are not very much related to each other.
In other words, they deal with unrelated subjects. As an extreme case,
if 6=1, it would indicate that there is no term common among the
documents. If coupling of the collection, ¥, is very high that would
imply that the collection deals with the same subject areas having

many common terms.

These concepts can be observed from the example C matrix. For
example, the decoupling coefficients for document-1 and document-2
(i.e., 61 and 62) are 0.29 and 0.47 respectively. Similarly the

coupling coefficients of these documents (i.e., v and Wz) are

(1-0.29=) 0.71 and (1-0.47=) 0.53. The overall decoupling coefficient
7
of the documents is § = = 61/7 = 0.436. The overall coupling coeffi-
i=1
cient of the documents becomes v=0.564.

- 59 -

3.322.4. Number of Clusters within a collection : Ne

The concept of coupling/decoupling of documents can be used to
group the document collection into clusters. It is hypothesized that
the number of clusters, Nes within a document collection, would be

the following:

n. = (decoupling coefficient of the collection)«(number of
documents)
m m
n. = xm = (Z di/m) *Mm = .Z §; = trace (c)

If one thinks about the formula for Nes it makes sense. Since
it is also the summation of the uniqueness coefficients for the
documents. For example, if we have a collection with all unique
documents then the decoup]ihg coefficients for all them will be 1.
"Then as a logical result, we will have ne=m number of clusters each
holding one document. In other words, each document by itself is a
cluster (singleton). A decrease in the decoupling coefficient of the
documents, which is an indication for more relatedness among the

documents, will also decrease the number of clusters.

If n. is fractional, then n. can be taken as nC==rhCT. In the
next section, it will be proved that the number of clusters implied
by C and C' matrices are equal to each other. This means that

n. < min(m,n). However, nC==m1n(m,n) does not imply that m=n.

It is obvious from the above Ne expression that, if all documents
are distinct, then there will be m different clusters with one
document per cluster. Using the definition of Nes the average number

of documents within a cluster, dc’ would be:

- 60 -

d. =m/n_ = m/(s*m) = 1/8.

For our example,
n.=38*m=0.436 %7 = 3.05 and
dC =1/8 = 1/0.436 = 2.3

The relationship between v, §, and dC is depicted in Figure 3.1.
In Figure 3.1.a, the stfaight Tine shows the relationship between v
and §(¥+8=1) and the curved line shows the relationship between §
and dc(dc=1/6). In Figure 3.1.b the relationship between dC and § 1is
shown 1in the logarithmic scale-according to this relationship, for

example when §=0.1 (log.0.1=-1) dC is equal to 10 (or Tog10=1), etc.

3.3.2.5. The Relationship Between C and C' Matrices

The matrix C' constructed for the clustering of terms will

produce né number of clusters, which is:

=S
B}

(decoupling coefficient of the terms)s(number of terms)

§'*n = (
i

=
1}
nNo~1>=

(@]
I o~1 5

6%/n) N =

6% = trace (C')
1 i

1

It can be shown that nc=né. That is, the number of clusters,
implied by the document by term matrix, for documents and terms are

equal to each other. Theoretically, this implies that nc(=né)§m1n(m,n).

- 61 -

>ekil 3.1.a - The relationship between § and v, dc‘ ¥y=1-3, dC =1/8

(0<821)
A
1ogdC

L5

logd . = [Togs| F 4
3
2
]

» logs

>ekil 3.1.b - The relationship between s and dC in logarithmic scale,
logd, = |Togs| (0 <6 < 1)

- 62 -

Proof of n.=n.:

The general formulas for Ne and né are given as follows:

From the general formulas of n. and né, it is easy to see that
there is one to one correspondence among the individual terms.

m n

Actually, both formulas are identical with the summation z % d.

J0. B
i=1 =1 W1

i
This proves that nc=né.

The equality between n. and né does not imply that the clusters
implied by documents and terms have one to one correspondence. However,
it is worth to be investigated further (See section 8.1 for further

discussion).

The equality nc=né, i.e., éxm=¢'*n also implies the following:

§ = (n/m) = s',

§'= (m/n) + § .

3.3.2.6. Cluster Seed Power (pi) and Cluster Seed Selection

The next step for the construction of the algorithms is the
selection of some of the documents as cluster seeds. The other docu-
ments will be concentrated around these documents (seeds) to form

the clusters. The selection of the cluster seeds will depend on a

- 63 -

concept which will be referred to as "cluster seed power". This
concept will be introduced after some considerations on cluster seed

selection process.

A cluster seed should have a Targe number of documents around
itself. If each cluster seed is separated from the other seeds as
much as possible, this will decrease overlap among clusters. Further-
more, by this way clusters will be more unique and unrelated with

each other.

The cluster seeds might be chosen as follows. Determine the
column sums of the C matrix excluding the diagonal entry Cije The
documents which give the maximum sum can be selected as the cluster
seeds. There may be false cluster seeds that are to general to be
of use. Such documents, as tutorials, might come up as a cluster
seed because they cover a lot of subjects. To get rid of this pitfall
one may use the product of the column sum computed corresponding to
the ith document and the decoupling coefficient of it, éi. Algebraically

m
this is equal to (2 c..) % §., where i=j. In this product, the

. 1J 1

Jj=1
column sum and 61 will contribute to the generality and separation
of the clusters,respectively. Although this is a good Metric, the
calculation of the C terms will require a time which is in the order

of 0(m?n), and thus, is very costly.
Some ideas for the selection of cluster seeds are given below :

a) It may appear that the first ne documents with the highest
coupling coefficient value, Yo should be selected. Although
at first sight this seems appropriate, there are some disad-

vantages of this approach. For example, a document which is

- 64 -

b)

c)

described with a very few, but very common terms will, have

a high coupling coefficient value.

One might select the first n. documents with the highest
decoupling coefficient and which use as many’terms as possible.
This metric can be calculated as the product of a;l and 61.
Where, a;l indicates the number of terms used for the descrip-
tion of the document di (o is used in the definition of the C
matrix and in the proofs related with its properties).
However, this would not be a good metric. Since documents
which use a Tot of terms (such as tutorials and surveys) will
show similarity to the majority of the documents. Therefore,
they cannot be good cluster seeds. To provide distinction
among clusters, the seeds should be separated from each other

as much as possible.

After the previous points, it seems that the metric Giwiugl

will be appropriate for selecting document cluster seeds. In
this metric, Gi provides the separation of the cluster seeds
(external isolation); v provides the generality of the

cluster seed, which provides the internal cohesion among the
cluster members. This 1is again a required property of a cluster
seed. The term a}l provides normalization for the product

aiwi. The product éiwi might be high for a document di’ but

di might not be a good cluster seed, since it should also

cover a large number of terms in order to provide connection

to different documents.

- 65 -

The product Giwiu;l is called the cluster seed power, Pi> of
document di‘ The next step for identifying the cluster seeds is sort-
ing of the cluster seed powers in descending order. Afterwards, the
first Ne documents corresponding to the first N cluster seed power

of this sorted Tist will be chosen as the cluster seeds.

It has been observed in the experiments that the cluster seeds

chosen by this method and the expensive method described at the

beginning of this section always have 90% or more common terms 113,14].

Therefore, the product siwiugl is a good metric for determining the

cluster seed power.

Figure 3.2 depicts the relationship between the number of terms
assigned to a document and the average decbup1ing (uniqueness) coeffi-
cient, coupling coefficient, and cluster seed power of the documents
with that many number of terms for an ideal situation. In that figure
a normalized cluster seed power is assumed, where the normalization
is made by dividing the corresponding seed power with the observed

maximum seed power.

The seed power of each document in the example D matrix, in
descending order, is determined as follows (the results are rounded

and truncated):

-1

p, = 8,%,00 = 0.47 % (1-0.47) * 4 = 0.9%

p, = 8,%,0, = 0.34 x (1-0.34) * 4 = 0.900

Py = 840, = 0.51 (1-0.51) * 3 = 0,750

P, = 6,%07= 0.29 % (1-0.29) = 3 = 0.616

p, = a7w7a;l— 0.67 % (1-0.67) = 3 = 0.444
- 66 -

6,;,p
]- ________________ — — —
5 p ¥
0.5 -
- "
é?wtgg _ Medium nc High no No of terms
ms of terms of terms assigned to
a document

Figure 3.2 - The relationship to be observed between number of terms
assigned to a document and document's &, ¥, and p for an
ideal situation.

_ -1 -
p5.— 65W5a5 = 0.27_* (1-0.27) 2 = 0.39

1

“1 = 0.50 * (1-0.50) » 1 = 0.250

Pe = 96¥6%

it

If one calculates the cluster seed‘powers according to the costly

method and lists them in the descending order the following list is

obtained :
7
P, = (321 Ci4) * 6, = 1.18 * 0.34 = 0.401 j=4
7
P, = (j; Cip) * 8, = 0.68 x 0.47 = 0.320 j=2
7
Py = (J_; Cig) * 65 = 0.61 % 0.51 =0.313 j=3

- 67 -

I

) %+ 6, =10.28 « 0.67 = 0.188 ji=7

7
py= (1 c;) 8 =0.61x0.29

= 0.177 j = 1
j=1 9 1 !
7
ps = (321 Ci5) * 85 = 0.52 % 0.27 = 0.140 j=5
7
P = (L Cj6) % 86 = 0.13 % 0.50 = 0.065 j=6

The theoretically implied number of clusters is three, the first
three documents with the highest cluster seed power are selected as
the cluster seeds. These are documents 2, 4, and 3. Notice that both
cluster seed selection methods provide the same documents as the
cluster seeds. However, as it is discussed above, the one which uses
the formula siwiagl will be used for determinjng the cluster seed

power. This both because of its efficiency and effectiveness.

3.3.2.7. Modifications in the Clustering Concepts for a

Weighted D matrix

The properties of the C and C' matrices are given for a binary
D matrix. However, they are also valid for a general (weighted) D
matrix description (i.e., 0 < dij <o for i=1,...,m, j=1,...,n) with
a very minor alteration. A1l the properties of the C matrix will be
valid for the weighted case, the only alteration is in property-c.
This property states that Cis > Ciss however, in the weighted form

1J

C;; can be less than the off-diagonal entries of the ith row. This

- 68 -

can easily be seen from the general formulas for Cis and Cij where

n
2
Cij = kz1 L

n

Cij ° kz1 o5 B dids

Consider a case such that djk:>0 when d1k> 0 and assume that djkz dik

for k=1,...,n and djk is greater than dik for at least one given k
i

ﬁ,value. Such a condition will make Cij >Cii’

In the case of the weighted D matrix, the definition of the

cluster seed power needs some modifications. In the binary D matrix,
the seed power for document-i is given as P;= 61*‘y1* (.§1 dij)' In
the weighted D matrix, the contributions due to the ter%; i.e. ‘
need to be normalized in a way. Since there might be some over ’

1 %3

™M=

estimation on the weights of some terms in document-i. The following

can be used for seed power calculation in the weighted D matrix.

-
It ~13

p-=<S1.*‘P,i*(

d.. = s8¢ v
; jry)

(R

Again in this case each term will contribute to the seed power of
document-i. In this contribution the weight of each term of the
document is normalized by the product of decoupling and coupling
coefficients of the term. By such an approach a term with high weight,
but with skewed frequency (i.e., very frequent or very rare terms)
will not contribute that much to the summation, i.e., the seed power

of the document-i.

- 69 -

B e S SRS

3.3.3. The Algorithms

The algorithms to be described here use the same method for
cluster seed selection. However, the assignment of the documents to
the cluster seeds is different. The first algorithm uses the new
"cover coefficient" concept and it is a single-pass algorithm, while
the second one uses the conventional notion of "similarity" and it
is a multi-pass algorithm. The second algorithm is introduced to
kshow,the validity of the new cover coefficient concept, and for this
purpose, a set of experiments were performed the results of which

will be the topic of the subsequent chapter.

As stated above, both algorithms use the same method for the
selection of the cluster seeds. It is obvious that not all of the
documents selected as a cluster seed can be used directly as such.
Some of the cluster seeds may be false cluster seeds, since there
may be nearly identical documents described by the same number of
nearly identical terms. The elimination of the false seeds can be

done by using the algorithm defined in the next subsection.

3.3.3.1. An Algorithm to Eliminate the False Cluster Seeds

For the elimination of false cluster seeds the following algo-

rithm can be used.

a) Take the first n_ documents which give the maximum cluster

seed power;

Nc = nc; /* NC = current number of cluster seeds. #/

- 70 -

b) repat;
If N < N then
c c —

do;

Consider the next (nC—Né) documents
with the maximum cluster seed power

as the new cluster seeds.
end;

Determine the number of equivalence
classes within this cluster seed

collection, and set Nc to this number.

until N =n ;
— c c

The equivalence classes are found by using the relation "equal
level", Re. Two seeds, i and j, are related with each other according

to the relation Re, if c..=c.., Cc.. = It is obvious

.= C.., C..=C...

i1 33 id i3’ 733 i

that, the relation Re holds the requirements of an equivalence rela-
tion. Since it is reflexive, symmetric, and transitive. This relation

is illustrated in the following :

a. Re is reflexive, i Re i is trivial.

b. Re is symmetric, since i Re j, and j Re i. i Re j implies

that C11:=§jj’ c1i==cij, ij::cji; where j Re i implies the

same equalities by changing the order of the operands at both

sides of the equality relation (=). Hence, Re is symmetric.

c. Re is transitive, since i Re j and j Re k implies that i Re k.

i Re j implies Ciizzcjj’ Cii:zcij’ ijzzcji; J Re k implies

c ij' Where these equalities also

337 %kk S35 7 Sk Sk
implies that €557 Cri> i1 = Cipo Crk = Ckie Therefore, Re is

transitive.

After showing that Re is an equivalence relation, then it is
trivial to show that Re partitions the cluster seeds into equivalence
classes |5, p.87-88|. It is obvious that within an equivalence class
there might be two or more cluster seeds. Only one of the seeds of an
equivalence class is taken as a cluster seed, and the rest of them
are considered as false, since all of the others are compatible (or
equivalent) with the one that is chosen as the cluster seed (Here it
is assumed that the clusters generated by the equivalent seeds will

be nearly equivalent to each other).

The above algorithm might be applied as follows. To get rid of
the false cluster seeds, it is necessary to compare each cluster
seed with the next possible cluster seed. This assumes that the
cluster seed powers are sorted in descending order, the first seed
is compared with the second seed and so on. It will be enough to
compare the cluster seed under consideration with the next (lower)
cluster seed, since they will be in consecutive order due to their
close similarity. If the seeds (documents) i and j are the members
of an equivalence class, then the entries c.., c.., c.., and c..

11 137 3 J1

will be almost identical, i.e., for example Cii~Cs5 S t. Where t is

a small number chosen as a thfesho]d.

3.3.3.2. The Single-pass Algorithm

In this algorithm, a document is joined to a cluster, if it is
maximally covered by the corresponding cluster seed (document). We
know that the matrix entry Cij shows how strongly document-i is
covered by document-j. Therefore, if j and k are two different cluster

seeds and if Cij > Cipo then this means that document-i will join the

- 72 -

cluster initiated by document-j rather than that of document-k. The

single pass algorithm is as follows |13,14]:

a) Determine the cluster seeds, which are the documents
determining the first n, highest cluster seed powers
(this step also eliminates the false cluster seeds) ;

i=1;
b) repeat;
If document-i is not a cluster seed

then
do;

Find the cluster seed which maximally covers
document-i. If there is more than one cluster
seed with this property, then the document

might be assigned to all of the seeds, if
overlapping is allowed, otherwise it will

be assigned to only one according to a prede-
termined decision (such as assignihg the document
to the cluster which has the maximum seed power

among the candidates) ;

end;
1= 4i+1;
until i > m;

c¢) The documents which are not covered by any of the seeds
might form a separate cluster by themselves (i.e.,
{d.eD-D | d.eD and c,,=0}). Alternatively, for each

i o j o ij

unclustered document, one may determine the maximal
cover of it and assign the document to the covéring
document's cluster. If an unclustered document has more
than one maximal cover, then it will be assigned to one
of them according to a decision as in step |b|. Step ||
might be applied iteratively until the size of the set

of unclustered documents reaches stability.

d) Stop

- 73 -

The‘phrase "maximal cover", used in the algorithm, needs some
explanation. The maximal cover of an unclustered document (say di)
is any of the clustered documents (say dj)’ where dj covers d1 with
a cover coefficient value, such that, no other clustered document can

cover di with this strength,

The reason that step (c) may be repeated is because we may
extend the size of the clusters by using the maximal cover concept.
As a result, some of the documents which were not covered previously
may now be covered by the recently clustered documents (which were

clustered by using the cover coefficient concept).

It is hypothesized that, the estimated number of documents in

cluster-i, initiated by di’ is given by n; as:
/ 2 pk)*mg 1=1,...,nc
This means that, the number of documents related with a cluster

depends on the magnitude of the cluster seed power of the corresponding

seed document.

- 74 -

3.3:3.3. The Multi-pass Algorithm

The multi-pass partitioning algorithm to be presented in this
section uses the same method shown earlier to find the cluster seeds
of the collection. This time, however, the asssignment of documents
to cluster seeds will depend on a similarity criterion, rather than
cover coefficient. Similarity among documents can be expressed in
many different ways. The most commonly used measures are given in

Section 3.7.

In this algorithm, the clusters will be eptimized by doing the
assignment process repetitiously; accordingly, a document is assigned
to the cluster which has the maximum "document : cluster seed"
similarity value. After the assignment of all documents to the
cluster seeds, the centroid of each cluster is computed according to
the documents assigned to it. During the first iteration, the cluster
seed's description vector, which is simply a document description
vector, is taken as the cluster centroid. Each iteration of the
algorithm refines both the definition of the centroids and the

clusters. The algorithm of this strateqy is as follows |9].

a) Determine the cluster seeds as before;
b) repeat ;

Create the centroid of each cluster according
to the documents assigned to the cluster;

i=1.

- 75 -

* repeat ;

Find the centroid which shows the maximum
similarity to document-i. If there is more
than one centroid with this property, the
deocument might be assigned to all of the
corresponding clusters of the centroids if
overlapping is allowed, otherwise it will
be assigned to only cne according to a
predetermined decision, as in the single-
pass algorithm

i=41i+1;
until i > m ;
until no document has changed it cluster ;

¢) Treat the unclustered documents as in the single-

pass algorithm ;

d) stop ;

During the first execution of the outer repeat block, the
document vectors of the cluster seeds are taken as the cluster
centroids. Furthermore, since the cluster seeds are the initiators,
they are taken as the natural members of each initiated cluster.
Notice that in order to make the algorithm immune to the ordering
of documents, the modification of the cluster centroid is made after

the assignment of all the documents to the cluster centroids.

- 76 -

3.3.3.4. Some Refinements on the Clustering Algorithms

The definitions of both of the algorithms presented may lead to
ovarlap among clusters, however, this is not allowed. Therefore, if
a document has the same maximum coverage or maximum similarity with
more than one cluster seed, the document is assigned to only one of
these seeds. The documents which are not assigned to any cluster may
form (1) a "ragbag" cluster, then in order to be consistent with the
definition of the model for seed oriented partitioning, any document
of the ragbag cluster might be chosen as the cluster seed; or (2)

stay as a singleton.

In the implementation of the second algorithm, it was observed
that the termination condition (f.e., until no document has changed
its cluster;) is rather strict: This is begause, after some number
of iterations, a very few number of documents might change their
clusters between iterations causing only slight changes in the clusters.
For practical purposes, the termination condition can be modified as
"until the proportion of the stationary documents reaches > .95".
The illustration of the algorithms for the example D matrix will be

given after introducing the centroid generation policies.

3.3.4. Centroid Generation Policy of the Algorithms

The methodology of centroid generation for the clusters will be
very important for the effectiveness of a document retrieval system.
Furthermore, it may also influence the clustering process as seen in
the second partitioning algorithm. In this section, generation of

centroids will be illustrated.

- 77 -

3.3.4.1. Centroid Generation Policy for the Single-pass Algorithm

A centroid for the clustered documents is represented by Gi’

where
G, = (9i1, Gins woes gin)’ i = 1,...,nc

Eachfgij indicates the existence (nonexistence) of term-j in the

centroid-i.

The values of the centroid entries will be based on the following

variables :
f; = 3 dkj indicates the frequency of term-j within the document
d, eC.
k=1 vectors of cluster-i;
m
fjavg = (121 dij) / ncj, where the dividend indicates the document

frequency of term-j (i.e., its generality), the divisor
indicates the number of clusters containing the docu-
ments whose definition vectors contain term-j, i.e.,

indicates

n. :[{Ce[dij:fo and dieCe}], where
the cardinality of a set. Therefore, it is the average
number of occurrences of term-j within the clusters

containing it.

63 is the diagonal entry of the term by term matrix C'==STS' for term-j;
where, the diagonal entries of C' indicate the uniqueness

of term-j.

§' = trace (C') / n, overall decoupling of the terms.

- 78 -

A centroid entry 91' is assigned a value of 1 if fJéJ > fjavg6

(this will be referred to as "the state of existence rule of a term

w1th1; a centroid"), otherwise gij will be 0. In |12], fjavg is taken

as (z dij)/nc’ which is the average number of occurrences of a term
i=1
within a cluster. Since the value of n. is considerably high, the

C i . . .
dit f.8.>F. §' was satisfied readily. Consequently, this
condition 352 T5avg y q Y

resulted in centroids with too many terms (nonzero entries). Therefore,
the state of existence rule of a term within a centroid has taken the

final form presented above (i.e., f is computed using n. _rather

o .
Javg ;

than nc).
According to the centroid definiton given above, the terms which

appear often enough within a cluster and which have noticeable unique-

ness will appear in the centroid description.

Proposition : The terms which have a uniqueness value (i.e.,
the diagonal entries of the C' matrix, 6%==c%1) greater than or

n
equal to the average uniqueness value of the terms (s' = 3 s'/n)
i=1
will appear at least once in the centroid vectors.

Proof : Consider the condition f163 > fjavga' that assigns a

value 1 to a centroid entry Take the sum of both sides for a]]
m

the clusters. Then we are left with E d.. » 6t > ¥ d.. % 6’,

=1 10Ty
which leads to 65 > 6'. If the left side of the general inequality
formula is always less than the right side for all clusters then
éj > &' cannot hold. This means that, for the inequality 65 > 8!
to hold, at least for one of the clusters, the condition for the

assignment of term-j to a cluster must hold. This concludes the

proof.

- 79 -

Such an approach for centroid generation will emphasize the
terms with higher uniqueness values. The condition of existence of a
term within a centroid might be modified slightly, so that it can be
more strict or relaxed. The modification involves a multiplier t as

3% 2 Fiavg
the condition 63 > T8

f §'. After this modification, the terms which satisfy

" will appear at least once in the centroid
definitions. If © > 1 (¢t < 1) this means that the state of existence
rule of a term within a centroid is harder (easier). Accordingly, one

may use t > 1 (1 < 1) if precision (recall) of the IR system is more

important for its users.

In this centroid generation policy some of the generated centroids
might have all zeros. In such cases, the state of existence rule of a
term within such centroids can be changed with the multiplier r.
However, it is expected that such cases will appear very rearly (For
example in the experiments, which are illustrated in the next chapter,

such a case was never observed).

3.3.4.2. Centroid Generation Policy for the Multi-pass Algorithm

In the implementation of the second algorithm, the definition of
the C matrix is used for 1nit{ation of the algorithm. More specifically,
the seeds are selected by using the cover coefficient concept. However,
assignment of the documents to cluster seeds is done using a similarity
measure. Since cluster formation is not related with the uniqueness of
the terms, a conventional method, the threshold concept, has been

utilized in determining the centroid terms.

According to the fﬁ?éghd1d concept to be used, if there are k

documents in a cluster, in order to assign a term to the cluster

- 80 -

centroid -the term should appear in at least T (a threshold value) of
the member documents. The work of Croft has shown that, under certain
assumptions, T should be k/2 or sTightly less |106, p.102]. In the

illustration to be followed in the next subsection, and in the exper-

iments to be described in the next chapter, T is taken as k/3.

3.3.4.3. Evaluation of Cluster Representatives

In a document retrieval environment, the generated centroids are
used for query processing. The centroid should be tested experimentally
by submitting different queries to the system [106, p.99|. The centroid
generation policy should be in accordance with query processing
strategy. Furthermore, the centroids generated can also be used for

hierarchical clustering.
The following Tists various ways of testing the centroid :

a. For all clusters and documents test to see whether the centroid
of the cluster, in which the document is assigned, is the most

similar centroid to the document. Ideally, this should be true.

b. Determine the number of mismatches among the members of a
cluster and its centroid (in the ideal case this should be
zero, which might happen if all the documents are clusters
-singletons- by themselves). A new concept, the probability
of having a mismatch At a term position, mp, is introduced
|13]. The metric m, is the probability of having a mismatch
at a term position between a centroid and a member of the
corresponding cluster. Again, the ideal value for mp is zero.

Small value of mp will imply better centroid generation.

- 81 -

To find the total number of mismatches (say M) between centroids
and the corresponding documents, the following is used:

2
M= T (T T (ds, -g.)0).
21 §=1 k=1 13.k o Tk
In this formula, ne indicates the number of clusters within the
collection, n. indicates the number of documents within cluster i,
.i
n is the number of terms, and dij K is the entry of the document
vector corresponding to the kth term of the ith cluster's jth document,
and gij is the value of term-j's entry in centroid-i. However, a more

practical formuTa for M might be the following :
nC .

M= ¥ J abs(fi - n
i=1 J

where "abs" indicates the absolute value function.

After introducing the two concepts. m. and myo it will be easy

to find .
i

m

c M/nC : the average number of mismatches per cluster

my = mc/dC: the average number of mismatches per document

where dC was defined as the average number of documents per

cluster. After this, mp is obtained as follows :

mp = md / n

In the experiments which will be covered in the next chapter,
these masures will be used to test the behavior of a given centroid

generation methodology.

- 82 -

3.3.4.4. Document Assignment and Centroid Formation for the

Single-pass Algorithm

During the assignment process, we should compare cover coeffi-
cinet values C(i,j), where i and j are, respectively, the document
to be clustered and the cluster seed. For document-1: C(1,2) =0.29,
C(1,4) =0.29, C(1,3) =0.07. Document-2 has a higher seed power,
therefore document-1 is assigned to its cluster, although C(1,2)=C(1,4).
If one proceeds in the same manner, the clusters will be formed as
follows: (2,1), (4,6), and (3,5,7). Therefore the number of documents
associated with the cluster éeeds 2, 3, and 4 are 2, 2, and 3, respec-
tively. The implied number of documents (due to the magnitude of the
cluster seed power) associated with the same seeds, respectively,
are 2.66, 2.38, and 1.98. In this example, the correlation between
the implied and the actual number of documents in a cluster is not
good. However, in practice, high degree of correlation is observed

between these two entities |14| (see also next chapter).

Centroid generation for the first cluster is given
in the following, the centroid generation for the others will be done

in the same manner. If one obtains the C' matrix, the 6%(:C%1) values

for the terms come out as 0.33, 0.28, 0.63, 0.25, 0.28, 0.50, 0.33,
8
and 0.44 for i=1,...,8, respectively. From this, §' = E 61/8 is
i=1
calculated as 0.38. fj values are obtained from the D matrix as 2, 2,
. . 1
0,1, 2, 0, 0, 0 respectively for j=1,...,8. fjavg values for
J=1,...,8, respectively, are 5/3, 3/2, 2,1, 3/2, 1, 1, 3. A 1 will

be assigned to the jth centroid position for cluster-1 if f}dj;fjavgé
for j=1,...,8. These conditions evaluate to: (for 944 through 9.8

respectively) 0.66 > 0.63, 0.56 < 0.57, 0 < 0.76, 0.25 < 0.38,

- 83 -

0.56 < 0.57, 0.0 < 0.38, 0.0 < 0.38, 0.0 < 1.14. The assignment con-
ditions of a term to a centroid is satisfied only for term-1. There-

fore, the generated centroid becomes

G1: (1,0, 0, 0, 0, 0, 0, 0).

The centroids for the seeds 3 and 4, respectively, are the

following:

G, = (0,0,1,0,0,0,0,0)

G, =(1,0,0,0,0,.1, 0, 1)

The number of mismatches among the member documents and the

corresponding centroids are 5, 3, and 4, respectively, for the cen-

troids 1, 2, and 3. Then M becomes 5+ 3+4 = 12, m. and myo accordingly,

become (12/3=)4 and (4/2.3=)1.74, respectively. This results in an mp

value of (1.74/8=)0.22.

The similarity coefficients among the documents and the cluster

centroids are highest if the centroid belongs to the document's

cluster. In this example, the centroid formation behaves rather poorly,

since the cluster centroids contain very small number of terms with
respect to document vectors. This is because, the average number of
occurrences of a term within clusters is very high, which hardens the
assignment of a term to a centroid. However, this should not be the

case in a real 1life environment.

- 84 -

3.3.4.5. Document Assignment and Centroid Formation for the

Multi-pass Algorithm

This algorithms starts with the same cluster seeds as in the
previous example. The document deScription vectors of the seeds are
taken as the centroids. In the first jteration of the algorithm the
documents are assigned to the seeds as follows (where in the following,
Sm(d,s) indicates the similarity between the document d and the cluster

seed s according to the Dice's coefficient):

d=1:5Sm(1,1) = 6/7, sm(1,2) = 6/7, Sm(1,3) = 2/6. d, will join

cluster-1 (notice that P, > p2).
d=2: 1is a seed, so it is already assigned.
d =3 :1s a seed, so it is already assigned.
d=4:1s a seed, so it is already assigned.

d=5": Sm(5,1)

il

2/6, Sm(5,2) = 2/6, Sm(5,3) = 4/5. d5 will join

cluster~3.
d=26:5Sm(6,1) =0, Sm(6,2) = 2/5, Sm(6,3) = 0. d6 will join cluster-2.
d=72:5m(7,1) =0, Sm(7,2) = 0, Sm(7,3) = 2/5. d7 will join cluster-3.

The resulting c]usters afe: C1(2,1), 'CZ:(4,6), and C3=(3,5,7).
The centroids corresponding to these clusters, respectively, are
G1=(1, 1, 0, 1,1, 0, 0, 0), GZ=(1, T, 1,0, 1,0, 0, 0), and
G3= (1,0, 0, 0, 0,1, 1, 1).

In the second and subsequent iterations, all the documents will

be compared with all the clusters.

d=1:53Sm(1,1) =6/7, Sm(1,2) = 6/7, Sm(1,3) = 2/7. d1 will stay in

the same cluster.

- 85 -

- d =2 :Sm(2,1) =1, Sm(2,2) = 6/8, Sm(2,3) = 2/8. d2 will stay 1in

the same cluster.

d=3:5Sm3,1) =2/7, Sm(3,2)

It

2/7, Sm(3,3) = 6/7. d, will stay in

the same cluster.

1t

d=4:Sm4,1) =6/8, Sm(4,2) = 1, Sm(4,3) = 2/8. d4 will stay in

the same cluster

1
1

d=57:5Sm(5,1) =2/6, Sm(5,2) = 2/6, Sm(5,3) = 4/6. ds will stay in

the same cluster.

d=6:5Sm(6,1) =0, Sm(6,2)

H

2/5, Sm(6,3) = 0. d6 will stay in the

same cluster.

d=7:Sm(7,1) =0, Sm(7,2)

i

0, Sm(7.,3) = 4/6. d7 will stay in same

cluster.

At the end of the second iteration, since no document changes
its cluster, the algorithm terminates. The number of mismatches
between the cluster members and the centroids are 1, 3, and 5, for
the clusters 1, 2, and 3. The values of M, m.s Mys and mp becomes

(1+3+5=)9, (9/3=)3, (3/2.3=)1.30, and (1.30/8=)0.16, respectively.

3.3.5. Complexity Analysis of the Algorithms

In this section complexity analysis of the algorithms will be
presented. The complexity of some of the other algorithms can be seen
in Table 3.1. The explanation for these algorithms can also be found

in |86].

One of the most credential feature of a clustering algorithm is
its order independence. It is observable from Table 3.1 that, the

complexity of the algorithms which provides order independence is

- 86 -

rather high, i.e., either exponential (0(k™) or quadratic (0(m?)).
After the following cOmp1ex1ty'ana1ysis of the two clustering algo-
rithms, it will be seen that they are favorably comparable to the

complexity of the other clustering algorithms proposed to date.

TABLE 3.1 - Analysis of Some of the Clustering Algorithms

. Clustering Order
Clustering Method Time Independence
Clique finding:

A11 cliques O(km)* Yes

Limited cliques 0(m)? Yes
Single-1ink method 0(m?) Yes
Density test method:

Worst case 0(m?) No

Average case 0(m2/1ogm) No
Interchange process:

Worst case 0(m?) No

Average case 0(m/Togm) No
One pass method:

Worst case . 0(m?) No

Average case 0(m/Togm) No

* k 1s a constant.

3.3.5.1. Complexity Analysis of the Single-pass Algorithm

The complexity of the algorithm can be determined from the selec-
tion of cluster seeds and the clustering process. In the first step,

the cluster seed power of each document is calculated and placed into

- 87 -

a sorted order. The complexity of this step would be

0(m+n + mxlogm) = 0(m*n). Where,

m#n : corresponds to the complexity of cluster seed power

calculations;

mxlogm: indicates the complexity of sorting m cluster seeds.

The complexity of the document assignment (clustering) process

will be O(nc*m*n). The significance of each term is as follows:

n_: dndicates that all cluster seeds are considered in finding

the maximum coverage.

m : indicates that all documents are assigned to a cluster
seed except cluster seeds (m—nC is approximated as m,

sinceln>>nc).

n : dindicates that in computing the coverage coefficient of

each cluster seed, n terms will be considered.
Accordingly, the overall complexity of the algorithm will be given by:
0(mw%n) + O(m*nc*n) = O(m*nc*n).

The effect of step-c of the algorithm is assumed negligible. In an
operational environment, it can be assumed that the number of docuy-
ments is considerably greater than the number of terms, i.e., m>>n.

With this assumption the complexity of the algorithm would be O(m*nc).

One might criticize the assumption of m>>n in the complexity
analysis on the grounds that states "the assumption m>>n is likely
to be true only in the case of a large file of documents indexed with

a controlled vocabulary and in the case of an uncontrolled vocabulary,

- 88 -

m and n might be comparable". However, this is not the fact. Because,
if one uses a data structure which gives the related terms of a docu-
ment, then in the complexity analysis, the term n will be replaced
by the average number of terms in each document (navg)’ It is obvious
that m>> navg' Therefore, the assumption of the complexity analysis

hold for all cases. Then the complexity of the algorithm reduces to

D(m*nc*navg) = O(m*nc).

Within a collection of m documents, on the average, logm docu-
ments can be assumed within a cluster |86, p.359|. Therefore, m/Togm
clusters will be obtained during clustering, i.e., step-b of the
algorithm. With this assumption, the complexity of the algorithm
will be 0(m*/logm).

Assuming one document per cluster (i.e., if each document is a
cluster seed by itself) the behavior of the algorithm would be as
follows. Since each document is a cluster seed by itself, no calcula-
tion will be needed to assign it to a cluster seed. This would result
in an order of complexity of 0(m), for checking whether a document is
a seed or not. Therefore, the overall complexity of the algorithm is
O(m*navg) + 0(m) = 0(m), where O(m*navg) comes from the first step

of the algorithm (Remember that n1>>navg).

It deems necessary to emphasize that this is an inverse behavior
with respect to the usual clustering algorithms. This is because as
the size of the clusters decreases (i.e., as the number of clusters

increases) the computational speed of the algorithm increases.

In the case of having a document collection with very few clusters,

the behavior of the algorithm improves. The complexity of the algorithm

- 89 -

becomes Q(m*navg) + O(m*nc*na

O(m*navg) + O(m*navg) = 0(m). Accordingly, it can be claimed that

Vg), which reduces to

the worst case behavior of the algorithm would not be worse than

that of the average case.

The assumption made in the analysis of the algorithm (i.e., on
the average logm documents in the clusters) implies that in the
algorithms 1/8 = logm. This is consistent with the example given for
7 documents. A persistent consistency was observed, which validates

the assumption, in the experiments to be described in the next chapter.

3.3.5.2. Complexity Analysis of the Multi-pass Algorithm

Similar to the complexity ané]ysis of the single-pass algorithm,
the complexity of the multi-pass algorithm can be determined from the
selection of cluster seeds and the clustering process. The complexity
of the seed selection process 1is found in the previous section and is
O(m*navg). The clustering process of this algorithm has two significant
aspects: the assignment of the documents to the seeds and the centroid

generation process. The complexity of the document assignment to the

seeds is again 0 *M* here
g (nC m navg)’ W

n ! indicates that all cluster seeds will be considered dur-

ing document assignment.

m : indicates that all documents will be considered during
fhis assignment process. In the first iteration, (m—nc)
documents will be considered, since cluster seeds are
assumed as already clustered. Like in the first analysis,

since m>> n. then (m—nc) can be taken as m.

-9 -

navg : indicates that all the terms of a document is considered

during similarity calculations.

After each document assignment process, the centroid formation
activity follows. The complexity of this step is

O(m/nc*n xn) = 0(m*n__), w(msn_._), where:

avg ¢ avg avg
m/nC : indicates the average number of documents within a cluster
navg : indicates that during centroid formation all terms are

considered, therefore (m/nc*n) corresponds to the.

avg
complexity of centroid generation for a cluster.
n : indicates that, centroid formation will be performed for

all clusters.

The overall complexity of the algorithm for k iterations would be:

)

D(m*navg) + O((k—1)*nc*m*navg) + O((k-1)*m*navg) + O(nc*m*navg

=0(k*m*navg) + O(k*nc*m*navg) = O(k*nc*m*navg)

In the last, kth, iteration, since there is no change in the cluster

configuration, no centroid formation takes place.

If one assumes, on the average, logm documents in each cluster,
the value of ne would be m/Togm. Furthermore, n1>>navg. This Teads

to the overall complexity of 0(k*m?/logm).

If a very few clusters is assumed, the complexity will reduce
to 0(k=m) from the general complexity of 0(k«m?/logm). If we assume
a large number of clusters, the complexity of the algorithm would be
0(k*m®), where in this case k will be very low, Teading to immediate

stability of clustering. Because, if ne is large (which is a result

- 9] -

of high term specifity-notice that if the average number of documents
in which a term is assigned is Tow, then this would mean a high term
specifity |106, p.25|, then the centroids will be sharply different
from each other and very similar to its cluster's members. This leads
to the immediate stability of the document assignment process, which
is what is observed in the experiments to be presented in the next

chapter [14].

3.3.6. The Use of the Algorithm Concepts for Cluster Maintenance

Efficient cluster maintenance capability is the most important
feature for a clustering scheme. The maintenance capability means that
updates (e.g. adding documents to the database) should not be too
difficult. Many algorithms claim this feature, but in reality they do

not provide;it [106, p.58].

One of the well known maintenance approach is "cluster sp11tt1ng"
189,92]. In this approach, the new comers (documents) are treated 1ike
a query and a search is performed according to a query processing
strategy. Then the new document are assigned to the most relevant
clusters. In this approach, if a cluster becomes too fat then it is

split into:more than one cluster. -

Another maintenance strategy is proposed by Crouch [27|. In this
approach, firstly category vectors are generated for the document
collection at hand. Where, a category vector is a set of related
terms. After this process, the documents are assigned to these category
vectors to form the document clusters. This means that each category
vector corresponds to a cluster (The cluster centroids are also

generated). For the new documents to be clustered the categorization

- 92 -

process is restared where it stopped previously. During categoriza-
tion, some new category classes may be generated and some old category
classes may change. During cluster readjustment the new comers are
assigned to the category vectors and at the same time the members of
the clusters corresponding to the modified category vectors are also
reassigned. During this new reassignment, all category vectors are

considered.

If one considers the above approaches the weaknesses will be
seen very easily. In the cluster splitting process no interaction
can exist between a split cluster and unsplit cluster. For example,
a document from a split cluster cannot join to an untouched cluster.
Although it is not mentioned by him the Crouch's approach is
order dependent. Since the generation of category vectors is

order dependent.

In the following, an algorithm for cluster maintanence for
dynamic (extending) document collections will be introduced. The

meaning of the symbols to be used in the algorithm are as follows:

DO : documents of the old collection (The size of Do is L
m, =]DOI).
DN : new (additional) documents to be clustered.

Dp : extended collection, DE:=DOKJ DN (me==|DE|, obviously

m, > mo).

DF : documents of the clusters initiated by the cluster seed
documents which are not seed anymore (i.e., falsified).
If SE and S0 are the set of cluster seeds corresponding

to the document collection DE and Do’ respectively, then

- 93 -

S =S, - (SO!W S¢), where Sg corresponds to the falsi-

fied seeds.

The set of documents to be clustered after extension,

D = Dy D (m_ = [D_|).

The algorithm for cluster maintenance is as follows

a.

Compute the seed power of the documents in the

extended document collection, DE.

Find the cluster seeds of DE’ i.e., the set SE.
Determine the previous cluster seeds which are

not seed anymore, i.e., the set SF.
Determine the set of documents to be clustered, Dc'

The cluster seeds which cover the documents of
Dc maximally are found and the documents to be
clustered are assigned to the maximally covering

seed’'s cluster.

It is obvious that the complexity of the above algorithm is

much more less than the full utilization of the single-pass algorithm

and it can be found by considering each step (In the following navg

indicates the average number of terms in a document). The complexity

of the above algorithm can be found by considering the complexity of

each algorithm step

Step-a

Step-b

: The complexity of cluster seed power calculation is O(me*na

the determination of the cluster seeds has a complexity of

*
Mg 1ogme.

: This step needs n. number of comparisons. Where

n_=max(n__, n
co

c). n and nCe are the number of clusters

ce co
in the collections DO and DE’ respectively (Normally,

- 94 -

Vg

)5

Step-c : Minor.

Step-d : The complexity of this step stems from the calculation of
the required C matrix entries. If we assume Nee number of
clusters in the extended collection, then the complexity of

this step becomes 0(nce*mc*navg)'

Then the overall complexity of the algorithm becomes:

O(me*navg + me*1ogme) + O(nc) + O(nce*mc*navg)’

This can be approximated by the dominating component which is

O(ncé*mc*navg), if we show that

N_ %M _%n > m_%logm
ce” c*avg e* ' 09My

(where it is assumed that navg > 1ogme). If we substitude nce=me/1ogme

in the above expression :

m_/logm «m * > m_x] > m_* > (logm)?
e/ ' O9Mg*M . navg g O9Mg > MmN M

avg

Obviously the above inequality will hold. Hence, the complexity of

the maintenance algorithm would be O(nce*mc*n (me/logme*mc*n).

avg
This is much cheaper than the reinitiation of the single-pass algo-

avg):0

rithm for the extended document collection DE’ which has a comp]exity
2 : 2
of O(me/logme). Since we may expact that me/1ogme>>me/1ogme*mc*navg,

or m_ >>m *n__ .,
e” "¢ avg

It should be remembered that this cluster adjustment cannot be
done indefinetely. After some extension, the cluster falsification

can be very dense. In such a case it would be better to perform

- 95 -

reclustering operation. Furthermore, automatic indexing could be

done periodically to reflect the effects of the new directions 1in

the pertanent science field. For example, the Tanguage of the "Annual

Review of Information Science and Technology" was studied. It is

observed that the vocabulary is changing at a rate about 4% per year,

with old terms leaving the vocabulary at about the same rate as new

ones enter it [41]. This fact also necessitates the initiation of

the reclustering process periodically.

3.3.7. Characteristics of the Algorithms

In the implementation of the algorithms, a new concept called

“cover coefficient" is introduced for the selection of cluster seeds.

From the description of the algorithms, it is easy to observe the

following facts.

a)

b)

It is possible to estimate the number of clusters within a
collection. This feature is an outcome of the cover coeffi-
cient concept and is very novel for a clustering algorithm.
This might be used as a check point for the description of
the D matrix, i.e., if the number of clusters (nc) implied

by the D matrix is enormousty different than the expectation,
then one could change the indexing strategy accordingly.
Furthermore, the cost of determining the n. is very low, i.e.,

O(m*navg).

The algorithms are stable, small errors in the description
of documents lead to small changes in clustering. Since,
small changes in the document collection (D matrix) will

Tead to small changes in the C matrix.

- 96 -

c) The clustering pattern generated by the algorithms are well

e)

defined. Since the algorithms produce a single classification.
This statement is absolutely true for the single-pass algo-
rithm. In the case of the multi-pass algorithm, the threshold
concept is used to stop the iterations. However, the threshold
is chosen in such a way that (i.e., a‘high value like 95%)

the clustering pattern achieved is one of the compatible
classifations with respect to the absolute stability of the

documents in the clusters (i.e., a threshold of 100%).

Many clustering algorithms will produce clusters from any
set of data, no matter how dispersed are the entities.
However, the cover coefficient concept, which is the starting

base of the algorithms, is sensitive to this fact.

The algorithms distribute the documents uniformly among the
clusters, in other words they do not cause a few "flat"
clusters and a Tot of singletons, a fact which is the general
complaint of the information retrieval community. The observa-

tions for this will be depicted in the next chapter |14].

The algorithms are 1hdependent of the order of the documents.
This is clear from the following facts. The values of the C
matrix are independent of the order of documents. This is
because, the cover coefficient value between two documents

will be the same regardless of the order of documents in the

D matrix. In the case of the single-pass algorithm, a document
to be clustered is assigned to the seed point which covers it
maximally, and again, regardless of the order of the documents,

the seed will always be the same seed. In the case of the

- 97 -

q)

.multi-pass algorithm, the centroids are constructed after

assigning documents to the seeds and after the first itera-
tion, centroids will be considered as seeds-this is order

independent.

The single-pass algorithm has a very unique feature, which
is the prediction of the number of members of a cluster.,
This'prediction is made according to the magnitude of the
cluster seed power of a cluster. In the experiments to be
given in the next chapter, a high degree of correlation was
observed between the predicted number of documents and the
number of documents assigned experimentally [14]. This is

again a very unique feature for a clustering algorithm.

It is possible to implement the document assignment process
of both of the algorithms in such a way that the assignment

to different seeds can be overlapped in real time.

The cover coefficient concept () implies some basic rela-
tionships. These relationships state strong association
between the average number of terms per document (depth of
indexing), the averaée number of documents per (term gener-
ality) and, respectively, the average number of terms per
term cluster, the average number of documents per document
cluster. This association also determines the number of
clusters (nc) within a collection. These basic relationships
are observed for the first time in this thesis research. They

will be discussed in the next chapter.

- 98 -

The, implementation of the algorithms requires considerably less
memory space. The most of the other algorithms require considerably
more memory space and therefore, increase the programming effort.

For example, consider an experimental collection with 450 documents,
and 4726 terms used for their description |100]. As can be noticed,

m is taken as quite small (450) compared to what it should be in

real Tife. The memory requirements of the algorithms and another
algorithm which uses the (dis)similarity of documents in a graph
theoretical manner can be comparatively determined as follows: if we
skip the representation of the D matrix which might be the same in
both algorithms, the (dis)similarity matrix, for the other algorithm,
will require [mx(m-1)/2 elements| (450%449)/2=101,025 memory locations.
For the algorithms presented, this would take 450+4726+450=5,625
memory locations. These are the storages required for o, 8, 61. The
substantial difference between the two storage requirements also

indicates the power of the presented algorithms.

The memory requirements of a graph theoretical algorithm can be
resolved by tricky programming. For example the entries of the (dis)
similarity matrix can be calculated in segments |106,'p.60|. Another
way of doing this is the exp]oftation of the inverted file structures
provided that the algorithm at hand should accept the (dis)similarity
at any order and fetch of the same matrix entry more than once |25].
By such an algorithm the memory requirements is lowered from 67,425,078
to 3,969,046 (5.9% of the entire matrix) for a document collection of
11,613 entries |25]. In the clustering algorithms presented in the
thesis the number of elements to handle the diagonal entries of the
C-matrix is 11,613. For the document assignment process, if we assume

nC=1000 (which is a very Targe number, probably larger than the case

- 99 -

of the real 1ife) for the execution of the single-pass algorithm and
one pass of the multi-pass algorithm about 1,161,300 numbers will be
calculated. These figures are considerably less than the figure given
for the graph theoretical algorithm. In the single-pass algorithm,
the entries of the C matrix, which is calculated during document
assignment, are used immediately, i.e., they are not saved. The same
is also valid for the multi-pass algorithm in the calculation of

similarity values.

The complexity of the single pass algorithm can be further
decreased if a file structure, which will indicate the disjoint
documents and cluster seeds, is used (The disjoint documents do not
have any common term). In such an approach, the complexity of cluster-
ing step will drop from 0(n _*m#n

av
n ¢ g

c

2 = % (No of documents that are disjoint with cluster seed-i).
i=1

(ATthough m>>n

) to (nc*(m—z)*navg), where

avg® the navg term is not dropped. However, it will

vanish automatically in the following calculations). The complexity

of calculating ¢ is O(nc*(m-nc)*n). Where,

avg
n. indicates that all cluster seeds are considered.
navg: each seed is represented by navg number of terms.

m-n_: all documents except cluster seeds are considered to

find the disjoint documents.

Therefore, in order to have some reduction in the complexity of the

algorithm, the following inequality should be satisfied:

- 100 -

- - <
nc*(m 2)*navg + nC*(m nc)*navg m*nc*navg

M= 2+m=n_)*n _*n < m*n_*n
(c) ¢ avg c avg

Zm-2-n_ < m
c

m < &+n .
c

This inequality is very easy to satisfy. For example, if there are
three seeds which are disjoint with one-half of the documents then
the inequality is readily satisfied. Therefore, the determination
of the disjoint documents will be very useful in a real 11fe

enviroment.

- 101 -

4. SIMILARITY AND STABILITY ANALYSIS OF THE ALGORITHMS

In this chapter a similarity and stability analysis for the
clustering algorithms, which are presented in the previous chapter,
will be given. This chapter also includes other aspects of the algo-
rithms, such as the number and the size of the clusters generated,
the similarity between the members of a cluster and the corresponding
centroid, the close association between indexing policy and the dis-

tribution of documents among the clusters, and other relevant details.

Two methods will be used for the similarity and stability
measurements. These methods are due to Rand |2,82] and Goodman and
Kruskal [2,37]. To test the similarity and stability aspects of the
algorithms with respect to these methods, a database from 167 ACM
TODS (Association for Computing Machinery, Transactions on Database
Systems) has been constructed for the experiments. The features of
the document collection as well as the other findings of the experi-

ments will also be given.

Let us first give an informal definition of similarity and

stability of clustering algorithms. A clustering algorithm is considered

stable if small changes in the input leads to small changes in the
clustering pattern generated. Two clustering algorithms are assumed

similar if the clustering pattern generated by one resembles the

- 102 -

clustering pattern generated by the other. A metric used to measure
similarity might be also used for stability. The similarity concept
is used to compare the results of more than one clustering algorithm
for the same input. If the clustering patterns generated by an algo-
rithm for different input are similar, then this similarity might be
a clue for the stability of the algorithm. Notice that, by different
input, what is implied here is different descriptions of the same

collection |14].

In terms of document clustering, a clustering algorithm is called
"stable under extension of range" when introduction of new objects
does not drastically alter it. Similarly, it is called" stable under
change or increase of (indexing) terms" when addition of further
relevant terms does not substantially alter it. The definition of

stability within these two contexts is given by Jardine and Sibson|50].

In view of various sources of errors, such as in data conversion,
and changes in document collection (both in terms of documents and
terms), stability testing of clustering becomes necessary. As an

example, one can Tist those due to input data as follows |79]:

a. In converting a document representation into a standard
computer form, various sorts of clerical errors may be

introduced (Such as misspelling).

b. A term which is not important or does not appear in a document

may be mistakenly assigned (erroneous indexing).

c. Similar to (b), a term which is important for a document may

be mistakenly unassigned.

- 103 -

d. Addition and deletion of documents, respectively, due to
collection growth and document retirement, might change the
importance of terms. Because of such dynamism, some terms
can lose their importance, and some new terms might be

introduced with the new documents.

e. The terms which are chosen to represent a document collection
may not be unique. Two different indexing strategies may

produce similar but different set of indexing terms.

The above sources of errors and/or perturbations clarify the impor-
tance of stability analysis for document clustering. However, the
task of stability analysis is not straightforward. For example, the
effect of different indexing policies on the same document collection
can be seen by obtaining the document-document similarity matrices
for two policies and, then, determining the similarity between these
two matrices by using a measure (e.g. Kendal's coeifficient of
agreement |80|). A similar approach cannot be used to compare two
different clustering patterns. Since in this case, there is no one

to one correspondence among the clusters of the two distinct clustering
patterns. The next subsection.will deal with the metrics for this

measurement.

4.1. MEASURES OF SIMILARITY AND STABILITY

One might have different clustering patterns for the same collec-
tion due to different clustering algorithms. The same may happen by
using the same algorithm with different D matrices corresponding to
the same collection (The difference can be due to different indexing

policies). The similarity coefficient calculated for two different

- 104 -

clustering patterns might indicate the similarity of two algorithms

if they are using the same D matrix for clustering. The same similarity
measure can be used to show the stability of an algorithm if the
differences in clustering patterns are due to the D matrix rather

than the algorithms. If an algorithm is immune to the discrepancies

in the definition of D matrices, then the similarity coefficient will

have a high value.

There are various stability measurement é]gorithms in the Titer-
ature. Among those, an algorithm for graph theoretical clustering
methods can be seen in |78]. An overview of the stability analysis
methods for clustering algorithms can be found in 12,79,80]. The

complexity analysis for stability algorithms can be found in |29].

In this thesis, two different methods will be used for stability
analysis. The first one is due to Rand |82]. Itstems from the similar-
ity concept. The second stability measure is due to Goodman and
Kruskal |37] which stems from the concept called "predictivity power".
In this concept, if there are two clustering patterns, one may use
the information held in one of them to predict the clustering pattern
of the other. This concept was introduced for the cross classifications
of tables. However, later, also used for partitioned clustering 2] .

In the following section, both metrics will be introduced very briefly.

4.1.1. The Rand's Coefficient

The Rand's coefficient can be used for a partitioning type
clustering algorithm. It can also be modified for overlapping cluster-
ing algorithms |80|. Another metric, called D metric in the Titerature

is identical with the Rand's coefficient |79].

- 105 -

According to this metric, clusters are defined just as much by
those points (in IR documents) which they do not contain as by those
points which they do contain. This means that if a distinct document
pair is assigned either to the same cluster or to different clusters
in two different partitionings of the same input data, then, the
Rand's coefficient assumes a similarity between these two clustering
patterns. This means that, a pair of documents are considered to be
similarly placed either if the pair is in the same cluster in both
clustering patterns or they are in different clusters in both cluster-

ing patterns.

The Rand's similarity measure can be expressed in tabular form
|2]. In this representation, pairwise combinations of documents in

each partition are classified into two classes:

Class-0 : the documents are in different clusters in the partition;

Class-1 : the documents are in the same cluster in the partition;

The pairwise comparisons between two partitions -say PA and PB—

are given in the following chart.

PA / PB Class-1 Class-0

Class-1 a, 3,

Class-0 aO1 250

- 106 -

The meaning of the entries of the above chart are as follows:

a;, - number of document pairs which appear in the same cluster,

in PA and PB.

s, number of document pairs which appear in the same cluster in
PA’ but in different clusters 1in PB'
304 number of document pairs which appear in different clusters
in PA’ but in the same cluster in PB (reverse of a).
250 number of document pairs which appear in different clusters
in both PA and PB.
The Rand's coefficient in terms of these variables is expressed as
follows :

c(Pp> Pg) = (a,, +ay,) / (ag; + a0+ 2y, + ay,)

A computationally more efficient way of calculating this coeffi-
cient and a detailed illustration of its utilization for comparing
the clustering algorithms can be found in 121,82|. The value of c
ranges from 0 to 1. ¢ is 0 when two partitions are not similar (i.e.,
when one consists of a single cluster and the other consists from

singletons) and ¢ =1 when partitions are identical.

4.1.2. The Goodman-Kruskal Coefficient

The Goodman-Kruskal metric is similar to the chi-square based
association measure in statistics and uses a cross classification of
partitions. If there are p and d clusters 1in the partitions PA and
PB’ respective]y,,the cross classification of these partitions can be

done as shown in Table 4.].

- 107 -

TABLE 4.1 - Cross Classification of Two Partitions PA and PB.

PA/PB 1 2 .. .q - TOTALS
1 n n ... N n
11 12 1q 1.
2 M21 Mg+ + +Myq ny.
P n . .-.N0 n
"p1 p2 pq p.
TOTALS n.1 n.2 n.q n.

In Table 4.1, the meaning of the entries are as follows :

nij : indicates the number of documents which appear in cluster

CispA and cluster CjePB jointly;

q

n; = Z nij : indicates the number of documents in Ci (CiEPA)

. 551

p _

n .=) n,.: indicates the number of documents in C. (C.eP,);

55 i J B

p q

n.. =) N E indicates the total number of documents in the
i=1 j=1

collection
where, 1 < i <pand 1 < j < q

After introducing the following, Goodman and Kruskal proposed

three metrics XA’ AB’ and A.
nmjj t maximum entry in the jth column;
N T omaximum row sum;

- 108 -

Nim maximum entry in the ith row;
.i

n m : maximum column sum.

In terms of the above variables and the entries of Table 4.1 AA’ XB’

and) are defined as follows:

q
L Ny os=n
v 3=1 i ™
A N.. - n
m.
p
.Z,I nim - n m
. i= i
n..-n
P q
N +) n_ .-n_-n
N fmg © 5L Tmyd moom
n.. - N~ Ny

Within the context of this study XA’ xB; and 1 means the following:

Ay indicates the relative decrease in the probability of error in
predicting the unknown cluster of a document in PA by knowing

the cluster of the document in PB.

AB : indicates the relative decrease in the probability of error in
predicting the unknown cluster of a document in PB by knowing
the cluster of the document in PA'

A ¢ indicates the relative decrease in error probability if the

prediction of PA from PB is taken as being equally important

as the prediction of PB from PA' In other words x is the relative
decrease in error probability due to the use of predictor parti-
tions when the directions of prediction are equally important.

- 109 -

Some. properties of A are : |37, p.743]:

a) 1 is determinate except when the entire population lies in a
single cell of the table. Otherwise, the value of A is between
0 and 1 inclusive and AA and xB inclusive (i.e., O <A<,

and min(x,, Ag) < & < max(ay, Ag).

b) x is 1 iff the entire population Ties in isolated cells, i.e.,
cells which are the only nonnull cells in both the rows and

columns.

c) x» is 0 in the case of statistical independence, but converse

need not hold.

d) » is unchanged by permutation of rows and columns.

4.1.3. An Example forCluster Similarity Calculation

In this section an example of cluster similarity ca]cu1atjon by
using the Rand's coefficient and the Goodman-Kruskal predictivity
power will be given. The definition of the document collection, i.e.,
the D matrix, is taken from |86, p.351|. This D matrix is also used
in the previous chapter. Using the single-pass and the multi-pass
algorithms, which are illustrated in the previous chapter, one obtains
= (1,2), C

the following clusters: = (4,6), CA3 = (3,5,7). The

Cat A2
clustering of these documents with respect to another algorithm |88,
p.351| produces the following clusters : CB1 = (1,2.,4), CBz = (3),

Ca3 = (7)5 Cg, = (5,6), where, CpiePy (1=1,2,3) and CpiePp (P=1,....4).

PA and PB corresponds to two partitions.

- 110 -

The .simiTarity of the two partitions according to the Rand's
coefficient can be found as follows. The document pair <1,2> is
assigned to the same clusters; the document pairs <1,3>, <1,5>, <1,6>,
<1,7>, <2,3>, <2,5>, <2,6>, <2,7>, <3,4>, <3,6>, <4,5>, <4,7>, <6,7>
are assigned to seperate clusters in both partitions. However, the
document pairs <1,4>, <2,4>, <3,5>, <3,7>, <4,6>,<5,6>, <5,7> are
assigned to the same cluster in one partition but to separate clusters
in the other partition. Using this, it is easy to determine 14 similar-
ities out of 21, which gives the Rand's similarity coefficient as

14/21=0.67.

The Goodman-Kruskal predictivity power coefficients for the
above partitions can be determined as follows. The cross classifica-

tions of the partitions are given in Table 4.2.

TABLE 4.2 - Cross Classification of the Partitions PA and P

B
PAPs | S & oy g, Uy
c, 2 0 0 0 2
c, 0 01 2
c, o 1 1 3
n.B 3 01 1 2 in.=7
|

Using Table 4.2 we have :

n =2 n =72

n = n =
2m2 m22

n3m = nm 3 = 1

- 111 -

A, = = = (0.5
A 7 -3 4
(2+1+1) - 3 1
>\B: = 20.25
7 -3 4
(2+1+1) + (2+1+1+1) - 3 - 3 3
A= = = 0,375
2x7-3-3 8

In this example (xA-+AB) / 2 = Xx. However, this is just a

coincidence.

4.2. EXPERIMENTAL PROCEDURE FOR THE ANALYSIS

The main purpose of the experiments conducted during this thesis
research was to test the similarity and the stability of the two
clustering algorithms. This would also explore the behavior of the
algorithms for the changes in the document collection and the utility
of the new cover coefficient éoncept. The two main questions that

were investigated are the following:

a. How sensitive are the algorithms to perturbations of data

(documents)?

b. How sensitive are the algorithms to additional documents?
The following was the test procedure |14].

a. Generate the cluster for the base D matrix.

- 112 -

b. Rerturb the D matrix according to the sensitivity to be
measured, i.e, either change the number of terms used
for the description of the D matrix, or change the number
of documents (Notice that the change in the number of
documents may also change the number of terms used for
the description of the D matrix although the condition

for being a term has been kept fixed).

Cc. Obtain the clusters corresponding to the perturbation

D matrix.

d. Obtain the similarity of the algorithms by comparing the
partitions obtained by using the same D matrix Ffor the
two algorithms. Obtain the stability of the algorithms
by comparing the results of the base and perturbation

matrices.

€. Repeat steps (b) through (d) for each experiment to be

carried out.

In the experiments, the base D matrix represents the so-called
"ideal conditions". Accordingly, the perturbation matrix represents
the deviations from the ideal. The experiments that dealt with the
changes in the number of terms are referred to as the T-experiments
and those dealt with the changes in the number of documents are
referred to as the D-experiments. In the T-experiments the number of
documents in the collection was kept fixed. However, in the D-experi-
ments the number of documents wére changed and as it is mentioned

before, the change in the documents also affected the number of terms.

In the rest of this chapter, first the properties of the
document collection which is used in the experiments are illustrated.
This is followed by the experiments themselves and their interpreta-

tion. In the remainder of this chapter the single-pass and the

- 113 -

multi-pass algorithm will be referred to as the Algorithm-1 and the

Algorithm-2, respectively.

4.2.1. Document Collection and the Indexing Approach

A document collection was constructed for the purpose of the
experiments., The papers of the Association for Computing Machinery
Transactions on Database Systems (ACM-TODS) available since 1976
were entered into the corresponding database. The first seven volumes
covering the period between 1976 and 1982 inclusive provided 167
papers. For automatic indexing purposes, the database was built with
the titles, keywords given by the authors, and the abstracts of the

papers.

Each document of the database consists of a collection of words
entered from the selected parts of the papers as it is mentioned
above. A word is taken as any sequence of characters, whose total
string length is three or more and which begins with a Tetter and
followed by letters, numbers or apostrophe. The maximum length of a
word is set to eight, which is the average Tength of an English word
|76]. Words having more than eight characters are fruncated at the
right. The words which appear in the stop 1ist (a list which contains
the frequently used words of the English Tanguage and the database
literature) are not considered for indexing purposes (The stop list
words are provided in Appendix-B). The general characteristics of

the document collection are summarized in Table 4.3,

In the experiments, it is assumed that a word has the weights
of 2, 1, and 3 if it appears in a title, an abstract or keyword list,

respectively [14,53,54|. This means that a word should appear 3 times

- 114 -

TABLE. 4.3 - General Statistical Information About the Database

Total number of documents 1167

Total size of the document database : 190 K byte (approx)
Number of words in the stop 1ist 134

Number of words in the collection : 18936

Number of distinct words in the collection : 2389

Percent of the stop words in the collection : 28

Number of words/doc (min,max,avg) : 28,260,113

Number of distinct words/doc (min,max,avg) : 18,125,52

Number of sentences/doc (min,max,avg) :1,18,6

within an abstract to have the same weight with a word that appears

in a keyword list.

For a word in the collection, to qualify it as a term some

requirements must be met. These requirements are two fold. Firstly,

a word should appear within a range of frequencies within the docu-
ments. Secondly, it should satisfy a similar range requirements for
its weight. This means that to satisfy the frequency (weight) require-
ments, the number of occurrences (the total weight, i.e., the sum of
all Weights according to the place of the term in the document) of a
word should be greater than or equal to a minimum and Tess than or
equal to a maximum value. It is obvious that by changing the range
requirements one may obtain different terms for the description of

the same collection.

The D matrices of the experiments were generated from the document
database. To construct a D matrix, the terms of the documents were

identified. The simplest indexing prbcedure, which describes a document

- 115 -

by the terms used in it as a binary state variables was adapted

186, p.102].

4,2.2. Generation of D Matrices

In the generation of the base D matrix, some conditions which
would enable the generation of the perturbation D matrices were
created. For example, to test the sensitivity of the algorithms to
perturbations of data we need to change the number of terms or the

number of documents used for the description of the D matrix.

In the T-experiments, in the generation of D matrix for the experi-
ment T4, the conditions chosen for the terms, led to a medium number
of terms for the description of the base D matrix. These conditions
for T4 are chosen as follows: the total weight of a word for being a
term should be within the range of 5 to 80, and similarly, the number
of occurrences should be within the range of 3 to 30. These conditions,
i.e., the weight and the number of occurrences (frequency) should be
satisfied at the same time. For example, assume that a word appears
in four different documents and always in the abstracts, then this
word satisfied the requirement for the number of occurrences. However,
it does not satisfy the weight condition for being a term. This is
because, the total weight of the term is 4 and does not satisfy the
weight requirement (remember that if a word appears in an abstract,
then it will gain a weight of 1 for each occurrence of it). Therefore,

this word will not appear in the description vectors of the documents.

By changing the conditions for being a term one would have
different D matrices for the same collection. More rigid conditions

will Tead to less number of terms and looser conditions will lead to

- 116 -

higher number of terms. The experiments (T1, T2, T3) and (T5, T6, T7)
correspond to the experiments which rigid and loose conditions for
the terms, respectively. Table 4.4 shows the conditions for a word
to be a term in the T-experiments. These different conditions will
lead to the generation of different D matrices for the same document

collection.

TABLE 4.4 - The Term Generation Conditions in the T - experiments

Exp No Min Wéight Max Weight Min No of Occ. Max No of Occ.-
T1 8 60 5 15
T2 7 60 4 20
T3 6 75 4 25
T4 5 80 3 30
T5 4 85 2 40
T6 3 90 2 50
T7 2 95 1 60

TABLE 4.5 - No of Documents in the D-experiments

Exp No No of Doc
D1 78
D2 93
D3 108
D4 123
D5 138
D6 153
D7 167

- 117 -

e L S

To test the sensitivity of the algorithms for additional docu-
ments, a medium number of documents (123 documents) were used for
the generation of the base D matrix. For the perturbation D matrices,
the number of documents used for'the description of the D matrix was
gradually decreased or increased. To make this change controlled by
only the variations in the number of documents, the term conditions
were kept fixed (In the D experiments, minimum and maximum number of
occurrences are 2 and 35, minimum and maximum weights are 4 and 100,‘
respectively for a word to be a term). In the D-experiments, the
collection with the higher number of documents will include the
documents of the smaller collection and in addition some more documents,
D4 corresponds to the base D matrix. The experiments, (D1, D2, D3)
and (D5, D6, D7) correspond to the experiments with less and more

number of documents with respect to the experiment D4-see Table 4.5.

4.2.3. Behavior of the Algorithms in the Experiments

Table 4.6 contains the information pertaining to the definition
of the D matrix and the clusters generated in the experiments. In the
T-experiments (T1 thorugh T7), it was observed that the conditions
set for the D matrix introduce a smooth change in the number of terms.
As the number of terms for the description of the documents increases,
the average number of terms per document (depth of indexing = xd) also
increases. However, the average number of documents per term (i.e.,
the average number of documents the term is assigned, or term

genera]ity==tg) decreases.

The relationship between X4 and tg are as follows |58]:

- 118 -

|

8€"L vt le ¢e0’0 96°9 GvL°0 124 88°9 L071¢€ 14574 L91] LA
9¢°L 9g°¢¢ LE0"0 9°9 A a¢ 8L°9 94" 1€ 274 €ql 9d
L1 L 1220%% ¢€0°0 LS9 6v1°0 ¢ £9°9 - AN 999 8t 6a
769 897 1€ 2€0°0 Lv°9 G51°0 6l AR gerle 009 €cl 4t
GL°9 62 L€ ¢€0°0 Ge"9 09170 Ll 9¢°9 ¢8°0¢ ¢€§ 801 ed
VA RRY) Ly°0¢ €€0°0 0¢°9 99170 Gl 20°9 95°6¢ LSy €6 Al
62°9 9€°6¢ €070 LG°§ LL1°0 vl ¥9°§ €L76¢ 237 8L Lad
8E" L vL°6€ 9¢0°0 LLY AT Ge 89'v ¢0°6€ l6€l L91 L1
8E"L 89 ¥¢E 0€0°0 v’ 9 849170 9¢ 0€°9 €6°€¢ 668 L9 9l
8¢ L 88°6¢ €e0°0 89°9 8rl 0 g¢ 9/°9 ©92°0¢ Lyl L9l Gl
8L 06°¥¢ 0v0°0 65" L 0€L"0 ¢l LL°L ¥6° ¢ 6€S L91 7l
8¢ L Le°1¢ AU 6.°8 €ll-o 6l 08°8 0v°1¢ 90% L91 el
8E" L G6°/1 G50°0 6.°8 vLL'0 6l €8°8 20°8l (2743 £91 A
8E" L 6L°21 LL0°0 6.8 €LLo 6l 68°8 ¥6° ¢l Eve L9 IL
SN 0 B O °p)) Q= G P,
wbo| 1SNT0/WY3L 44309 1Sn13/204 44300 SYILSNTI WYIL/200 20Q/Wd3L ON dX3

WY3LON J0dON

ON DAV dN0J3Q WY3L ON 9AY dNn023a-20a 40 ON ON DAY ON DAY

"Po1RJBUBY S4BISN|) BYF PuB SBILUIRY (JO UOLFLULISQ BYl 01 BULULRIUDY UOLIBUMOLUT - 9°4 379v1

S SRS s

- 119 -

- m n
t= 5 d . (total number of term assignments)
i=1 j=1 M
t . X
X, = —— (depth of indexing)
d m
t
tg = — (term generality)
n

t = xdm = tgn

After the above definition we can introduce term specifity (ts) as

the inverse of term generality (tS = 1/tg). So, if all terms are
assigned only one document, then t=n will lead to ts= tg= 1. By
these definitions of tg and ts, their theoretical range is given as
1/m. Similarly, the possible values

follows : 1 <t <m, 1 >t

v

g
of x4 1s as follows 1 < Xq <N

After making the above definitions, the decrease in tg comes
from the fact that the rate of increase in n (4n) is higher than the
rate of increase in t (at), i.e., an > at. This means that, the terms

introduced by Toosening the conditions for being a term increases ts'

For the D-experiments (D{ through D7), with the increase in the
number of documents in the collection, the number of terms used for
the description of the D-matrix also increases. However, there is no
significant change in the term generality (tg) and the depth of
indexing (xd). This comes from the fact that the rate of increase in
m (number of documents) and n (number of terms used for indexing)

are jdentical.

- 120 -

The.average decoupling of the documents (§) smoothly increases
as the number of terms increases in the T-experiments. This is obvious,
since in the T-experiments, the newly introduced terms -i.e., addi-
tional terms- will make the documents more and more unique. In other
words, new terms decreases (increases) term generality (specifity).
Lower (higher) tg(ts) means less and Tess similar documents. In short,
it is observed that § is inversely (directly) related to tg(ts).
However, in the case of D-experiments, as we introduce more documents
to the collection, the coupling among the documents will increase.
This is because, as we introduce more documents, we also introduce
new terms whicﬁ are common among the documents. Since the words which
do not satisfy the conditions for being a term before satisfy these

conditions with higher number of documents. This decreases ts.

A similar discussion can be given for the decoupling of the terms
(8'). For the case of &', it is observed that, &' is inversely related
to the depth of 1ndexfng (xd), which is obvious. Since, lower Xq will

lead to more unrelatedness among the terms.

The number of clusters in the collection, Ne» increases as the
number of terms increases in the T-experiments. This comes from the
increase in §. The number of term clusters, né, (where né==nc) in-
creases also. However, in this case the increase can be attributed
to the increase in the number of terms (né==n*6‘). Notice that, as
we go from T1 to T7 &' decreases, but n increases with a higher rate.
In case of the D-experiments, the increase in n. is mainly because of
newly added documents rather than the changes in s. In fact, in this
case § decreases, but n. increases as we go from D1 to D7. The increase

of né for term clusters should also be attributed to the increase in

- 121 -

number of terms. Since throughout the D-experiments the &' values are

nearly constant.

The average number of documents (terms) per cluster, dC(dé),
decreases (increases) as one goes from T1 to T7. This is because of
the increase (decrease) in (&'). (Notice that d.=1/s and d. = 1/6")
In the case of the D-experiments, dC does not vary too much (changes
from 5.57 to 6.96). Because as ne increases, the number of documents

in the collection also increases. dé is nearly constant throughout

the D-experiments because of the (nearly) constant value of s'.

In the analysis of the algorithms it is assumed that within a
document cluster there would be Togm number of documents. This assump-
tion Teads to the following equalities in the algorithms presented in
this thesis: Togm=1/6= dc. If one Tooks at the values given in
Table 4.6 it will be observed that this assumption is nearly always
validated. Especially in the case of mild conditions (the base matrices
used in T4 and D4) the assumption shows very little deviation from the
experimentally observed values (The theoretically implied dés ~Togm
values- are 7.38, 6.94 according to the assumption and experimentally
observed values are 7.59 énd 6.47, respectively, for the experiments

T4 and D4).

If we Took at Table 4.7, we can observe the behavior of both
a]gorithms in the T-experiments. The meanings of the abbreviations
in Table 4.7/A and Table 4.7/B are as follows: EXP NO/ALG TYPE: experi-
ment no/algorithms type; NO OF ITER: number of clustering iterations
which is not applicable (NA) for the Algorithm-1; EXEC TIME: execution
time; CLUST SIZE COEF OF VAR: coefficient of variation of cluster
size; AVG NO TERMS USED BY CLST MBRS: average number of distinct terms

- 122 -

used by cluster members; AVG NO TERM USED IN CENT: average number of
terms in centroids, i.e., the number of 1's 1in the binary centroid vec-

tor; m,:when comparing a cluster member and the corresponding centroid

P
vector the probability of having a mismatch at a term position; NO OF
DSTNC CENT TERMS: number of distinct centroid terms, i.e., the number
of terms which appear at least once in a centroid vector; % OF DOCS
AT MST SIM CLST: % of documents assigned to the cluster which corre-
spond to the most similar centroid; COR. BTW THEO & EXP #MBRS :
correlation between the theoretical and experimental number of docu-
ments (members) within a cluster; NO OF SNG/MCS: number of singletons/

maximum cluster size. These abbreviations are also valid for Table

4.8/A and Table 4.8/B.

Table 4.7/A - Behavior of the Algorithms in the T-experiments.

EXP NO/' NO OF EXEC CLUST SIZE AVG NO TERMS USED AVG NO TERM
ALG TYP ITER TIME COEF OF VAR BY CLST MBRS USED IN CENT
T /1 NA 0.38 0.34 75.95 25.89
T1/2 4 1.05 0.25 75.68 8.47
T2 /1 NA 1.08 0.52 104.53 33.63
T2/ 2 3 1.29 0.43 102.32 10.16
T3 /1 NA 1.32 0.43 124.53 46.11
T3/ 2 3 1.52 0.23 126.32 13.05
T4 /1 NA 2.31 0.44 133.77 49.95
T4/ 2 3 3.20 0.32 134.09 14.00
T5/1 NA 4.28 0.34 153.20 55.56
15/ 2 3 6.10 0.43 146.08 24.12
T6 /1 NA 6.01 0.48 162.96 59.77
T6/ 2 3 8.24 0.57 156.31 29.31
T7 /1 NA 12.51 0.54 148.63 55.03
1772 2 11.56 0.56 144.80 48.43

- 123 -

Table 4.7/B - Behavior of the Algorithms in the T-experiments..

EXP NO/ NO OF DSTNC % OF DOCS AT COR BTW THEO NO OF
CALG TYP D CENT TERMS MST SIM CLST & EXP # MBRS SNG/MCS
T1/1 R 233 93 0.22 0/15
T1/2 .06 128 99 -0.10 0/12
T2 /1 12 320 95 0.45 0/19
T2 /2 .05 145 97 -0.10 0/15
T3/ 1 0.13 376 9 0.64 1/17
. T3/2 .06 184 97 0.22 0/ 11
T4/ L1 459 9% 0.70 0/16
T4/ 2 .05 221 95 0.10 0/14
T5 /1 .08 548 99 0.41 0/ 11
T5/ 2 .04 358 98 0.34 0/12
T6 /1 .08 635 98 0.25 1/12
T6 /2 .04 427 98 0.01 2/15
T7 /1 .05 806 98 0.60 2/ 11
T7/2 .03 872 95 -0.11 2/ 11

In the T-experiments, it is observed that, the execution speed of

the Algorithm-1 is noticeably faster than that of the Algorithm-2,

except for T7. The execution speeds are given in terms of (minute,

second). These experiments are performed by using the computing

facilities of the Arizona State University. The system was IBM 3081.

At the Middle East Technical University, experiment T4 is repeated

on Burroughs 6930 by using the origind] form of the program. The

execution time was observed as more than 30 minutes. By some optimiza-

tion efforts the execution time is lowered to 5 minutes (Actually the

- 124 -

TABLE 4.8/A - Behavior of the Algorithms in the D-experiments.

EXP NO/ NO OF EXEC CLST SIZE AVG NO TERMS USED AVG NO TERM
ALG TYP | ITER TIME COEF OF VAR BY CLST MBRS USED IN CENT
DI/1 . NA 0.40 0.56 112.71 46.43
D1/ 2 2 0.53 0.59 111.36 39.07
D2/ 1 NA 0.57 0.62 122.07 49.07
D2/2 '\ 2 1.15 0.62 121.07 37.93
D3/ 1 NA 1.29 0.58 133.76 52.47
D3/ 2 2 1.20 0.58 129.41 27.53
D4 / 1 NA 2.06 0.58 142.32 55.16
D4/ 2 3 2.57 0.45 142 .11 32.11
D5 / 1 NA 2.5 0.57 147.33 54.76
D5/ 2 3 3.54 0.57 144,90 36.29
D6 / 1 NA 3.35 0.46 159.27 57.64
D6 / 2 3 4.54 0.55 151.64 28.33
D7 / 1 NA 4.23 0.37 161.04 58.46
D7 / 2 3 5.55 0.42 152.54 25.21

new form of the program contains some extra code which does have some
contribution to this 5 minutes). Therefore, if one runs the same
program on the IBM 3081 system probably execution time speed will be

Towered at least by a factor of 6 (30/5).

After a similar optimization effort, the execution time of the
Algorithm-2 is Towered from 36.03 (min.sec) to 13.14 (min.sec) for
the experiment T4, i.e., the execution time is lowered by a factor

of 2.72. This means that, the optimization effort for the Algorithm-2

- 125 -

TABLE.4.8/B - Behavior of the Algorithms in the D-experiments

EXP NO/ |~ NO OF DSTNC % OF DOCS AT COR BTW THEO NO OF
ALG TYP| Mp CENT TERMS MST SIM CLST & EXP #MBRS SNG/MCS
D1/1 | 0.14 313 97 0.60 0/13
D1/2 | 0.08 291 100 0.66 1/12
D2/ | 0.14 363 96 0.59 0/15
D2/2 |{0.07 319 100 0.29 0/14
D3/1 | 0.13 413 9 0.56 0/16
D3/2 | 0.06 276 95 0.33 0/12
D4/ | 012 457 99 0.50 0/17
. D4/2 | 0.06 330 99 0.14 0/13
D5/1 | 0.11 496 95 0.60 0/17
D5/2 | 0.05 398 100 0.12 0/17
D6 /1 | 0.10 535 9% 0.52 0/14
D6 /2 | 0.05 367 97 0.39 1/15
D7 /1 | 0.09 555 98 0.32 0/10
D7/2 | 0.04 365 9 0.18 1/13

yields an execution time reduction which is less than that of the
Algorithm-1. This is because, in the Algorithm-2 the similarity
calculation takes place between a document and a centroid if the
cluster seeds are replaced by the generated centroids (the case when
the number of clustering pass is greater than 1). (The access method
for the centroid entries was already efficient in the original form
of the program for the Algorithm-2). After these observations it can

be said that the execution times for the algorithms will become more

- 126 -

close to_each other than that of the values given in Table 4.7/A and

4.7/B.

The new execution times should not be regarded as the best possi-

ble time for the algorithms.

The number of iterations observed in the case of Algorithm-2
ranges from 2 to 4, which is not that bad. Higher term generality
(tg) (or Tower term specifity, ts) introduces sensitivity to the
similarity calculations (between document and centroid vectors) of
the Algorithm-2. This can be observed from the higher number of
'iterat{ons in the Algorithm-2 (see the experiment T1). The reverse,
i.e., Tower term generality (higher term specifity) leads to faster
execution as in the experiment T7. For the similar observations for
the D-experiment, one should refer to Table 4.8. In each D experiment,
the Algorithm-1 runs faster fhan the Algorithm-2. The number of

iterations in this case ranges from 2 to 3. The growth of the D matrix

(see Table 4.6) increases the execution time.

As can be seen from the low values of coefficient of variation
(standard variation/average value) for cluster size, the distribution
of documents in clusters is qﬁite uniform. That is, there is almost
no singletons and no fat clusters. These facts can be observed from

Table 4.7 and Table 4.8.

Again from the same tables, it can be observed that the cluster
members use almost the same number of different terms in both experi-
ments (this is given by the average number of terms used by the
cluster members). This, somewhat, indicates the compatibility of the

clusters generated by the two algorithms. The tables also provide

- 127 -

the values of mp. In general, the mp values are small and this is a
hint for a good clustenig algorithm and a good centroid generation
policy. The mp values corresponding to the Algorithm-1 are about
twice of those given for the Algorithm-2. However, this is not so
bad. Because, the average number of terms used in the centroids (the
last columns of Table 4.7/A and Table 4.8/A) of the Algorithm-1 1is
about twice as many as those that are used for the Algorithm-2.

Therefore, we may say that the centroids are compatible.

The number of distinct centroid terms (i.e., those that appear
at least once in the centroid definitions) show considerable differ-
ences. On the average, 81% and 49% of the terms appear at least once
in the centroid vectors in the T-experiments for the Algorithm-1 and
the Algorithm-2, respectively. The same values for the Algorithm-1
and the Algorithm-2 in the D-experiments are 76% and 58%, respectively.
These values can be changed by modifying the conditions for a term to

appear in a centroid (see section 3.3.4.1).

After the documents are clustered, if one uses a document vector
as a query, one should be able to reach the cluster whfch holds the
document. This was successfully accomplished in both of the clustering
schemes. For the Algrotihm-2, it is something natural, since it is
the mean of clustering. However, the same was accomplished also for
the Algorithm-1 in both T and D-experiments. This is an indication

of a good clustering algorithm.

The correlation between the number of documents assigned to a
cluster seed theoretically (which is proportional to the cluster
seed power) and experimentally (which is determined by the execution

of the algorithms) is also given in Table 4.7 and Table 4.8 for the

- 128 -

experiments. In case of the Algorithm-1, there is a positive correla-
tion with considerable magnitude for both experiments. However, this
is not valid for the Algorithm-2 as expected. This is because, in the
Algorithm-2, the cluster seeds are not the maxor criteria for the

assignment of documents to clusters.

4.2.4. Similarity of the Algorithms

For the similarity considerations of the two algorithms, we should
refer to Figure 4.1 and 4.2 for the T and D-experiments, respectively.
In the experiments, for each D matrix corresponding to a T and
D-experiment, the values for the Rand similarity coefficient (c¢) and

the Goodman-Kruskal's prediction powers (a, x1, A,) were calculated

5)
where the meanings of the notation used are :

A ¢ mutual prediction power of the algorithms;

A, : predicting the partitioning generated by the Algorithm-1 by

using the partitioning generated by the Algorithm-2;

A, : predicting the partitioning generated by the Algorithm-2 by

using the partitioning generated by the ATgorithm-1.

In the case of the T-expefiments (Figure 4.1), the c values
remain high. As the number of terms (NOTERM) increases, the ¢ values
remain high. As the number of terms (NOTERM) increases, the c¢ values
decrease for a while then they start to increase. In the case of the
D-experiments (Figure 5.2), the ¢ values show some fluctuations, then
they also start to increase. A1l of the ¢ values are very high, to

show considerable similarity between the two clustering algorithms.

- 129 -

SjusuwiJaadx3-q ay3 uy AyLae| s - 24 aunb 1 4

sjuswiaadx3-| ayz ut Aytae s - [y 94nbL4 -

: -JOQON : OT% WYILON
;Do.oﬁﬁf ‘oo.om_ﬁ oo.om_H oo.oﬁ_ﬁ oo.D_m 00 0L, .oo.oo_w oo.om_ﬁ on_.ow_H oo.o.m Do.o_v 00" 04
o . o
= o
Lo | o
~ ; o
o o
=) . o
i) o O
B o
D, b NK Q@ »
e Y e i
> Ty >
Lo © o™
& o
o =
Lo K=)
o o
o o
3 o— @ < ll@/@\\l\\l\é/@ $ & >
» e
n.D L
o

00"

- 130 -

The mutual predictivity power, A, of the algorithms decreases
as the number of terms (number of documents) increases for the T (D)-
experiments. In the case of the T-experiments, after a certain NOTERM
value, it stabilizes. However, for the D-experiments this is not true,
it shows considerable fluctuations. The A and Ay values do not show

considerable difference.

The fluctuations in the ¢ and the A values are sometimes similar
within an experiment. The A values of the D-experiments are higher
than those of the T-experiments. However, the fluctuations in the A
values reach a steady state in the case of the T-experiments. There-
fore, we can state that the clustering behavior of the algorithms,
with respect to each other, is more sensitive to collection growth
than to different term assignment strategies. In general, the A
values are not so bad (see the example calculation given previously in
in this chapter). As a result, we can conclude that considerable
similarity is observed between the partitions generated by the

algrotihms.

4.2.5. Stability of the Algorithms

In the stability analysis of the T(D)-experiments, the results
of the Ti(Di) experiments (i=1,...,7) are compared with the results
of the T4(D4) experiment, which correspond to the base D matrix. For
the comparison, again, the Rand's similarity coefficients (c1, c2)
and the Goodman-Kruskal's predictivity power coefficients (A1, Az)
were used. It is assumed that, the higher the stability then higher
would be the values of these coefficients, where the meanings of the

notations used are :

- 131 -

Syusltuadxe-0 BY3 UL A3111qeas - pryp 84nb L 4

. JOQON
oo omm\ e]] omﬁ 00 omﬂ 00 oﬁm ; oo.pm oo.opu
-
H& =
IO
&
o
10
&
Q
>
3
L~ o
S ®
o
[wn]
Ta
o

{00002
(I

Syusulaadx3-1 sy3 ut A3L[1qe3s - ¢y sunbiy

O0T% WY3ILON
oo.omH oo.oﬁﬂ oo.mm oo.pv oo.pu
%
o
IU
.
[wn]
IO
o
Q
IV\
>
IO ~
& O
[an] 23
B2
[an]

02

132 -

The Rand's similarity coefficient for the Algorithm-
1(2)-notice that, in this case the Rand's coefficient

is used for stability measurement-;

A (x)) : The Goodman-Kruskal's mutual predictivity coefficient
between a perturbation matrix and the base matrix of

the experiment for the Algorithm-1(2).

The results of the experiments are given in Figure-4.3 and
Figure-4.4 respectively for the T and D experiments. In these figures
bold Tines are used for the Algorithm-1 and dashed lines are used for
the Algorithm-2. In the T-experiments, the results of the Algorithm-1
are always compatible or better than the results of the Algorithm-2
according to the Rand's and the Goodman-Kruskal coefficient, respec-
tively. This situation reverses for the extreme values of the number

of terms.

In the D-experiments, the results of the Algorithm-1 and the
Algorithm-2 are compatible. The Algorithm-1 behaves better for medium

number of documents.

The stability observed in the D-experiments, in terms of the
Goodman-Kruskal predictivity power, is higher with respect to the

same metric observed in the T-experiments.

4.3. BASIC RELATIONSHIPS OBSERVED IN CONNECTION WITH THE EXPERIMENTS

There are some interesting empirical observations that can be
made on the experiments:the number of terms used for the description
of the documents (n), and in connection with this the average number

of terms per document (depth of indexing, xd), and the average number

- 133 -

of documents per term (term generality, tg) are important factors
for determining the number of clusters in a collection (Notice that
X4 and tg are not independent of each other, a change in one will
also affect the other). These empirical observations indicate basic

relationships which can be formulated as follows :

no= o (1)
c oy
g
n
) 2
ne Xy (2)
dc=1/5~t (3)
dl = 1/8" = x, (4)

where, dé is the average number of terms per term cluster. If we
substitude value of tg(=t/n) or x4(=t/m) in the above formulas for
Nes the number of clusters within a collection can be determined in

terms of m, n, and t as follows :

n_ = ‘ (5)

If one substitudes t/tg and t/xd, resbective]y, for n and m in the

above formula n. can be obtained in terms of t, Xq> and tg
n = — (6)

- It can be checked whether the equations (5) and (6) are consistent

with the analytical formula given for Nes which is the following :

- 134 -

d. d, .
k=1 K k21 K
Therefore,
m n [1 1
nC = '2 z d'iJ * a * -
i=1 j=1
Cdie Lo
X k=1 k=1
n m
The summations :© d., and :® d,. are the depth of indexing for
k=1 K ey K

document—i(xd_) and the generality of term-j (tg), respectively.
; .

By this new notation n. can be rewritten as follows :

m n d

n o= 7] —d (7)
s gE Tty

The equation for Ne due to empirical observation (equation 6) can be

written as follows :

t m n di'
nC = t = 'z 'z ﬁ__‘]_ (8)
xd* g i=1 j=1 Xd*tg
1 0 10
where x, and t_can also be written as — ¥ x, and — ¥ t_ , respec-
S AR U I T
tively. Therefore, if individual X4 and tq , Oor X4 *t are consid-
i 2 i j

erably close to Xq» tg, or xd*tg, respectively; then one would expect

that the above formulas for nc(i.e., the analytical formula given by

- 135 -

(7) and the empirical formula given by (8)) would give considerably
close values to each other. In a document retrieval environment, the
above constraints will usually be observed becayse number of terms

per document will be nearly equal to each other among the documents.

In other words, the density of distribution of T's in the binary D
matrix will be uniform. That is why, the basic relationships are
observed in all of the experiments associated with different D matrices.
The validity of equation 6 also validates the equation 1 through 5,

since equation 6 is interrelated with them.

The empirical observations, formulated by the equations 1 through
6, will be referred to as "indexing-clustering association" basic
relationships. These basic relationships are at least valid for the
clustering algorithms which employ the decoupling coefficient concept

for the determination of number of clusters (nc) within a collection.

4.4. SUMMARY AND CONCLUSIONS FOR THE EXPERIMENTAL ANALYSES

In this chapter, the stability and similarity analyses of the
two partitioning type clustering algorithms have been présented. The
findings of a set of experiments which gave the opportunity of compar-
ing the two algorithms in various ways have also been reported. This
chapter also includes a brief illustration of the metricé to be used

in the analysis.

In the similarity/stability analysis, two different metrics were
used. They were the Rand's similarity coefficient and the Goodman-
Kruskal's predictivity power concept. A high value of similarity was
observed with respect to the Rand's coefficient in both algorithms.

The similarity of the algorithms in the T-experiments according to

- 136 -

Goodman-Kruskal measure, stabilizes after some number of terms if one
increases the number of terms used for the description of the D matrix.
However, the similarity of the two algorithms, according to Goodman-
Kruskal's metric, during the D-experiments decreases significantly

if the number of documents is increased. The stability of the Algo-
rithm-1 in the T-experiments was slightly higher if the range of terms
was medium. In the D-experiments, the stability of the Algorithm-1 is
compatible with that of the Algorithm-2 for medium number of documents,

this situation reverses in the extremes.

Based on the i values, it was observed that, collection growth
is more effective on the clustering patterns generated by the algo-
rithms with respect to term assignment strategies (in different term
assignment strategies the collection size is kept fixed). The sharp
changes in the X values in the D-experiments for both the similarity
and stability analyses, are reasonable compared to those in the
T-experiments. In the D-experiments, the rate of change in the number
of documents and ‘the number of terms are the same, which is not
realistic. In an IR system, the rate of change in the number of terms
will be considerably less than that of the number of documents |44,
p.207|. This means that we caﬁ expect better stability in our algo-

rithms when the collection size changes.

In the experiments basic relationships, ca11ed‘“indexing—c1uster-
ing association" basic relationships, are observed. These relationships
state that the number of terms used for the description of the docu-
ments and in connection with this, the depth of indexing (xd), and
the term generality (tg) are the basic determinants of the number of

clusters within a collection (nc), the average number of documents in

- 137 -

the document clusters (dc), and the average number of terms in the
term clusters (dé). Rigorously, these relationships are given as
follows : nC==m/tg, n.= n/xd, dc= tg, dc==xd. These relationships
also imply the effect of total term assignments on the number of

clusters, which is nC=1n*n/t= t/xd*tg. These are interesting empirical

observations which did not appear in the literature previously.,

These experiments show the validity of the cover coefficient
concept and its usage in clustering. The seed selection process was
observed to be effective. After observing the close similarity of
the algorithms according to the Rand's coefficient and better stability
of the Algorithm-1, especially in the medium range of terms and docu-
ments, one can say that the "cover coefficient" outperforms the
"similarity coefficient" within the context of the algorithms presented.
This is not only because of similarity and stability, but also because
of lower complexity and shorter execution time of the single-pass
algorithm. The single-pass algorithm will be used in the integrated
fact and document retrieval system to be described in Chapter 6 of

the thesis |16, 71, 75].

- 138 -

5. TEXT RETRIEVAL WITH THE RAP DATABASE MACHINE

In this chapter a solution to the text retrieval problem will be
proposed based upon the RAP database machine, or more specifically
with RAP.3 database machine, which employs the cellular associative
approach. In this chapter the RAP.3 database machine, text string and
physical data structure formats for text retrieval operations in RAP.3,
syntax and semantics of the new RAP.3 instructions, realization of
these RAP.3 instructions, implementation of the typical text retrieval
operations with RAP.3 programs incorporating the new text retrieval
instructions will be presented. Performance of RAP.3 in text retrieval

instructions is also presented [11,71].

5.1. A CHRONOLOGICAL OVERVIEW OF THE RAP DATABASE MACHINES

The development of the RAb‘database machine has started at 1976
at the University of Toronto. RAP.] and RAP.2 were the prototypes
developed |65,66,96]. This was followed by RAP.3 prototype |62,63,69].
The RAP.3 system was subsequently enhanced for RAM memory at the Intel

Corporation in Phoenix, USA 173,74].

Originally, the RAP database machine is designed as a backend
processor for a general purpose computer. In this configuration, general
Purpose computer (GPC) provides RAP's database contents and compiled

programs and receives the results of a user's request returned by RAP.

- 139 -

GPC

The original design of RAP is composed of a controller, an
arithmetic set function unit, and a parallel organization of cells.
Each cell has a dedicated processor and one track of a rotating or
circulating memory device. The set function unit is used to combine
the scalar aggregate results of the cells. The controller is respon-

sible for overall coordination. Figure 5.1 shows this organization.

This organization directly supports the relational model. Each
cell is devoted to storing a relation and several cells store all the
tuples of a large relation. If the relation is too large for the cell
storage, then the processing 1is indirect since the necessary data
must first be transferred from the main database store. The perfor-
mance of RAP in such a configuration is analyzed and very satisfactory
results have been observed |68,95|. A performance evaluation of RAP

with respect to a general purpose computer also showed the superiority

of RAP |7].

Cell-1

Processor

-~
RAP

A

Controller | : Ce]i-Z

Processor 'f:::::::>
- (Memory)

4— DATABASE

Arithmetic . :
set function

| (Processor

Figure 5.1 - Architecture of the RAP processor.

- 140 -

The. read mechanism of the cell processor brings the tuples of
the relation one by one to the cell buffer memory. A1l selection, set
function computation, replacement and arithmetic update operations on
tuples take place in the buffer. Then the processed tuple is written

back to its place in the cell memory.

In RAP.1 and RAP.2, each cell has many comparators, each of
which independently examines a particular attribute of a relation,
which is specified in the qualification part of a RAP assemb]er
instruction. Each comparator unit compares tuple value of an attribute

With a specified search value.

A multi-microprocessor approach for the cell architectyre
restructured the RAP cell in yet another array of independently operat-
ing subcells, where each subcel] comprises a microprocessor with
necessary peripheral chips |62,63,74]. The tuples of a relation are
lToaded into the memory buffers related with each subcell and a data
move strategy is incorporated to allow for parallel processing of
consecutive tup]és of a "RAP relation". Here, the phrase "RAP relation"
is used. Since a RAP relation is a normalized relation augmented with
a set of mark attributes. Accordingly, each RAP tuple instance has a
set of mark (tag) bits ahead of n-tuple values. A RAP tuple can be
seen in Figure 5.2. Figure 5.3 shows the structure of a RAP cell. This
is the cell configuration for the latest version of RAP, which is

RAP.3.

The circulating memory (CM) of each cell of RAP.3 also has a
different structure than the previous RAP designs. The CM is chosen
as bit parallel word serial organization. This matches the data access

port size to the subcell microprocessor data bus width; furthermore,

- 141 -

incorporates rather slow magnetic bubble memories (MBM), or high

density RAM's in a parallel organization |63].

|

DF | T Ty | | Tos attribute-1 |- -- | attribute-n
|

-
Mark bits

Delete Flag

Figure 5.2 - RAP tuple structure

< b A ¢ [DMA
SUBCELL-1 = — — —¥% » CONTROLLER [*]
e g oy e ,
AR T I
E R . :
s o [T ——— Circulating !
S L R - — - Memory |
: |
buses i
“ . cELL ||
SUBCELL-k = — — —¥ INTERFACE
M — o ——r
5 !
| .'
v l
address
RAP
—————— data CONTROLLER
___________ control

Figure 5.3 - Structure of a RAP.3 cel]l

In RAP.3, each cell is made of k parallel subcells each having
the full functionality of a RAP cell. Fach subcell has a microprocessor |

(INTEL/8086), enough local RAM storage to hold a tuple, RAP instruction

- 142 -

microcode, and data parameters. The DMA hardware reads bit parallel
and word serial tuple data and concurrently writes back the processed
data (tuples). Each subcell is in the wait state and it is reinitiated
when a tuple is Toaded into its buffer. A subcell executes the "query
routine", i.e., 8086 firmware corresponding to a RAP instruction, on
the tuple in its RAM. The tuples are loaded (i.e., tuples are read in)
and unloaded (i.e., tuples are written back onto the cell memory) in

a cyclic fashion. Due to this, each subcell has a fixed amount of

time to process its tuple to stay in synchronization.

The time available for a subcell to process its tuple is given

by the following expression :

1}

T

PR time allowed to process a tuple = f(k,TLS) = (k-2) » T,

LS

where

—
I

LS = time to load/store a tuple through DMA =

f(Tuple Length, Memory Data Rate)
The timing analysis of RAP.3 cell operations is given in Appendix-C.

The RAP.3 prototype of Version-I utilized RAMs as the cell memory.
However, the design was made to allow any type of memory for CM. The
final design of RAP is tuned for RAM type CM |73]. This approach
provided the following : the cells can process multirelations; new
hardware algorithms are developed for the operation of join, projec-
tion, and transaction processing that exploit sorting; subcell proces-
sing is bypassed for the qualifications made from mark bits (this
kind of qualification processing is done on the memory bus); the cell
processing model is changed from I/0 bound model to subcell processing
bound one |73].

- 143 -

In the latest RAP.3 design, the processing time for a tuple,

Tp is given by the following expression :

Tp 2 (W* TWLS+p x W' *TWLS)

and generally TP<TPR (i.e., of the old scheme). In the new cell
processing model, there is no unutilized portion of tuple 1/0. The

meaning of the above Tp expression is as follows :

a) The qualifications which involve tests on marked and/or
unmarked bits are resolved directly on the memory bus, bypas-
sing the subcells. This means that only one word is accessed

per tuple (in time TWLS)'

b) Only required words of a tuple (whose number is W) are accessed
from the cell memory in contrast to the input of the entire
tuple. These words are needed in an instruction specification

and qualification.

c) Only p portion of the tuples read need to be written back to
the cell memory. During this, only the updated words (whose
number is W') are written back. This is again a contrast to
the non-selective rewrite of the previous RAP designs including

RAP.3/Version-1I.

5.2. RAP ASSEMBLER LANGUAGE

The RAP assembler language also known as the RAP DBMS Assembler
is relationa1iy complete, i.e., it has the whole capabilities of rela-
tional algebra |70|. The RAP DBMS Assembler has the following general

syntax :

- 144 -

<label><opcode><specification><qualifications<parameters>

The label is a symbolic instruction address, the opcode is the opera=

tion to be performed, and a specification has the following format :
<relation>(<attribute-1>, <attribute-2>,...,<attribute-s>)

A qualification is a Boolean expression (possibly null) of simple

conditions Qi where Qi is one of the following :

a) MKED (<tc>) denoting any combination of true (i.e., set) mark

bits.

b) UNMKED (<tc>) denoting any combination of false (i.e., reset)

mark bits.

c) <attribute><comparators><operand>

where <comparator> is one of the relational operators of =, #, <5 >,
>» < and <operand> is a numeric or literal constant, or another

attribute name. <parameters specifies the second operands in arithmetic
operations, the RAP registers, or the source relation with its qualifi-
cation in the binary operation of implicit join (CROSS-MARK instruction

of RAP).

The operation of each instruction is iterative due to its
associative nature. An instruction, directly works on the memory
contents, evaluates the qualification stated on the tuple contents,
and executes the opcode on the tuple contents if the qualification
holds for the tuple contents. A given instruction is terminated after

all tuples of the <relation> are processed in parallel.

- 145 -

The "RAP DBMS Assembler is more powerful than the relational
algebra. This comes from the fact that it does not generate interme-
diate relations explicitly. For example, a binary relational algebra
operator (RAO) operating on relatinos R and S would require a new
relation T to store the results as indicated by T<R RAO S. The same
operation in RAP will be accomplished as R<«R RAO S requiring no new
relation. Additionally, the old contents of the R relation are not

destroyed. This is made possibly by the mark bits of the RAP relations.

A brief summary of RAP instructions can be seen in Appendix-D.
A detailed description of the instructions can be found in [102|. For
an abstract model of the RAP language one may refer to [72,101]. A
software emulator of RAP, SERAP, is available on different machines
|26]. SERAP provides a good test-bed for the utilization of RAP in
different applications, such as text retrieval, and office automation

175].

5.3. TEXT RETRIEVAL OPERATIONS WITH THE RAP DATABASE MACHINE

In the previous section of this chapter, the RAP database machine
has been introduced. In the remainder of the chapter, a solution to
the text retrieval problem will be proposed based upon the RAP database

machine which employs the cellular associative approach.

5.3.1. Text String and_the Physical Data Structure Formats

For text retrieval operations with RAP, a set of related documents
constitutes a relation. The query term matching operation on this rela-
tion can be either done on a limited portion of the relation or on its
entirety. The Timitation of the search will be done by document cluster-

ing which is to be described in the subsequent chapter of the thesis.

- 146 -

The integration of the text retrieval capability to RAP will

give emphasis to the following points :

a) Domain type must support literals.

b) Domain Tength must be variable for literal types where literal

domains will hold the document text.
c) Efficient string search pirimitives must be incorporated.
d) Sentence structure and adjacency must be recognized.

e) A way of processing unformated data with formatted structures

must be found.

f. Resolution capability must be added to the operation supported

in (c) and (d).

The requirement of (a) has already been provided by RAP. The
change made in RAP allows a literal data type to be as long as a tuple
itself (i.e., resulting in a unary relation). RAP also provides -
variable length tuple to store the unstructured document attribute.

The requirement of (c) will be provided by fast pattern matching algo-
rithms. Text representation within the RAP relation tuples will satisfy
the requirements of the items (d) and (e). The (query) resolution

requirement of item (f) will be provided by the RAP assembler language.

The following is the format specification for text representation

in the RAP.3 relations [16,71,75].

a) Each tuple may contain one (or more) complete sentences.
b) The first tuple of each document starts with a blank.
c) As with standard typing rules, at least one blank should follow

a punctuation mark.

- 147 -

d) At the end of a sentence an End of Sentence (EOS) marker is
placed following the period. EOS must be followed with at

least one blank.

e) The Tlast tuple of the document terminates with an End of

Document (EOD) character.

The text retrieval operations with RAP introduyce somie constraints
on the distribution of a relation's tuples on the RAP cells (in DBMS

operations there are no constraints).

a) The tuples of a specified document should come one after the
other in a cell memory (notice that a document may require

more than one tuple).

b) If the m'th cell memory ends with the n'th tuple of a document,
the memory of the m+1'th cell should start with the n+1'th

tuple of the same document.

In Figure 5.4, the layout of a RAP.3 tuple for text retrieval
operations is shown. Accbrding,to this tuple layout, documents are
mapped into the D1 attribute of several consecutive tuples. The D2
and D3 attributes of the integer domain are needed for the internal
use of the context sensitive text retrieval operations, D4 is the key
attribute which is the unique document identified (DOCID). D5 through -
Dn are the attributes reserved for formatted data if they are needed -

for the convenience and efficiency of processing.

As can be realized from the text mapping scheme, an important
problem of text retrieval with the formatted structure is the need to
maintain text contiguity both in string searches and context resolutions.

This problem has been solved, to a great extent, by the variable length

- 148 -

D | Mark D, f | i
Bits | Long text retrieval attribute §D2 D3 fD4 Ds .'.g Dn
| (variable length) | |

Figure 5.4 - The layout of a RAP.3 tuple for text retrieval

tuple (specifically, variable length text attribute) feature of RAP.3.
By this feature, some context resolution problems such as splitting
of a text word between tuples (called term overflow) and passing
overflow indication to subsequent tuples to finalize the search are
inherently solved. However, there still remains the problem of context
resolution for the text retrieval operations of the type AB and
<A,B>n (see Appendix-A for the meaning of the operations). This is
because the specified context might not be satisfied within a tuple.
The necessary information for context resolution is passed from tuple
to tuple by a feature referred to as "link passing". The problem of
context resolution is not different from other text retrieval systems
and in fact, it is easier in RAP.3 due to the physical data as well

as command structures.

In the previous version of mapping text into RAP tuples, the
sentences and/or words could be split between tuples. This required
overflow resolution even in simple term matching that required no
context specification. The necessary query resolution was achieved
by using an instruction called MATCH-OVERFLOW in the previous RAP
based text retrieval implementation [11|. The new variable length tuple
feature of RAP has introduced about 50% efficiency over the previous
implementation by removing the requirement of overflow resolution in

simple term matching.

- 149 -

5.3.2. The New RAP Instructions for Information Retrieval

In order to implement text retrieval operations, some new RAP
instructions have been introduced |[11,71]. In this section syntax
and semantics of these instructions, and the realization of them will

be introduced.

The following gives the syntax definition of the new RAP.3 DBMS
Assembler commands needed to perform the text search, and link-pass

operations.

MATCH tc) [rel(atr, {,atr, {,atr }}):qual] {[Tit]}

(

MATCH-WS (tc) [rel(atr; {,atr,}):qual] {[11t]}

MATCH-WWC (tc) [rel((atr; (satr,Y,atr,):qual] {[1it]} {[int]}
(tc

LINK-PASS(t) [rel({fatr .} atr,)]
where

- te, tcl, and tc2 indicate any combination of the available mark bits
(there are thirteen mark bits available to the user and te, # tey)
and 14'th mark bit is used for overflow indication by the MATCH-WWC

(match-within-word-count) instruction.
- rel is the relation name of the documents (cluster file).

- atri 1 < i < 3 denote attributes, atrl, being of literal type, con-

tains a piece of the text.
- qual is any RAP legal qualification Boolean expression.

- Titc is the legal literal constant corresponding to the search

pattern.

- 150 -

- int is_a positive integer.

- { } indicate options.

The first match instruction searches for the equality of the
search pattern, in the text stored in étrl and tc marks all the
qualifying tuples within the cells storing the document. atr, gives
the beginning search offset within the text string (i.e., atrl). If
atr2 is not specified, then search offset is taken as 0. If atr3 is
specified, all occurrences of the search pattern within D1 are

determined and the total number of oécurrences is stored 1in atr3,

within each tuple.

The difference of the second match instruction is that the first
occurrence of the second pattern is found within the sentences (WS)
of D;. The entire match should be contained within a sentence. The
beginning search position can be indicated by the contents of atrz.
If it does not appear, then it means that the beginning search offset
begins at offset 0 of atrl. The end of the search position is the
first EOS character after the beginning search position. After the
execution of the instruction on a tuple, atr2 (if specified) is set

as the beginning offset of the next sentence within the tuple.

The third match instruction finds the first occurrence of the
search pattern bypassing at most "int" number of words of the text.

The value of "int" can be specified explicitly, or implicitly by atr3.

During execution of the third match instruction, if the search
pattern is not found and the search context specified by the word
count is not satisfied within a tuple, then t14 mark bit of that tuple

is set. This specific case is called overflow condition and can occur

- 151 -

only during the execution of the MATCH-WWC (match-within-word-count)
instruction, since the context of a match is always satisfied within
a tuple in the other types of the match instructions. The number of
words that should be considered further for search context resolution

is put into atr3.

The LINK-PASS instruction takes one memory cycle to execute and
resolves the overflow condition in those tuples marked for overflow.
The resolution requires resetting the tl4 mark bit (which is specified
as tc, in the instruction syntax) of the overflown tuples, setting
tcy bits of the subsequent tuples, and passing the unprocessed (i.e.,
remaining count values) into the predetermined attributes of the

subsequent tuples, which is atrz.

In the other use of the LINK-PASS instruction, when the Titeral
attribute atr1 is specified, if a tuple is tc2 marked and if its atr1
attribute does not contain an end of text character the following
tuple(s) of this document will be tc1 marked and their atr, is set to
zero. This feature of the LINK-PASS instruction is used to set the

search context of the text retrieval operation A...B.

A search pattern specifiéd within a query is a semantic unit by
itself which cannot be divided between two sentences. Therefore, it
is assumed that the fixed Tength don't care (FLDC) character specified
within a search pattern will not match an End of Sentence character.
This semantic property of search patterns prevents the occurrence of

an overflow during term matching.

The search pattern of the RAP instructions can also be specified

in the RAP register REGU-T (i.e., user register 1). In this case the

- 152 -

Titeral constant of the match instruction "1it" should be omitted, A

RAP register can be initialized by the RSET (register set) instruction:
RSET < reg, opd >

which will insert the immediate data, opd, into the register reg, .

5.3.3. Rea]izatjon of the New RAP Instructions

During the execution of the match, i.e., the instructions
beginning with the keyword MATCH, the search pattern can either be
specified explicitly or reside in the REGU-] register. The RAP
registers are 120 characters in length; therefore, 120 is the maxi-
mum search pattern length. However, this length is sufficient for
practical purposes. For example, in English, the average word length

is 8.1 characters |76].

The formal definition of a search pattern in a RAP program is
given in Figure 5.5. A question mark in a search pattern indicates a
"don't care" character and n indicates the number of repetetions. An
* at either side of the search pattern means that the match can occur
anywhere within the text and End of Word (EOW) characters (i.e., a
blank at the left hand side and a blank or a punctuation mark at the
right hand side) would not be required at the corresponding sides of

the text string. The following are typical search patterns :

'AA' 2 ‘BB
*'A' 22 'BB"
«'AA' 77 'BB' 37 ‘¢!

The initial character of a subpattern of a search pattern (e.qg., the
search pattern 'AA'?'BB' contains two subpatterns 'AA' and 'BB', and

- 153 -

the initial characters are single quotes) can appear in a subpattern;

however, it should be entered twice for one occurrence of it.

{any character

lo—emm—0/
e any character u

f 0 B

A

<3

Y D)
() O,

Figuré 5.5 - The formal definition of a search pattern in a RAP program

The design of RAP.3 utilizes the modular multimicroprocessor
approach and the machine.is firmware driven. The query programs
written in the RAP DBMS Assembler language are converted into a form
called an "instruction-packet" (IP). In this approach, the query
independent (fixed) part of the firmware is kept in the subcells and
the query dependent part of the firmware is broadcasted by the RAP
controller |1,62,63]. Since the current design of RAP utilizes the
INTEL/8086 microprocessor, all of the firmware has been written in

the machine language of this microprocessor.

The realization of the new RAP instructions requires a very
little change in the hardware. This is due to the firmware driven
nature of the RAP instructions. This hardware amendment 1is due to the
LINK-PASS instruction. The LINK-PASS instruction is utilized to pass

values between the adjacent tuples of the documents. It is previously

- 154 -

pointed out that the tuples of a document come one after the other

on the cell memories. Since the tup]es of a document may span more
than one cell, execution of the LINK-PASS instruction may need a
communication path between the adjacent RAP cells. To achieve this,
after the execution of a match instruction, necessary information for
the LINK-PASS instruction, which is obtained from the last tuple of a

cell will be sent to the cell interface processor (CIMPU).

The firmware necessary for MATCH, MATCH-WS, MATCH-WWC needs
an efficient matching algorithm. Recently two fast text matching
methods have been proposed. The first one is due to Knuth, Morris,
and Pratt [52]; the second one is due to Boyer and Moore |7]. These
two algorithms resemble each other. In the first algorithm, the number
of character comparisons needed to match a text of length m with a
pattern of length n is in the order of (m+n), while in the second
algorithm, it is independent of the pattern length and the number of
character comparisons is in the order of (m) or less for a text string

of m characters.

In the implementation of the above mentioned match instructions,
a modified form of the Boyer and Moore (BM) algorithm has been used,

therefore the BM algorithm will be explained briefly.

Assume that we want to find the pattern (search pattern) in a
(text) string. The BM algorithm starts by comparing the rightmost
character of the pattern with the selected character from the beginning
of the string (at the beginning, if the length of the pattern is n,
n'th character of the pattern is compared with the n'th character of
the string). If a match is found, a left shift will occur, then the

character at the left of the rightmost character in the pattern will

- 155 -

be considered in the next step. Meanwhile, the pointer to the string
will be shifted to the left by 1. This process will continue until a
complete match, or a mismatch is encountered. The ingenuity of the
BM algorithm comes from the strategy used in the case of mismatches.
There are two possibilities in determining the pointer shift (the

number of text characters to be skipped) if a mismatch occurs :

a) The mismatched character of the string is searched in the
unprocessed part of the search pattern. If it is found, the
search pattern will be shifted to the right (called the a,
shift) for the coincidence of the identical characters of the
pattern and the string. If the mismatched string character
‘does not occur in the pattern, move the pattern to the right
such that leftmost character of the search pattern comes just
to the right of the mismatched string character. The maximum

value of Ay is the Tength of the pattern.

b) If a portion of the pattern is matched in the text string, a
search is done to find a repeating occurrence of the matched
subpattern in the unprocessed part of the pattern. If it is
found, the pattern will be shifted to the right (called A,
shift) to coincide this subpattern with the matching portion

of the text string.

In the meantime, the string pointer will be shifted to the right

accordingly.

In determining the shift amound (Al or Az) the criterion is to
achieve the largest possible shift for the text string, so that one
will reach the end of the string as fast as possible. For this purpose
the maximum of the Al Az values will be chosen in determining the

- 156 -

shift amount. The values of A, and A, are found and put into a tabular

form by a prior analysis of the search pattern |7].

This algorithm will work most effectively, if the number of
matching characters between text string and search pattern is Jow.
Also similarly, if pattern contains fewer repeating subpattern then

the algorithm will behave more effecively.

An example for the BM algorithm is given in the following |7].
The example tries to find the pattern "AT THAT" in the string
"...WHICH..." as follows

pat : AT-THAT

string : ++ -WHICH-FINALLY-HALTS.--AT-THAT-POINT. ..
!

Since "F" does not occur in "pat", we can move "pat" to the right as

much as the "pat" length (which is 7). Then we have :

pat : AT-THAT

string : ...WHICH-FINALLY-HALTS.--AT-THAT-POINT. ..
!

In this case, "pat" is moved to the right to coincide with the hyphen.

pat : AT-THAT

string : ...WHICH-FINALLY-HALTS.--AT-THAT-POINT. ..
!

Since L does not occur in "pat" we can move "pat" to the right such
that the leftmost character of "pat" comes just after the mismatched

character L.

- 157 -

pat : AT-THAT

string : ...WHICH FINALLY-HALTS.--AT-THAT-POINT...
f

In this case, mismatch occurs at H and hyphen. In order to shift “pat"
to the right we can use Ay (to coincide hyphens of "pat" and "string")
or A, (to coincide "AT" at the leftmost of "pat" with the "AT" of
"string" which appears between the two hyphens). Since A, provides

more shift, it is selected.

pat : AT-THAT
string : ...WHICH-FINALLY-HALTS.--AT-THAT-POINT. ..

!

Comparison between the elements of "pat" and "string" starts at the
position indicated by the up-ward pointing arrow where an exact match

terminates the algorithm.

The BM pattern'matching algorithm and the algorithm due to Knuth
et.al. require the preprocessing of the search pattern. For example,
in the BM algorithm, this preprocessing is done to find A and A,
values. In a research done by Horspool |48] it is seen that the effect
of usingkA,2 is negligible, or even one may achieve better performance
if A, is ignored. During the implementation of the match instructions,
for string searching, a modified form of the BM algorithm is used and
it is summarized in the following (in this algorithm, the table
"deltal2" is the same as A, except that the "deltal2(lastch)" is equal

to 4, (pattern) :

- 158 -

O

deltal2(«x) = patlen; /«initialize whole arrayx/
do j =1 to patlen-1; /+perform the preprocessings/
deltal2 (pat(3j)) = patlen=-j;

end;

lastch = bat(patlen);

i = batlen ;

do while 1 < stringlen ;
ch = string(i);

i_f. ch = lastch then

if string (i-patlen+l...i) = pat then

return i-patlen+l;

i = i+deltal2(ch);
end;

" return 0;

5.3.4. Implementation of the Text Retrieval Operations with the

New RAP Instructions

In this section, some algorithms are proyided for the implementa-
tion of the typical text retrieval operations with the RAP database
machine. In the RAP.3 text retrieval system, a great proportion of
the context dependent query resolution takes place in the operation
of the new text retrieval commands whose basic task is term matching.
As seen in the semantics of the instructions described in the previous
subsection, sentence structure and adjacency are recognized as an
integral part of the operations. Such resolution operations constitute
a totally separate task in most other text retrieval systems. For the
execution of the context sensitive text retrieval operations of the
more complex nature; however, more sophisticated resolutions are

required. These operations are :

- 159 -

A and B in sentence (specified context)
<A.n.B> (directed proximity)

<A,B>n (undirected proximity)

A...B (immediate adjacency or variable number of words in
between)
Ax B (variable Tength don't care)

The resolution for these operations require that small RAP.3
programs be written using both the DBMS and IR instructions of the
RAP.3 Tanguage. In other words, these resolutions are embedded in the
logic of RAP.3 programs. To aid the user, each of these programs are
made general purpose full text retrieval macros running under the
macro processor RAPMAC | 71 |. Appendix-E provides the properties of
the macro processor RAPMAC, and a listing of the text retrieval macros

for the typical text retrieval operations.

In the following, the algorithms for the implementation of the

selected text retrieval operations are given :

Search for A and B in sentence :

In this text retrieval operation, a tuple containing the first
term (i.e., A) may be considered more than once, since for the current
occurrence of A the second term may not occur in the specified word
proximity. In that case, the unprocessed portion of the tuple will be
considered for the occurrence of A again and if it is found the tuple
will be re-examined for the occurrence of the second term within the

same sentence.

- 160 -

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Mark all the tuples of the text relation for an "A" match.

Set the search offset for the term "A" to zero in all the

tuples.

Test if there are tuples to be considered for a pending "a"

match, if not, go to step 11.

Reset the mark bits which were set in a previous "A" match

operation.

Perform a match operation for term "A" on the tuples which

may be eligible. If there is no match, go to step 11.

Discard the ungualified tuples at the end of match operation,
so that they do not take part in the possible re-execution of

step 5.

Perform a "match-within-sentence" operation for the second

term "B" on the tuples which are selected in step 5.

Test if any "B" match exists, if not go-to step 3 (note that
in a tuple, there might be more than one sentence and any of

these sentences may contain the term "anry.

Mark all tuples of the qualified documents and dc not process

them for an "A" match again.
Go to step 3.

Exit.

Search for <A.n.B>

This algorithm works 1ike the previous one, but in this case the

proximity of words is specified by the word count "n".

1)
2)

3)

4)

Mark all tuples of the text relation for an "A" match.
Set the search offset for the term "A" to zero in all tuples.

Test if there are tuples to be considered for a pending "A"

match, if none, go to step 15.

If there are tuples marked for an "A" match, reset their mark

bits.

- 161 -

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

Perform a match operation for term "2" on the tuples which

may be eligible. If there is no match, go to step 15.

Discard the unqualified tuples at the end of the match opera-
tion, so that they do not take part in the possible re-execu-

tions of step 3.

Perform a "match within word count" search for the second
term "B" on the tuples which were elzbible‘gf the end of

step 5. The search offset begins right after the point of

"A" match. If the match operation is not satisfied within the
tuple, the value of remaining word distance to he considered
in the next consecutive tuple is placed in a numeric attribute

specified in the instruction.
Test if any "B" match exists, if not go to step 10.

Mark all tuples of the qualified documents. Reset the overflow
indicators in the tuples of qualified documents and do not

consider the tuples of these documents for an "A" match again.

Test if there is any tuple waiting for overflow resolution

for a "B" match, if none, go to step 3.

Link-pass the necessary overflow resolution information from
the tuples which contain a "B" overflow, then perform an over-
flow resolution for "B" on the tuples which are selected due
to this link-pass instruction, by using the match_within_word_

count instruction.

Reset the mark bits on.the tuples selected (marked) for over-

flow resolution.

Test if there are qualified tuples after overflow resolution,
if so go to step 9 (notice that therc might be overflow during

an overflow resolution, this is checked in step 9);
Go to step 10.

Exit.

- 162 -

Search for <A,B>n

This operation is performed as two operations of the form <A.n.B>

and <B.n.A> which are executed serially.

Search for A?°?B

The fixed length don't care is taken care of by the workings of
the MATCH instruction itself. Search for "A" can be replaced by the

fixed length search pattern "A??7B".

Search for A...B

1) Perform an "A" match search on all tuples.
2) Test if there is an "A" match, if none, go to step 7.

3) Mark all the tuples of the document following the first tuple
which contain "A" (This step is mapped into a pair of link-
bass instructions in the corresponding RAP program). The
link-pass instruction will set the search offset of the
following match operation. The search offset of the first
tuple of a document containing an "A" will not be touched,

but in all of the consecutive tuples, it will be set to zero.

4) Perform a "B" match search on the tuples marked in the

previous step.

5) Test if there is a gualified tuple for the "B" match, if none,

go to step 7.
6) Mark all the tuples of the qualified documents

7) Exit.

Search for A « B

This search operation uses the same algorithm employed for A...B
except'for the fact that the search pattern should contain an = both
at the right of "A" and at the left of "B", where x stands for don't

care.
- 163 -

5.4. PEREORMANCE EVALUATION OF RAP IN TEXT RETRIEVAL ENVIRONMENT

The text retrieval instructions and operations are first realized
on RAP.3 Version-I, then realized on RAP.3 Version-II. Therefore the
performance evaluation wi11 be given for these two versions. (It was
mentioned in Section 5.1 that, RAP.3 Version-I and Version-II are 1/0

bound and processor bound, respectively.)

5.4.1. Performance of RAP.3 Version-1 in Text Retrieval

It is observed that the LINK-PASS instruction does not require
an investigation, since this instruction will be executed within time
allowed without overloading the system in one RAP circulation. In
estimating the RAP behavior in the new match instructions, the analyt-
ical model created in an earlier study is assumed |62,63|. The part

of the model, which is used in the thesis is also given in Appendix C.

As ment%oned previously, RAP.3 Firmyare driven and for the
implementation the INTEL/8086 microprocessor has been used |73]. The
INTEL/8086 assembly language programs written for the match instruc-
tions are analyzed to find the execution time of the instructions for
a tuple (the same firmware routines are used in both of the RAP.3
versions). It is found that the programs written for MATCH, MATCH-WS,
and MATCH-WWC approximately require as a fixed overhead about 200
INTEL/8086 machine instructions. The number 200 accounts for qualifica-
tion evaluation, error checking, initializations, and resolutions for

the match operation.

The matching algorithm (see Section 5.3.3) used for simple match
and context specified matches, usually advances as much as the Tength

of the search pattern at each match attempt. In the following analysis,

- 164 -

the average length of a search pattern is taken as 8, which is the
average }ength of an English word |76]. It is also observed that for
each search attempt and advancement, 8 INTEL/8086 instructions are
executed. This means that the number of INTEL/8086 instructions
necessary for MATCH instruction is equal to the length of the Titeral
text attribute (This is consistent with the theoretical analysis of
the algorithm |7]). Therefore, the number of instructions which is
necessary to process a tuple is equal to 200+ the length of the literal
text attribute. During these calculations the search offset in the

Titeral text attribute is taken as 0.

The number of INTEL/8086 instructions that are necessary for the
context specified match 1nstructions‘(MATCH-WS and MATCH-WWC) can be
found as follows. First of all it is known that these instructions
are used after matching the first term. In the selected tuples, the
tWo extremes for the match position of the first term are the very
beginning of the text attribute or the very last position of the text
attribute. Therefore, it can be assumed that on the average the first
keyword is matched at the middle of the text attribute. Similarly the
match position for the second term can be just after the first term
or can extend till the end of the literal text attribute.

Hence on the average, the end of the search context for the second

term will appear at the middle of the search area. As a result, one

can assume that, in the context specified match instructions, one forth
of the literal text attribute will be searched. In order to determine
the end of the search context on the Titeral text attribute, on the
average three INTEL/8086 instructions is needed to check each character.
This means that the number of instructions necessary for determining

the context ending point will be

- 165 -

3 «_(the Tength of the Titeral text attribute « 1/4)

As stated above, during term matching one forth of the literal text
attribute will be scanned, then the number of INTEL/8086 instructions

needed in the context specified match instructions would be
200 + (the length of the literal text attribute) « (3/4 + 1/4)

As a result, it is shown that MATCH-WS and MATCH-WWC instructions
require the same number of INTEL/8086 instructions as the MATCH

instruction.
In order to arrive at a decision for :

a) the number of subcells/cell (k) to be used;
b) the data rate of the circulating memory (CM)

c) the tuple size;

various experiments were carried out by using the analytical model of
RAP.3 Version-I which is given in Appendix C. During experimentation,
the clock rate of the INTEL-8086 microprocessor is taken as 10 MHz and
it is estimated that on the average each INTEL/8086 instruction re-
quires 14 clock cycles. The data rate of the circulating memory is
taken as 5, 10, and as an extreme case 40 MHz. The size of the circulat-
ing memory 1is taken as 4 megabits. 128, 512 and 1024 are the values
assumed for the tuple size (in bytes). In each tuple, 18 bytes are
reserved for 9 numeric attributes,] byte is reserved for delete flag
and the mark bits, therefore the remaining length for the literal text
attribute will be 109, 493, and 1005 respectively. Notice. that in RAP.3
Version-I word and sentence overflows are allowed. During term match-

ing, word splitting is resolved by an instruction called MATCH-OVFW

- 166 -

(match-overflow). Since the execution time of this instruction is

very small it will not come up in the remainder of the chapter.

The results of the experiments performed on the performance of
RAP Version-I during the execution of the match instructions are

given in figures 5.6 through 5.10.

In Figure 5.6 the plot of number of 10% characters scanned/
second is- given versus number of subcells/cell with data rate as
parameter. In this figure it is observed that, for lower data rates
of CM, the increase in the number of subcells does not increase the
number of characters scanned, since most of the time allowed for
tuple proéessing will be wasted, since TAVLNW > TREQ’ With the 10
MHz CM data rate, since the time allowed for processing is lowered
due to fast circulation, the increase in the number of subcells will
increase the number of character scanned in tuple sizes 128 and (at
~the beginning) 512. The increase in the number of subcells is not
effective for the tuple size of 1024. Since the required tuple proces-
sing time (TREO) is already provided due to the length of the tuple.
The CM data rate of 40 MHz will always benefit from the increase in
both the tuple size and the number of subcells provided. This is
because the processing time provided by the increase in both the
tuple size and the number of subcells is not sufficient due to the
speed of the CM data rate (since the data rate is high TBIT will be

Tow, this will lessen TAVLNW)'

Figure 5.7 shows the effects of varying data rates, tuple size,
and the number of subcells on the normalized processing time (i.e.,
total cell processing time including waits divided by the total

processing time if there were no waits involved). It shows that 40 MHz

- 167 -

forces the architecture heavily, e.g., with a 4 subcell configuration
with a tuple size of 128, it completes one circulation 8 times longer

than architecturally allowed one RAP circulation time.

Figure 5.8 shows the real processing time. It shows that 5 MHz
CM data rate with all the tuple sizes requires a very long time with

respect to the higher data rates.

Figure 5.9 a shows when the CM data rate goes from 5 MHz to 40

- MHz, the Tload factors (L) for the tuple sizes 128, 512, and 1024
increase about 8, 4.5 and 4 times respectively. Notice that, since
the increase in the tuple size will increase the TAVLNW’ the load
factor for longer tuple sizes are smaller with respect to the shorter
tuple size(s). Figure 5.9.b shows the increase in the number of
characters scanned/second as the CM data rate varies from 5 MHz to

40 MHz. These two figures are drawn for k =4. However, this trend is
generally valid for any number of subcells. For example, the same
figures are drawn for the case when kiis 6 in Figure 5.9.c and Figure
5.9.d. Since the increase in the number of subcells/cell will increase
the degree of parallelism, the slopes of the curves of Figure 5.9.c
are lower, and the slopes of the curves of Figure 5.9.d are higher
with respect to the figures 5.9.a and 5.9.b. In other words, increase
in the number of subcells will decrease the overloading in the system

and at the same time it will increase the throughput.

Figure 5.10 shows the effect of in cell parallelism factor in
RAP as a function of overload factor. Where, the in cell parallelism
factor at an overload factor L (ICPFL) is defined as follows (where

L>1):

- 168 -

Number of 10® characters

scanned/second
B
: tuple size is 128
— — — — tuple size is 512
T e c o« -0 tuple size is 1024
. 40 MHz
40 MHz
s
. s
3 e
e
. e
~
e
7
e
7
e
e
s
2 . -
. e
s 40 MHz
Ve
1
0.5 ¢
(3 2 b k

Figure 5.6 ~ Plot of number of 106 characters scanned/second vs number
of subcells/cell (data rate as parameter).

- 169 -

the number of characters scanned when load factor is L (L>1)

ICPF, = v
L the number of characters scanned when L =1

In Figure 5.10, if a curve is above the 45° line (i.e., the Tine

having the slope of 1) then this is a favorable situation. The reverse
situation is obviously an unfavorable case. This is clear from the
definition of ICPFL. In this figure, it can be observed that when

an overload of L is imposed, the throughput returned by RAP is generally
higher than the value of L. This is because of the reason that a wait

time imposed for a subcell will also be used by its (k-2) previous

subcelis.

The in cell parallelism, improvement for the tuple sizes of 128
and 1024 are shown in Figure 5.10 for the cases of k being 4 and 6.
The step increase in "in cell parallelism improvement" with k =4, tuple
size of 1024 and with k=6 with the tuple sizes of 128 and 1024 is not
due to the in cell parallelism factor, actually there is no wait at
all, but due to the CM data rate increase from 5 MHz to 10 MHz. The
above mentioned k and tuple size combinations with the CM data rate
of 5 MHz result with TAVLNw >> TREQ' The increase in the CM data rate
causes slight decrease of TAVLNW’ but at the same time it will stil]

be sufficient for TREQ'

From these observations, it can be said that, the CM data rate
should be chosen to benefit from the increase in the load factor (if
any). For example, in tuple sizes 512 and 1024, when the data rate
comes from 5 to 10 MHz there is an ignorable increase in load factors,
but the gains in the number of characters scanned are considerable.
Therefore, in the text retrieval operations with RAP, a wise combina-

tion of CM data rate and tuple size should be selected.

- 170 -

Normalized total
processing time (NTPT)

A

——— © tuple size is 128
~ -~~~ tuple size is 512

------ 1 tuple size is 1024
: 5 MHz
~—-- 5 MHz
----- 5-10 MHz

—-— N W oy~ D
L)
B
O
=
/N
/
. /

Figure 5.7 - Plot of normalized total processing time vs number of
subcells/cell (data rate as parameter).

4 RAP ———— ¢ tuple size is 128

Circulation time ———-: tuple size is 512
]’200 L (m.]-l.l.l SeC.) . e ?" : tup]e size is 1024)

, ' : 5 MHz

1,000 | ~—===5 MHz

*we s @ o 5 MHZ

5 MHz
800 ¢
600 +
400 +
200 4
¥k

Figure 5.8 - Plot of real processing time (RAP circulation time) vs
number of subcells/cell (data rate as parameter).

- 171 -

I NWER OTOoY ~ 00
+ L e e I

: tuple size is 128 .
: tuple size is 512 -
! tuple size is 1024 Number of 106

—NW RO N ®

------ characters
scanned/second
3 4
2 + -
14 >>;:’;2’-’
o
—t y » CM data rate — A
5 10 40 510 40 CM data rate
Figure 5.9.a Figure 5.9.b
Number of 10° characters
scanned/second
4L k=6 1
I 3 ,
2 RS
I v
L 'L'/
] . > CM data rate — ; > :
5 10 40 5 10 40 CM data rate
Figure 5.9.c Figure 5.9.d

Figure 5.9 - Plot of load factor and number of 106 characters scanned/
second vs CM data rate for k=4 and 6.

In cell

parallelism factor

A

45°

~ x
I}

! tuple size is 128
! tuple size is 1024

......

.....

1

2

3

4

5 6 7 8

Figure 5.10 - Plot of in cel] parallelism factor vs load factor.

- 172 -

It was decided that 4 subcells with a CM data rate of 10 MHz and
with a tuple size of 1024 would be a cost-effective choice to reduce
hardware complexity and impose practically no waits (L=1.02). This
provides a speed of 1,200,000 characters scanned per second per cell.
One circulation of RAP would be completed in 425 milli seconds. Such
a configuration with 16 cells (which is a practical number to realize)

will result with 19,200,000 characters scanned/second. .

If the tuples of a document relation need to be short in length,
a literal attributé fragmentation may appear with large RAP tuple
lengths, i.e., the considerable part of a Titeral text attribute may
remain unused. To prevent this, a shorter tuple size must be chosen
in such cases. For example, for.abstracts the tuple size 512 may be
suitable without introducing a performance degradation; with this
size 1,100,000 characters would be scanned per second per cell while
one RAP circulation would be completed within 450 milli seconds with

the load factor of 1.16i

A time estimation for a search expression is given in the follow-
ing (the search expression is written in an artificial high level

text retrieval language):

within sentence [DATABASE «, (MACHINE or PROCESSOR)]
and within 5 words [RELATION, MODEL]

The above query finds all documents that contain DATABASE followed by
any character and MACHINE or PROCESSOR in the same sentence and RELA-
TION within five words of the word MODEL. The number of necessary RAP
revolutions are given below (the RAP programs necessary for performing

this text retrieval operation in RAP.3 Version-I is given in |11],

- 173 -

since the keywords MACHINE and PROCESSOR are searched within sentence
with the same keyword, which is DATABASE*, there is a decrease in the
number of revolutions needed ﬁo match DATABASE« and PROCESSOR within
the same sentence). It is estimated that the above search expression
Will require 56 revolutions in RAP.3 Version-I |11]. With a RAP
configuration of 16 cells, 4 subcells/cell, 4 Mega bit CM size (total

- memory size is 8 Mega byte), 1024 byte tuple size, 10 MHz data rate
and with 10 MHz INTEL/8086 microprocessor used in the subcells, the

total processing time will be
56 RAP rev « 425 milli sec./rev = 23.80 sec.

The above number means that 8 Mega byte is searched and necessary

query resolution have been performed in about 24 seconds.

5.4.2. Performance of RAP.3 Version-II in Text Retrieval

The firmware routines of RAP.3 Version-I for text retrieval are
also used in RAP.3 Version-II. In this version, due to variable tuple
length feature there is no overflow during simple term matching.
Accordingly, there is no instruction for simple term overflow resoluy-

tion in the second version of RAP.3.

In estimating the performance of RAP.3 Version-II in text retrieval,
the model given in Section 5.1 is used |62]. As mentioned previously, in
this version, the necessary attributes of a tuple are accessed by using
the DMA facility and the modified attributes are written back to the
(pseudo) CM. In the match instructions, the text attribute is read,
however it is never written back to the CM (since no change is made
on the text by this set of match instructions). This feature of the

match instructions lowers the processing time of a tuple.

- 174 -

In RAP.3 Version-II, due to variable tuple length feature, there
is no overflow during simple term matching. The only overflow condi-
tion can appear in context sensitive text retrieval operations such
as <A.n.B>, <A,B>n, A...B, and A B. The context resolution for them
is provided by the LINK-PASS instructions. Because of this reason the
RAP programs for text retrieval operations are considerably simpler

than the first version.

In Figure 5.11, the plot of 10° character scanned/second is
given versus the number of subcells/cell. It is clear from the compar-
ison of Figure 5.6 and Figure 5.11 that the processing speed of RAP.3
Version-II is considerably higher than the first version. The increase
in number of subcells also increases the number of characters scanned
per second (the tuple lengths specified are the average length for all

tuples).

ngure 5.12 shows the real processing time versus number of
subcells/cell. In this figure, instead of using the phrase RAP circula-
tion time, the phrase RAP scan time is Qsed. Since the RAP memory,
which is a RAM, is scanned (RAM memory does not circulate. The design
of RAP.3 Version-I is made for a circulating type memory. In the
implementation RAM is used. Tﬁe RAM contents are retrieved by DMA and
are written back to its original p]aceQ Therefore in a sense, it
emulates a circulating memory). The comparisons of Figure 5.12 and
Figure 5.8 also shows the superior performance of RAP.3 Version-II

with respect to RAP. Version-I.

- 175 -

Number of 10% characters

scanned/second
A
~———— ! average tuple size is 512
~— — — .. average tuple size is 1024
! .
7
P
5 S ' — » k
4 5 6 7 8

Figure 5.11 - Plot of number of 106 characters scanned/second
Vs number of subcells/cell

- 176 -

200

150 1

100 1

RAP circulation time
(milli sec.)
$

250 1 T+ average tuple size is 512
T T T i average tuple size is 1024

1

5, 10, 40 MHz

! ' - t - & K

4 5 6 7 8

Figure 5.12 - Plot of real processing time (RAP scan time) vs number
of subcells/cell.

In RAP.3 Version-1 all tuples are read in all executions of the
MATCH-WS and MATCH-WWC instructions although they are not searched
for a term match. In Version-II on{y the tuples which are going to
be searched will be accessed. This means that text retrieQa] opera=
tions, such as match within sentence and match within word count,

will be executed much more faster in RAP.3 Versidn—II.

Due to variable length text attribute feature, no fragmentation
will occur in Version-II. An average tuple size of 1024 bytes, 4
subcells provide 2,500,000 characters scanned per second per cell.

Total scanning time of the 8 mega bit memory will be about 215 milli

seconds. Such a configuration with 16 cells will result with 40,000,000

characters scanned/second.

- 177 -

The_execution of the query, which is specified in the previous
subsection would require roughly 40 RAP revolutions (or total scanning
time) in Version-II. This makes 8.6 seconds. This states that RAP.3

Version-II is superior to RAP.3 Version-I in text retrieval operations.

5.5. SUMMARY AND CONCLUSIONS

In this chapter, after introducing a chronological overview of
the RAP database machines, the new instructions of RAP for text
retrieval operations are presented. The performance of RAP in the
execution of these new instructions is analyzed. The implementation
of the text retrieval operations with RAP is realized by a set of
RAP programs. A macro processor, RAPMAC, is implemented and the RAP
programs for the text retrieval operations are mapped into macro

programs (see Appendix-E).

The work presented in this chapter shows that a very high pattern
matching rate (2.5x 10% characters per second per cell) is achieved

in the Tatest version of RAP, namely RAP.3 Version II.

In the architectures proposed for text retrieval, there is a
unit for query resolution. HoWever, the architecture of RAP provides
this subsection implicitly, i.e., the query resolution is done by the

RAP assembler instructions in the RAP database machine.

A detailed analysis for the evaluation of the text retrieval
operations in the RAP database machine is needed and left as a future

research problem.

As a result it can be said that the performance of RAP in text
retrieval operations is favorably comparable with performance of the

architectures proposed to date.
- 178 -

6. A MODEL FOR IMTEGRATED FACT/DOCUMENT INFORMATION SYSTEMS

In this chapter, an experimental system, which aims to synthesize
a relational DBMS and IRS capable of context sensitive full text
searches, is presented. The IR system relies on a clustering subsystem
for database partitioning and relation fragmentation. For the implemen-
tation of this part the single-pass algorithm which is presented in
Chapter 3 is proposed. The support architecture for the context sensi-
tive search operations is the RAP.3 database machine. The use of the
RAP.3 machine brings all of its capabilities into such an integration

116,71,75] .

The demands for effective and timely retrieval of facts and docu-
ments are constantly increasing. Also, the global information struc-
tures of applications are more sophisticated than ever before, requiring
representations of complex relationships among facts as well as docu-
ments. An efficient and effective retrieval environment should there-

fore, integrate the mechanisms of both IRS and DBMS.

The answer for the proper integration 1ies in a synthesis approach
that will combine IRS and DBMS by preserving their unique features in
such a way that the advantages of both systems can be shared. Such a
general purpose system should provide conceptual data modelling, rela-

tional algebra power (or equivalent) of DBMS, and at the same time the

- 179 -

facilities provided by IRS, Tike indexing and classification, partial
and/or full text search, and query feedback features of IR. It can be
realized that the past efforts that simplifies the integration problem
by confining one system within the framework of the other or simply
combines IRS and DBMS in a semantically disjoint manner will not be
sufficient, effective, and efficient within the context of the
requirements of present applications. One cannot merely incorporate
some string operations into a DBMS data language |99| or store key-
words as an attribute of formatted database [24,94|. One cannot
implement DBMS functionalities as file programs embedded within an
IRS.Such an effort would lack the advantages of DBMS such as data
independence, real time response, and ad hoc query formulation
capability. The efforts of using the DBMS concepts in IRS environments

can be seen in |23,57].

6.1. INTEGRATION MODEL

In the integrated information system, a common framework has
been established for the physical data structure so that both formatted
and unformatted data can be manipulated together under an instruction
set that embodies DBMS as well as context sensitive full text proces-
sing power. Refer to Chapter 5 for the representation of unstructed
data in a structured frame. A given user request such as "On the
documents written by the authors who are referenced by the papers
written by JOHN DOE, search for those with the phrase SEMANTIC DATA
MODEL and AGGREGATION", would require (this will be continued as an
example Tater on) both DBMS and IRS specific operations in an
interrelated sequence of processing steps. In the notation to bé used

in this chapter, a user query such as the one quoted will be denoted

- 180 -

as Q, whereas the subsets of it dealing with DBMS and IR will be
indicated by QR and QT’ respectively. QT is the portion of the request
that deals with the context sensitive search such as the "SEMANTIC
DATA MODEL and AGGREGATION in the same sentence". While QT will be
preserved for final processing, a query called the system query QS
will be derived from QT to initate a search on the relevant clusters
in the database. This search is an effort to narrow the search space,

before the fuTl text search can be conducted.

In simple terms, a QS query will include those terms in QT that
are included in the set of index terms of the collection with a
possible inclusion of certain other components to increase system
precision and/or recall. Figure 6.1 shows an abstract view of the
query processing environment. with QS’ a hierarchy of clusters will
be searched (where this hierarchy is constructed by using the single-
pass clustering algorithm presented previously) and the corresponding
data DQS will be returned when the cluster search’is optimally
terminated. The two resulting sets of data; DQR and DQS, corresponding
to DBMS and IRS operations respectively will be jointly processed by
the integrated system to produce the user's response. The user,
screening this response, may ésk the system to repeat the operation
by providing an indication of the re]evant/irfe]evant documents. With
this information, QS will be modified and the previous cluster selec-

tion will be refined.

- 181 -

Q Qr |GENERATION OF

SYSTEM QUERY

Qs

CLUSTER
hierarchy
RESPONSE
~ USER »| MODIFY Qs
EVALUATION | FEEDBACK

Figure 6.1 - Abstract view of the query processing environment.

- 182 -

6.1.1. A Mathematical Model

The integrated information retrieval system, IS, consists of a

set of hierarchies and is described by a 6-tuple :
IS=<R,D,Q,C,E, T> where

R represents a set of relations which contain structured data
about the documents or document entities. The nature of the interrela-
tionships among the structured entities will be described by means of

a conceptual data model (E/R model) |17].

D represents the set of documents stored as unstructured entities.
The relationships of these unstructured entities among themselves and/

or with those of R will be presented in the coming sections.

Q is a set of user queries. A given query, Q, is defined as
Q=10 Q 3 where

QT is the part of the query which holds the context sensitive

document specification.

QR is the part of the quéry which holds search specification on
the {R, D} set operable by the DBMS instruction set. As can be seen,
the simplistic implication of QR -~ (IR on D) and/or (DBMS on R) is
not always true. As shown in the example of the previous section, a
search nevigation threads through both R and D several times in an
interrelated manner. This is an important feature of the integrated

system which is disregarded in the previous efforts.

- 183 -

C is a hierarchical structure of clusters of D.

D

9

E is a mapping function, called the evaluation function, E:Q+2
used to find the relevant documents to a query. In reality, a subset
of the range of this mapping is reached through the complex operations
of clustering, implementing search functions for these hierarchies,

and a feedback function.

T represents the terms used for the description of documents.

6.1.2. Creation of System Queries

As shown earlier, a query Q consists of two parts QT and QR
where QR is the relational DBMS operable subquery and QT corresponds
to the context sensitive document retrieval subquery. Related with
QT’ there are a set of words, TQ, such that

T ﬂTg{TP T

Q T} where n = |T| > 0.

g3vees

We cannot expect all of TQ to appear in the filtered search
query (system query) for the simple reason that not all of the words
would be included in T since there are conditions for a word to be
a (index) term (Furthermore, all the distinct terms of a collection
might be used for indexing purposes and a user may specify a word

which is distinct from all the words of the collection).

In QT’ some terms will be used in the positive context, some
others in the negative context. For that reason QT will be expressed

as :

O = Opp U Opy

- 184 -

where QTP and QTN corresponds to the parts of QT that deal with the
terms specified in the positive and negative context respectively,

and

QTP > TTP =] T1, Tz,..., Tk 1 k >0
v > T = O Ty Tooenes Ty L2 0
Op > 1p = TpU Ty

k, 2 < n and any relationship can hold between k and %.

In the filtered search query for QT’ which will be called a
system query QS’ there may be positive and negative term specifica-

tions. If a term Ti is the member of'both sets, that is :

T.eT and T.eT
1 1 .

TP N

then Ti appears as a positive term in the system query. This selec-
tion is due to the fact that the information provided by the apparance
of a term rather than its non-appearance is more important |106].

Therefore, a system query, QS’ is

QS = QSP U QSN where

Urp
Qsn = Oy = (Qpy 0 Qpp)

hence, for the respective terms :

[TSP‘ = ITTPI:]TSNI < fTTNl and !T5’ < ITTI

- 185 -

This is reasonable since, as stated earlier, one cannot expect all

the words used in a context sensitive search request to appear 1in

the terms used for indexing.

6.1.3. Context Sensitive Boolean Query Structure

The user query, Q, will be processed as follows :

a) For a more systematic query processing purposes the query Q

b)

d)

will be converted into a disjunctive normal form, i.e.,

A Q AQ)

m2 N
My

Q = (Q11 AQ, A oo Qn) (Qm1
1

where each Qij (i=1,...,m, j=1,...,nm) may be a single word or
or a context sensitive document retrieval operation (see
Appendix A). Furthermore, each Qij may be either in a positive
or negative context (e.g., ~ (A,B) 1in sentence implies (A,B)

in sentence should not appear within the same sentence).

From the resulting query, generate a list of subqueries such
that they will be in an ordered quadruple <QR, QT’ QS’ QSR>
where QR and QT are as explained before and QS and QSR are

obtained in the following steps.

The words used in QT will be searched in the terms used for
the description of clusters. Non-matching words will be
dropped and the query, now left with only the terms, will be

a system query QS'

Concept hierarchies, continuous word phrases, and/or citation
Tinkages will be the possible condidates of additions to QS
if expansion due to recall and precision will be necessary in

the course of the experiments.

- 186 -

e) QSR’ referring to Figure 6.1, is a further retrieval opera-
tion on DQ and DQ and the answer set returned by it can be
R S

expressed as :

f(f, (D

QSR) = WDQR 0)

Qs

In other words, f(QSR) is the data returned by a further
retrieval function operating on the product of the data sets
Dy and f, (D,) which correspond in turn to the data

0p 0r Qg

returned by QR and the context sensitive operations of QT
executed on the data set returned by the hierarchical cluster

system search.

f) Repeat Q., through the feedback Toop (if necessary) until the
SR

user and/or certain performance indicators are satisfied.

In (d) through (f) f(QSR)<§ D will be always true.

6.1.4. Clustering Subsystem and Cluster Hierarchy

The clustering subsystem uses a seed oriented partitioning type
classification based on the new concept called cover coefficient. This
subsystem will utilize the single-pass clustering algorithm introduced

previously. For its detailed explanation refer to Chapter 3.

Onée the clusters are formed, a search will be performed by
comparing the centroid vectors with that of QS returning DQS for the
full text search. If however, there are very large number of clusters
making the linear, single Tlevel, cluster search prohibitive one can
construct a hierarchy of clustering (tree), HCT, for a sublinear

search.

- 187 -

In the mathematical model, C represents a hierarchical type
cluster structure for D with 2 levels. This is pictured in Figure 6.2.
In this structure, if a node c. has n children Ciyo Cigoevns Cine
then the documents contained 1in C; is: ‘

D =0 Ubd U ...UbD

i Ci2 ¢

C. C

i 11 in

Furthermore,
D " (MD = ¢ for j=k
€930 Cik

which Teads to
D MD =D .
i %k Sk

These properties hold for all levels because the clustering algorithms

used are non-overlapping.

As to the terms, if Tc. is the set of terms used for the descrip-
i
tion of the centroid of cluster Ci’ then TC ()TC = ¢ is not
ij ik
necessary true for j=k since a given term can also be used in the

description of documents in a different cluster. Similarly,

T. UT. y...yTt = T. s not necessarily true for any i
Ci17 Cyg Cin G
where 1 <1i<1 for an & level hierarchy because we cannot assume that

all documents on both sides of the relationship are isomorphic.

The hierarchical document cluster implies a partial ordering
relation. Assume R is a generalization relation for all the documents
related with node-i. R will be the generalization of both the documents
of the node as well as all the documents contained in the descendants
of that node since the following conditions of reflexivity, antisymmetry,
and transitivity will be applicable :

- 188 -

(Super Centroid)
Dy, Dg,.] - - — — — Level 1
(Centroids)
D,, Dz, . .Dk, Dkil- R § Dp. DP+1 peve qu. Dq.”. . IBVC)Z
(Documents)

Figure 6.2 - Hierarchical clustering
The algorithm is the following

a) Determine nc of D.
b) D =4¢, i =0;
) S ¢
c) repeat ;
i=131i+ 1 ;
Randomly select ki documents from the set of unclustered
documents (D —DS) . This means that Ds is extended as
D =D D ;
s sU k
1
Determine n, of D ;
s S

until ; ncs = n. ; /+0r ncs 1s considerably close to nc*/

d) Generate the core clusters by using the docuhzents of Ds'
Create the hierarchical clustering tree (HCT) by using

these croe clusters.

e) For the members of the unclestered documents (deD—Ds)

perform a selection navigation on the HCT. Find the

- 190 -

most similar core cluster to this unclustered document.
The document is assigned to this core cluster (notice

that the core clusters are the lowest level clusters).

f) After clustering all the documents modify the centroids
of the core clusters using the old and new members.

Construct the HCT with these new centroids.

The above algorithm has one significant superiority : by the
aid of the decoupling coefficient concept one can determine the
number of clusters within the collection (nC = i§1 61)' This is the
guideline for the document selection process and determination of

the core clusters.

A study by Jardine shows that about 1% of the documents of a

very large collection would Tead to a reasonable core clustering |51].

In step-e, in the search of the HCT, search process may stop at
an intermediate node. However, one should get to the lowest level
(Teaf) cluster under that node to add the document being processed.
In such cases, one can pick the cluster with the maximum cluster seed

power as the seed document.

6.1.5. Cluster Search and Matching Function

In the integrated system model, the nodes of the cluster
hierarchy and the system query, QS’ will be represented as vectors
equal in Tength to that of the document definition vectors. In the
query definition vector corresponding to QS’ each element can have
one of the three possible values of 1, -1, and 0 corresponding to
the use of the related term in the positive context, negative context,

and non-use of it respectively. As stated earlier, terms appearing in

both context are assumed to be in the positive context. The search

- 191 -

process will employ a top down search on the HCT. Depending upon the
values of n.s dc’ and the required precision/recall levels, the

following two search strategies can be used:

a) Narrow search : At each node, the decendant which gives the
highest value for the matching function is taken. The search
terminates when none of the descendants of the processed node
can exceed in match function value that of the node (or a
given threshold) [106]. With this strategy, we always take

a single branch out of a node.

b) Broad search : From a node, descend to children nodes that
satisfy the match criterion (e.qg., a similarity threshold).
Stop when no child satisfies the match and send the parent
(1.é., the documents related with the parent node) to full
text search. Accordingly, in this search, we may send multiple

nodes from different branches of the tree to full text search.

The searching algorithms for the above strategies are given in

the following :

Narrow search -

cnode = top - node ;

mxval = mch - func (cnode) ;
repeat ;

snode = cnode ;

repeat ;

node = nxt - child (snode) ;
mchval = mch ~- func (node) ;

iﬁ mchval > mxval (or mchval > treshold) then

- 192 -

mchval ;

1

mxval

cnode = node ;
end ;
until nxt - child (snode) = 0 ;

until cnode = snode ;
Meaning of the variables are as fololws

top-node : top most node of the HCT.

cnode : the candidate node for selection.

snode ¢ the node selected for searching.

mch-func : returns the matching function value of its argument.
mxval : matching function value related with the candidate node.
nxt-child: returns the next child of its node, if no more child then

returns 0.

Broad search .

stack(sp) = top-node ;
disqualified(sp) = false

sp = sp + 1 ;
repeat ;
if mch-func(sp-1) > treshold then

do ;

if sp _ 3 then disqualified (sp-2) = .true. ;
node = nxt - child (stack (sp)) ;

ié_node = 0 then

do ;

if—disqualified(sp-1) then

- 193 -

do ;

n=n+171;
snode (n) stack(sp) ;

sp = sp - 1 ;
end ;
end ;

else do ;

stack (sp) = node ;
disqualified (sp) = .false. ;
Ssp =sp + 1 ;

end ;
end ;

else sp = sp -~ 1 ;

until sp = 1 ;
Meaning of the (new) variables are as follows :

disqualified : is an array parallel to the "stack" array. If a
child of a node satisfies the search condition
then the node at the top is disqualified (notice

that disqualified nodes are not selected).
snode ‘ an array which contains the selected nodes.

n ! number of selected nodes.

Two measures are proposed for the matching function. One is the
"coupling function" and the other is a similarity measure. The coupl-
ing function comes from the idea of the coupling coefficient, Acéord-
ingly, one can start with an mxn matrix whose first row would be
the query vector and the remaining m-1 rows would correspond to the
centroid vector of the lower leve] subclusters of the node(s) identi-

fied in the search of the HCT. By using this matrix one can find

- 194 -

the coup{ing of the query with the centroids or coupling of the
centroids with the query (Notice that special attention should be
given to the -1 entries of the query vector. They will match with
the centroid entries with a value of 0). The coupling coefficient
among the query and the centroids will determine the clusters to be
chosen for further consideration (see Chapter 7 for the use of this

concept for the selection of the clusters).

The second measure would be a similarity function of the following

form :

sm(q,, C) = (jg Filags) / (jg (Filays c;) + Fylags)
where

[9 X 95 if 9; > 0 (1)
F1(qj,Cj) =<0 if qj =0

| abs(qj) x (|C] -gy) if q9; <0 (2)

[.

a5 x (IC] -9 if g, >0 (3)

Fz(qj,Cj) =< 0 |

t abs(qj) X gj if qj <0 (4)

In the above formula, (1) indicates that if a query term, qj,
position is a 1, then F1 gives the number of documents containing
that term under that centroid; gj is the centroid entry. In (2),‘]C|
indicates the number of documents under the node, "abs" means absolute
value and F1 gives the number of documents that do not contain the
negative query term. In (3), F2 gives the number of documents in the

nodes that do not contain the query term. In (4), F, gives the number

- 195 -

of documents in the nodes that contain the query term. The SIM func-
tion is the conditional probability of hitting a one on the centroid
vector of the HCT node given that a one was given in the query vector
and hitting a zero on the centroid vector of the HCT node given that

a minus one was given in the query vector.

6.1.6. Query Feedback

The query feedback to be used in the integrated system has some
dffferences from the other studies. This difference is motivated by
the fact that the integrated system will be concentrated on the
context sensitive search specification. Accordingly, in this feedback
scheme, the user query is kept fixed, but the system query, Qs’ is
nmdified,Therefore,aftereachfeedbackprocessarmw<ﬂuster(s)1s@fe)
chosen, which would be most.re1ated with the modified Qs’ and the
documents are processed with respect to QT (and QSR later). The feed-
back process will depend on the user choice although various measures
of performance could be employed. The user will have the choice of
accepting the results or triggering the feedback loop by giving an
indication of the relevant and irrelevant documents. In the refinement
procedure of the feedback subsystem, the terms appearing in the
relevant documents will be emphasized while those in the irrelevant
documents are deemphasized. The following criteria can be used for
this purpose. If lqixl denotes the number of appearances of term-i
in set x where x can be one of system query, relevant documents (RL),

or non-relevant documents (NR), then if

p p p
[aisl + lafp | > la5yRl

- 196 -

that is, if the sum of term-i's used in the positive context in the
system query and those that appear in the relevant documents 1qs
greater than the number of positive context term-i's that appear 1in
then non-relevant documents, then term-i will be kept in the refined
Qs’ otherwise it will be dropped (or its weight might be reduced).
Also, if

N

N N
lajsl + laiygl > layg, |

that is, if the sum of term-i's used in the negative context in the
system query and those that appear in the non-relevant documents is
greater than the number of negative context term-i's that appear 1in
the relevant documents, then drop term-i (or reduce its weight) in

the refined query.

The main goal of this feedback scheme is to preserve the context
sensitive nature of the user query so that the advantages of full

text search can be properly exploited.

6.1.7. Evaluation

For the evaluation of the system performance the precision (P)
and recall (R) measures can be used. In this séction an approach for
performance evaluation will be proposed and an illustrative example
will also be provided. Other performance evaluation measures depending

on P-R values can also be derived very easily.
The definitions of recall and precision is given in the following:

no of retrieved and relevant documents C
Recall = = —
no of all relevant documents in the collection b

- 197 -

no of retrieved and relevant documents

. c
Precision = = —
no of documents retrieved b

This R and P figures can be defined both in terms of documents and

clusters. The experimental procedure to be used is the following

a) Determine the documents and the thesaurus term covered
by a context sensitive boolean guery. Also determine
the lowest level clusters which contain at least one

document which stasifies the boolean qguery. .
b) For each query perform the following :

Create the list of selected nodes (i.e., the nodes

which satisfy the search conditions).

The documents which are related to the selected
nodes give the number of documents retrieved, some
of these documents satisfy the boolean query and
some of the subclusters connected to the selected
nodes contain documents that satisfy the boolean

query.
Calculate R and P for the query.

¢) Perform an overall evaluation for all gueries (There
are different averaging technigues for this purpose

|92,106]|).

In the following an example is given for the evaluation process.
In Figure 6.3 an HCT is given for the example. In this figure, the
numbers outside the circles indicate the number of documents related
with a node. Assume that clusters 8, 10, and 12 contain documents
which satisfy the boolean query. Furthermore, assume that the number
of relevant documents in these clusters are 5, 2 and 1 respectively
(In R and P calculations, the variables a, b, and ¢ will be used. The
subscript D and C indicates that the variables are related with docu-
ments and clusters, respectively).

- 198 -

Leye]—O

20 Level-]

e 1T Level-2

x
: - ~\\\1-5) Level-3
2 3 6 2 5 4

Figure 6.3 - Example HCT

(Lowest level
clusters)

As it is stated above the clusters 8, 10, and 12 contain documents

satisfying the context sensitive boolean query and the number of

relevant documents in these clusters are 5, 2 and 1 respectively.

Hence :

ay = 5+2+1=28 a~ = 3 (clusters 8, 10 and 12)

Notice that ap and ac are fixed for a query, but "b" and "¢ changes

according to the HCT node.

During the search navigation, assume that node-1 satisfies the

search condition. P and R values for this node are as follows :

aD:8, bD1:42, CD1=8 > RD1: CD1/aD1:8/8:1’ PDT:CD/ QD1=8/42=0.19

aC=3, bC =9 CC1=3 RC1: CC1/aC1:3/3=1, PC

1 , =CC1/bC1:3/9=0'33

1

During navigation assume that node-2 satisfies the search condi-

tion. Accordingly :

- 199 -

bD =22, ¢

, =/ - R :cD /aD=7/8=O.88, P

D D D

=cy /by =7/22=0.32
2 2 2 2 D2 D

2

bo =4, c. =2 >R, =c. /a.=2/3=0.67, P =b_ /b. =2/4 = 0.5
CZ CZ CZ CZ ¢ CZ CZ 2

Assume that node-3 does not satisfy the search condition, there-
fore forget the right hand side of the HCT in the navigation. At one

Tower level, assume that node-4 satisfies the search condition :

bD =15, Cp =5 +~RD =CD4/aD

=5/8=0.63, PD =
4 4 4

4

=5/17=0.33

c, /b
D4 D4

b.=2,c.=1~>R =Ce /aC:1/3=0.33, P. =

=1/2 =0.5
C4 C4 C4 4 C4

c~. /b
C, ¢,

Lastly, assume that node-8 satisfies the search condition :

bD =7, CD =5 > RD =cD8/aD

=5/8=0.63, PD
8 8 8

=c, /by =5/7=0.71
8 8 D8 D

8

b. =1, c. =1 >R

=c. /a. =1/3=0.33, P =c_ /b. =1/1=1
Cg Cq Co' °C Cg Cq

Cg Cg' Cq Cg 8

Assuming that node-5 and node-9 do not satisfy the search condi-
tion, only the documents related with node-8 will be moved to the RAP
memory and the overall performance of the system in terms of R and P

will be 0.63 and 0.71, respectively.

The above navigation process can be easily mapped into a R-P
graph in terms of documents and clusters. Recall and precision values
are usually plotted as "precision versus recall®. However, the output
pattern of the navigation call for the reverse order. The R-P curves

for the example query navigation are depicted by Figure 6.4.

We can consider also another measure for evaluation. This would

be a plot of R and P values versus the HCT level. The averaging of the

- 200 -

ZRD %
&
1. \\\\ ot
4 \ 8
L N
L4
.2
) 4 L e PD + ‘ t + + —p PC
.2 .4 .6 .8 1. .2 .4 .6 .8 1.
a. For documents b. For clusters

Figure 6.4 - The plot of recall (R) versus precision (P) for the example

R and P values at each node position can be done in two ways :

a) Summation of R (P) values at a given Tevel divided by the
number of observations at that level. Notice that a query
can reach to a level through more than one branch in case

of the broad search strategy.

b) Summation of R (P) values at a given level divided by the
number of queries at that level. Notice that, not all queries

will reach to all levels.

Tabulation of the number of observations, number of queries, average
recall, and average precision values at each level position can lead

to a reasonable evaluation basis.

- 201 -

6.2. CONCEPTUAL MODELLING AND AN EXAMPLE APPLICATION

The universe of discourse of an integrated DBMS/IRS application
will be defined by means of the Entity/Relationship (E/R) model. The
diagrammatic representation of the E/R model uses rectangles to
represent entities, diamonds for the multidimensional relationships
among entities, Tabels to indicate the type of re]aiionships or
mappings (e.g. one to many, many to many, etc.), double 1ined rectan-
gles for weak entities (or relationships), etc.|17|. In the RAP environment,
an entity will correspond to a conceptualization whose representation
will be in terms of formatted structures (i.e., a record type or
specifically a relation) or a document whose representation will be
in terms of unformatted structures. In the latter, the rectangle will

be marked by an asterisk.

The conceptualization of the example application environment is
depicted by Figure 6.5. To produce the RAP relations, the entities
and relationships are mapped into relations in a one to one correspon-
dence. One exception to this is with the entity ca]]ed'DOCUMENT, which
is mapped into a set of relations for practical purposes. These rela-
tions are DOCUMENT, CITATION, ABSTRACTS, and SUB-HEADING. The relation
definitions for the conceptual model given in Figure 6.5 are depicted

by Figure 6.6.

In the resulting relations, most attribute names are self
explanatory. Key attributes are underlined. Some of the attribute
names are explained in the following ; JCODEN stands for Jjournal code,
the ABSTRACT attribute holds the full text of the corresponding docu-
ment's abstract. Since an abstract can be mapped into more than one

tuple, the attribute TUPID (tuple identifier) has been introduced in

- 202 -

H .

DOCUMENT

M
DOC_JOUR

CATEGORY

Figure 6.5 - Conceptual representation of the integrated application
environment.
- 203 -

DOCUMENT, < DOCID »
CITATION < DOCID, TITLE, DATE, JCODEN, VOLUME, PAGES, ND1, ND2 >
ABSTRACTS < DOCID, TUPID, ABSTRACT, ND1, ND2 >

SUB-HEADING < DOCID, STITLE, ND1, ND2 >
AUTHOR < AUTID, NAME, NPAPER >
DOC-AUT < DOCID, AUTID >

DOC-REF < DOCID, AUTID, NREF >

KEYWORD < KEYID, KEY, KFREQ >
DOC-KEY < DOCID, KEYID, WEIGHT >

CATEGORY < CATID, CATCODE, CFREQ >
DOC-CAT < DOCID, CATID >

JOURNAL < JCODEN, JNAME, NPAPER >
DOC-JOUR < DOCID, JCODEN >
PUBLISHER < PUBID, PNAME, NPUB >
JOUR-PUB < JCODEN, PUBID >

Figure 6.6 - A relational representation of the conceptual structure

the ABSTRACT relation. Similarly, the attributes TITLE and STITLE
mean, respectively, full title and subtitle(s) of a document. The
AUTHOR is a weak relation and tuple existence in this relation depends
on the entity "DOCUMENT". A tuple (an author) can reside in the AUTHOR
relation if he(she) has written a paper (document) or if he(she) has
been referenced by a document which resides in the DOCUMENT relation.
The attribute NPAPER (of the AUTHOR relation) and the NREF (of the
DOC-REF relation) corresponds to the number of papers written by the
author and number of times the author has been referenced in the

documents respectively. Needless to say that the attribute DOCID

uniquely identifies a document and the same is valid for the attribute

- 204 -

AUTID for the entity AUTHOR. The attributes KFREQ, WEIGHT, CFREQ,
NPAPER, AND NPUB stand, respectively, for the number of times the
corresponding keyword used in the documents, weight of the keyword
(identified by the KEYID) in the document (identified by the DOCID),
number of times the corresponding category used in the documents,
number of papers published in the corresponding journal, and the

number of journals published by the corresponding publisher.

The unary relation DOCUMENT has originally been introduced into
the system to increase the speed of the semi-join operations (realized
by the CROSS-MARK instruction of RAP) needed during query resolutions.
In the new version of RAP.3 the sections of. the tuples which are used
in the instruction specification are moved into the buffer memory.
Therefore, the unary re]atioh approach will not make any contribution
to the performance of the system. However, it seems that it is nice
to have a separate relation to indicate the selected documents and

the unary relation DOCUMENT will be used for this purpose.

A given user request such as "On the documents written by the
authors who are referenced by the papers written by JOHN DOE, search
for those with the phrase"SEMANTIC DATA MODEL and AGGREGATION" can be
executed in this system. Based on Figure 6.5 and 6.6, a possible execu-
tion sequence for the above query can be given as follows (using the

relations of Figure 6.6 and with no regard to semi-join optimization):

1. SELECT AUTHOR with name JOHN DOE.

2. SEMI-JOIN AUTHOR to DOC-AUT via AUTID.
3. SEMI-JOIN DOC-AUT to DOC-REF via AUTID.
4. SEMI-JOIN DOC-REF to DOC-AUT via DOCID.
5. SEMI-JOIN DOC-AUT to ABSTRACT via DOCID.

- 205 -

6. IR Search for "SEMANTIC DATA MODEL" and "AGGREGATION".
7. SEMI-JOIN ABSTRACT to DOCUMENT via DOCID.
8. READ DOCUMENT.

As can be seen in this query, operations 1 through 5, and 7,8
are DBMS operations and 6 is an IR operation and yet everything is
Tinked and consequence of each other in the execution sequence.
Although operation 6 is a single item in the list, it corresponds to
a set of operations implemented as a RAP macro call which uses DBMS/IR
instructions. To follow these, one should refer to Figure 6.1 which
is the abstract representation of the iﬁtegrated system. In this
figure, Q represents the query program shown above (i.e., operations
1 through 8), QR corresponds to DBMS operations (operations 1 through
5,7, 8) and QT to IR operation 6. In terms of the data sets and data

“manipulation functions, the following correspondence can be seen :
D, : (DOC-AUT)., D. : (ABSTRACT) ,-subscript R of relation namers
O R* Qg R

indicates restriction-

f(DQR) : step 5, f(DQS) : step 7, (DOCUMENT)R = f(QSR)

The following are the two examples of an DBMS/IR operation at

the RAP program Tevel:

- 206 -

6.3. SUMMARY AND CONCLUSIONS FOR THE INTEGRATION MODEL

In this chapter an integration model is proposed for DBMS and
IRS. The proposed model relies on a clustering subsystem for database
partitioning and relation fragmentation. For the implementation, the
singie—pass algorithm, which is presented in Chapter 3 is proposed.
The support architecture for the search operations is the RAP.3
database machine. Since the implementation of the complete model would
require much more time and effort then a single dissertation only some
parts of it are iﬁp1emented. These include the development of a macro
processor, RAPMAC, as an interface to the software emulator of RAP
(SERAP); implementation of the new match instructions in SERAP, and

the development of the new clustering scheme.

The proposed integration is expected to be efficient due to

-following main features :

a) It uses an efficient implementation of a relational DBMS.
b) IR features are integrated with DBMS at the primitive level,.

c) The IR primitives are based on the efficient string search
operations and the context sensitive full text instructions

carry out query resolution to a great extent.

d) Clustering is used as an efficient IR index in addition to

the secondary key indexing of RAP.3 DBMS.

e) Integration of DBMS and IR at the primitive level results qn
minimum layers of software which contributes to overall

system efficiency.

f) There are no need for a separate computer for query resolution
and the necessary communication of term matches since all

those functions are handled in the RAP.3 system.
- 207 -

The semi-join construct of the RAP.3 system (i.e., CROSS-MARK)
is an important operation. In an integrated system where formatted and
unformatted data are cross selected, the Jjoin operation must be
implemented efficiently. The semi-join operation does not create a
new relation to store the results and tansmits a minimum amount of

data between relations.

- 208 -

7. THE PERFORMANCE OF THE TWO PARTITIONING TYPE
CLUSTERING ALGORITHMS IN INFORMATION RETRIEVAL

In this chapter, the performance of the single-pass clustering
algorithm (Algorithm-1) and the multi-pass clustering algorithm
(Algorithm-2) will be evaluated in terms of their information retriev-
al behavior (the algorithms are described in Chapter 3). The effec-
tiveness of the centroid generation policies associated with the algo-
rithms and the matching functions used in the selection of the clusters

will also be evaluated.

In order to deal with the first order variables a single level

(non-hierarchical) clustering approach will be used.

The evaluation procedure is described in the following :

a) Map the natural language queries into the query vectors,
(A gquery vector, QV is defined as follows : QV = QW/\T,
where QW is the words used in the query and T is the ternms

used for the description of the documents).

b) Perform a full search on the whole document collection then
find the average performance for all of the gqueries in terms

of recall and precision.
c¢) Cluster the documents.

d) Perform a cluster based retrieval (CBR) for all queries (i.e,
find the clusters which are most relevant to a particular

query and consider the documents of the selected clusters for

- 209 -

retrieval purposes) then find the average performance for

all of the gqueries in terms of recall and precision.

e) Compare the results of the CBR with full search to find the
effectiveness of the clustering algorithm in information

retrieval.
f£) Perform the steps ¢ through e for both of the algorithms.

g) Compare the performances of the clustering algorithms.

In the above testing procedure, two different matching functions
will be used in the selection of the documents and the clusters. This
means that there will be two performance results for the full search.
Simi]ak]y, for the CBR the same two matching functions will be used
for the selection of the centroids and documents. This means that
there will be eight performance results for the CBR (=2 algorithms x
2 matching functions x 2 centroids). The evaluation procedure will
test the suitability of the clustering algorithms, the new matching
function proposed in this chapter, and the centroid generation policy

introduced in Chapter 3 for information retrieval purposes.

In this chapter, first the evaluation measures second the matching
functions to be used are introduced. This is followed by the illustra-

tion of the results of the evaluation experiments.

7.1. EVALUATION MEASURES

In this section, the measures of evaluation are illustrated.
These are the following :

IDSiﬂDRI

Reca]]i =
g

- 210 -

’DsiﬂDRl

Preéisioni =
0, |
[Du(“zDR]
Recall Ceiling (RC) = ——
| Dgl
e ¥ IDS[
Correlation Percentage (CP) = -fT~T———
D
N
12] IDRP:DTil
RC for Target Clusters =
N

where

indicates the cardinality of a set. The meaning of the

variables used above and some additional variables are given in the

following :

Ne maximum number of clusters to be selected (given as
parameter).

ng ° the number of selected clusters which exhibit highest
correlation with a particular query, i.e., the query
under processing énd ng <N The inegquality ng < Ng.
can be true, since for some queries the number of clusters
having a correlation greater than zero can be less than Nerm

DS : the documents of the selected clusters.

Ds : the subsetcyFDs (DS - Ds) at ith recall level (this will

i i

be explained later).

DR : the set of documents relevant to a particular query.

D~ : the set of documents analyzed by the user, D, & D¢

- 211 -

(Du is a subset of Ds’ since some documents of DS can
have zero correlation with the query under processing and
such documents are not presented to the attention of the

user).
D : all documents of the collection.

n : the number of clusters for the document collection

(determined by the cover toefficient concept).

number of target clusters (nT <n The target clusters

sm) (
are those clusters containing the largest number of -
relevant documents |8-Chap.13,86|. If C, and Cj are two
candidate target clusters with the same number of relevant
documents and if [Cil <]Cj[, then C. will be chosen as
the target cluster since its size is smaller. The number

of target clusters to be considered is limited by the

value of N for experimental purposes).

D the documents of the target cluster Ci'

T
The documents of the Ds are presented to the user in an order
according to their correlation to the query which is determined by
the matching function used in the particular experiment. A recall-
precision pair is calculated for each consecutive document in the
ranked output. In the experiments, the recall-precision values are
given at some specific recall values (or recall levels), i.e., for
(recall - 4, i = 1,...,10) 0.1,0.2,...,1.0. The calculated recall
value, Re> is taken as R; when Ry < RC < Ri+1 and the calculated

precision value corresponding to RC is taken as Pi (i.e., as the

precision value corresponding to Ri)'

- 212 -

The recall-precision values for al] queries are averaged to

obtain the overall behavior for the specific experiment.

It is obvious that not all of DR documents will appear in DS’
i.e.,]DS(XDR! < [DR[this is because Dg&D. Furthermore, some of the
relevant documents may have no common terms (i.e., may have zero
correlation) with the query. (This might be due to poor query formula-
tion or due to poor indexing.)In the evaluation experiments to be
followed, this is observed just for one query where in this query,
the corresponding query vector was rather short). Accordingly Ducg DR'
Because of these reasons, recall ceiling can be less than 1. If RC=Rj,

.»R. are taken as P of the

1°°°"°"10 3.
full search (this solves the averaging problem |27]).

J <10, the precision values for Rj+

Similar to recall ceiling, one can define the recall floor, i.e.,
the Towest recall value that can be observed for a query. For example,
a query with 5 relevant documents will have a recall floor of 0.2(=1/5)
not 0.7. Furthermore, in some queries some indermediate recall] values
(i.e., the recall values among recall floor and recall ceiling) may
not be observed (for the query with 5 relevant documents the recal]
values 0.3, 0.5, 0.7, and 0.9 will never be observed). In such cases,
i.e., for an unobserved recall value, Rj, the corresponding precision
value Pj will be set to the value of Pk (where Rk is an observed recall
value), where k =j and there is no observed R1 value such that

R <Ry <R [106].

The recall ceiling defined for the target clusters is used to
observe the effectiveness of a clustering algorithm in putting the
associated documents into the same clusters. A higher target cluster
recall within a smaller subset of the document collection indicates
the effectiveness of j clustering algorithm.

- 213 -

7.2. MATCHING FUNCTIONS

Two measures are being investigated for the matching functions.
One is the coupling function and the other is a similarity measure.
The coupling function comes from the coupling coefficient concept
which is used in the clustering algorithms. Accordingly, one starts
with an (nc+1) xn matrix ch whose first row would be the query vector
and the remaining ne rows would correspond to the centroids of the
generated clusters. The amount of coverage of the query under consid-
eration by a cluster-i is found by the following formula (see Chapter

3 for the definition of C, S, and S') :

I~
w
w

—
1
Il B~135

C(Qsei) =

(significance of tj in Q)
j .

1 LT i L. :
x(significance of G, for fj)
From the definition of S and S' matrices one can write the above

formula as follows :

n
1
C(0,6;) = —— | T q. v g« —1—
1 lo| | j=1 9 W COLVAL
ne+1 i
where COLVAL., = I d c (.e., sum of the jth column of D__ matrix).
k=1 9; qac

Similarly, the amount of coverage of cluster-i by the query under

processing would be

C(6;,0) = ——

61 | 3

1

g..*q.*
1 COLVALj

o~

In the above formulas |Q| and |Gii indicate the query vector length

and the centroid length, i.e.,

- 214 -

ol =
J

I E~1
O
s

|6 = 9 5
LT RGN

4
A

I~

The above formulas are also valid for a weighted ch matrix.

According to the coupling function, the mutual coverage between

the query and a cluster-i is defined as C(Q,Gi) + C(Gi,Q).

It should be noticed that such an approach for matching function
gives special attention to the rare terms. In other words, a rare
term which appears in very few centroids and is also used in the query
will increase the mutual coupling of the query with those centroids
containing the term. This is because COLVAL is small for this kind of
terms. Similarly, the centroids with fewer terms (i.e., with sma]]er.
IGil values) will have higher coupling with the query. This will give
more chance in selection to the clusters which are specialized in the

information need of the query.

The other matching function uses the conventional Dice's similar-
ity coefficient. Accordingly, the similarity between a binary centroid

Gi and a query Q is defined as follows :

Sm(Q,Gi) = 2 * (.
J

N5

A A NI LINA}

The definitions of |Q| and IGii are similar to the above matching. func-
tion and they indicate the query vector length and the length of the

centroid-i, respectively |106, p.39].

- 215 -

The similarity of the query Q with a weighted Gi according to

the Dice's coefficient is defined as follows [2,p.113].

n
Z abs<qj - g"ij>
sm(Q,6;) = 1 - 3=

(9, + g..)

1 J ij

o~

.i
where, "abs" is the absolute value function.

In the above discussion, we have the phrase "weighted ch matrix"
and "weighted Gi". A weighted ch matrix can occur if we have a

weighted 61 (In the experiments, only binary query vectors are used).

The matching functions are used for ranking the documents and
the cluster in full search and CBR. Similarly, the documents of the

selected clusters are ranked by using the.same functions.

7.3. THE EVALUATION EXPERIMENTS

In the evaluation experiments the papers of the ACM Transactions
on Database Systems (ACM-TODS) were used to construct the document
collection. The detailed information about the collection is given
in Chapter 4. In the evaluation experiments the binary D matrix
corresponding to the experiment T4 of Chapter 4 is used. The indexing

policy for this experiment can also be seen in Chapter 3.

The characteristics of the document collection, and the generated
clusters and centroids for both of the algorithms are depicted in
Table 7.1 and 7.2, respectively. In the information retrieval experi-
ments both the binary centroids and the frequency based (weighted)

centroids of the clusters are used.Each entry, gij’ for the frequency

- 216 -

Table 7.1 - Characteristics of t

he Document Cellection

No of documents (m)
No of terms (n)
Avg no of terms/documents (X
Avg no documents/term (tg)

oooooooo

ooooooooooo

Table 7.2 - Characteristics of the Gen

erated Clusters and Centroids

No of clusters (nC)
Avg no of documents/cluster (dc)

Avg no of terms used in the
weighted centroids

Avg no of terms used 1n the
binary centroids

No of distinct terms used
in the binary centroids

Ratio of the terms which are
used in the binary centroids

Algorithm-1/Algorithm-2
22

7.70

135.18/134.59
44.36/ 13.55
444

/206

0.82/ 0.38

based centroid corresponding to the clus
term-j within the document vectors of Ci
policy corresponding to the Algorithm-1
in Chapter 3).

The characteristics of the queries

- 217 -

ter-i (Ci) is the frequency of
(The binary centroid generation

and the Algorithm-2 can be seen

are provided in Table 7.3

TABLE 7.3 - Characteristics of the Queries

NO OFf QUErieS ..vvirvrevnrnennnnnan 18
Avg query vector length 16

No of distinct documents found
relevant to the queries 69

Total no of documents found
relevant to the queries 146

Avg no of relevant documents
for a quUery ..veiveineiriinnnnann. 8

The recall ceiling for the target clusters for both of the algo-
rithms are given in Table 7.4. The same table also contains the |
proportion of the number of documents of the target clusters with
respect to the whole collection size. This table states that 76%

(78%) of the relevant documents are concentrated on (nsm = 3) clusters
containing the 26% (22%) of the documents in case of the Algorithm-1
(Algorithm-2). The above observations state that both of the algorithms
are rather effective in putting the related (similar) documents into
the same cluster. In doing so the Algorithm-2 is somewhat more effec-
tive, since the average recall ceiling for this algorithm is higher

and is reached by considering a smaller subset of the document collec-

tion (see a/b in Table 7.4) (In the experiments Ny =N is observed

i
for all queries, i.e., for i=1,...,18.).
In the evaluation experiments both the binary centroids and
frequency based centroids are used for cluster based retrieval
(2 possibilities). As the matching function (i.e., for the correlation

of a query and centroids) two functions which are introduced in the

previous section, are used (2 possibilities). As stated previously,

- 218 -

this gives us having the results of 8 experiments (=2 algorithms x

2 centroids x 2 matching functions).

The summary of the search statistics in terms of recall ceiling
and correlation percentage is presentad in Table 7.5. In this table
{and also in Table 7.6), the processing codes 1, 2, 3, and 4 stand
for the use of the following centroid types and matching functions :
binary centroid-the coupling coefficient (BCCC), binary centroid-the
Dice's coefficient (BCDC), frequency based centroid-the coupling
coefficient (FCCC) and frequency based centroid-the Dice's coefficient
(FCDC). Table 7.5 can be used for the evaluation of the algorithms,

the centroid generation policies, and the matching functions :

TABLE 7.4 - Characteristics of the Target Clusters (nsm=3)

Algorithm-1/Algorithm-2

Avg recall ceiling for

the target clusters (a) 0.76/0.78
Avg proportion of documents

in the target clusters (b) 0.26/0.22
a/b 2.92/3.54

TABLE 7.5 - Summary of Search Statistics in Terms of Recall Ceiling
and Correlation Percentage

Processing | Recall Ceiling (RC) | Correl. Percentage (CP) RC/CP
Code (PC) | Algo.1 Algo.2 | Algo.1 Algo.2 |Algo.1 Algo.2
1 (BCCC) 0.62 0.56 0.30 0.26 2.05 2.16
2 (BCDC) 0.66 0.57 0.28 0.27 2.31 2.12
3 (FCCC) 0.65 0.63 0.31 0.28 2.10 2.21
4 (FCDC) | 0.35 0.47 | 0.26 0.27 | 1.38 1.77

- 219 -

(a) Evaluation of the algorithms : For all processing codes the
Algorithm-1 always yields a better recall ceiling, the only exception
is processing code 4. However, correlation percentage (or RC/CP) is
better for the Algorithm-2. This can be contributed to the iterations
of the Algorithm-2 (the only exception for this observation is proces-
sing code 2). Due to the iterations of the Algorithm-2 the documents
are blended among the clusters in a some what better way. However, the
difference is infinitesimal. Furthermore, the Algorithm-1 might be

considered preferable due to higher recall ceilings observed.

(b) Evaluation of the centroid generation policies : The centroid
generation policy using the coupling coefficient concept (used in
connection with the Algorithm-1) is better. Since it gives higher
recall ceiling values (see the results corresponding to the processing

codes 1 and 2 where only for these cases the binary centroids are used).

(c) Evaluation of the matching functions : It seems that the
coupling coefficient conéept and the conventional similarity measure
have the same performance for binary centroids (processing codes 1 and
2). However, in case of the frequency based centroids the cover'coeffi-
cient concept outperforms the similarity measure considerably (compare
the RC values for the porcessing codes 3 and 4). This can be attributed
to the fact that the coupling coefficient concept considers the distri-
bution of a query term among the centroid vectors. However, the simi-
larity concept only considers the common terms between a particylar

query and a document.

The recall-precision outputs for the full search and the CBR
searches are given in Table 7.6-3 and Table 7.6-b through Table 7.6-e,

respectively.

- 220 -

The full search with the coupling coefficient and the Dice's
coefficiént begins with considerably high precision values. The
precision values with the matching function using the coupling coeffi-
cient are better than the precision values with the matching function
using the Dice's coefficient (six observations oyt of ten, where the
higher -better- precision values are indicated with a bar at the
left hand side of the associated precision value). This is an indica-
tion for the effectiveness of the coupling coefficient as a matching

function.

The findings of the CBR searches (Table 7.6-b through Table 7.6-e)
can be used for the evaluation of the algorithms, centroid generation

policies, and the matching functions :

(a) Evaluation of the algorithms: The precision va]ues‘associated
with the Algorithm-1 are better than the precision values associated
with the Algorithm-2 in processing codes 1, 2, and 3. However, the
above argument is false for the processing code 4. It can be said that
Algorithm-1 is preferable with respect to Algorithm-2. The effectiveness
of the clustering algorithms can also be seen by a comparison with the
full search results. The CBR precision values are always compatible
with them, moreover the precision values associated with the Algorithm-1
are better than the full search precision values (except the results of

processing code 4),

(b) Evaluation of the centroid generation policies: For this
purpose one should examine the results corresponding to the processing
code 1 and 2 (since for these cases binary centroids are used).
Although the centroid vectors of Algorithm-1 is rather long (see Table
7.2 for a statistics of centroid vector lengths) the precision values
associated with it is better (compare the recall-precision values of

- 221 -

TABLE 7.6 - Recall - Precision Values for the Experiments

a) Full Search
Recall Precision (CC) Precision (DC)
0.1 | 0.8426 0.8352
0.2 0.7880 | 0.8399
0.3 | 0.7889 0.7242
0.4 0.6694 | 0.6743
0.5 0.6311 0.5939
0.6 0.5777 0.5113
0.7 0.4633 0.4239
0.8 0.3201 0.2946
0.9 0.2208 0.2379
1.0 0.2097 0.2207

the Algorithm-1 and Algorithm-2).In the IR Titerature, it is always
pointed out that Tonger centroid vectors could lower the precision
values. However, the results of the experiments are falsifying the
above statement. This shows the effectiveness of the centroid genera-

tion policy associated with the coupling coefficient concept.

(c) Evaluation of the matching functions : In order to have a
decision for the matching funétions, one should compare the recall-
precision values of the Algorithm-1 (Algorithm-2) corresponding to
the processing codes 1 and 2, and similarly 3 and 4 (the processing
codes 1, 2 and 3, 4 are compatible in terms of the centroids used).
The performance of the matching function associated with the coupling
coefficient is considerably better. This states the suitability of the
coupling coefficient concept for query-centroid (document) correlation

evaluation.

- 222 -

It is also possible to make an "all together" evaluation for the
algorithms, centroid generation policies, and the matching functions.
An inspection on the results shows the superiority of the algorithm
(Algorithm-1), centroid generation policy, and the matching function

associated with the coupling coefficient if they are used all together.

TABLE 7.6 - Recail-Precision Output for the Experiments (continued)

b) Processing Code -1 (BCCC) | ¢) Processing Code - 2 (BCDC)
Recall Precision (A1) Precision (A2) | Precision (A1) Precision (A2)
0.1 0.9028 0.8228 0.8509 0.7739
0.2 0.8041 0.7538 0.7963 0.7047
0.3 0.7594 0.6469 0.7083 . 0.5179
0.4 0.6762 0.5546 0.6157 0.4778
0.5 0.5251 0.4801 0.5275 0.3838
0.6 0.4291 0.3365 0.4625 0.3210
0.7 0.3890 0.2854 0.4000 0.2756
0.8 0.2672 0.2138 0.3067 0.2269
0.9 0.2614 0.2138 0.2811 0.2269
1.0 0.2347 0.2138 0.2526 0.2269.
d) Processing Code - 3 (FCCC) e) Processing Code -4 (FCDC)
Recall Precision (A1) Precision (A2) | Precision (A1) -Precision (A2)
0.1 0.9398 0.8611 0.7094 0.7937
0.2 0.8741 0.8374 0.6130 0.6248
0.3 0.8025 0.7277 0.4641 0.5106
0.4 0.7062 0.5520 0.4192 0.4538
0.5 0.5929 0.5237 0.3311 0.3885
0.6 0.4291 0.4361 0.2687 0.3172
0.7 0.3548 0.3431 0.2478 0.2624
0.8 0.2672 0.2770 0.2207 0.2570
0.9 0.2614 0.2264 0.2207 0.2388
1.0 0.2347 0 0.2207 0.2207

.2079

- 223 -

7.4. SUMMARY AND CONCLUSIONS

In this chapter the information retrieval behavior of the two
partitioning type clustering algorithms are analyzed. In order to

deal with the first order variables a single Tevel clustering is used.

In the evaluation experiments, a collection of 167 documents and
18 queries were used. The characteristics of the document collection,

queries, and the generated clusters were illustrated.

In the evaluation, the clustering algorithms, the centroid genera-
tion policy associated with the Algorithm-1, and the matching function
associated with the cover coefficient concept were found effective.
Although the Algorithm-1 is a one shot algorithm (i.e., no iterative
optimization is associated with it) its performance is superior to
the performance of the Algorithm-2. The evaluation experiments show
the validity of the cover coefficient concept for clustering and the

validity of the Algorithm-1 for information retrieval.

- 224 -

8. ADDITIONAL CONCEPTS/METHODOLOGIES THAT UTILIZE
COVER COEFFICIENT CONCEPT

In this chapter various uses of the cover coefficient concept
will be introduced. The concepts/methodologies of this chapter are
the by products of the. cover coefficient‘(decoup]ing/coup1ing coeffi-
cient) concept. The introduced concepts/methodologies can be used in

an advanced experimental IR system.

In this chapter, firstly, a methodology for showing the corres-
pondence of document and term clusters is proposed. In information
retrieval literature, this correspondence is usually assumed. However,
there is no study to show this correspondence. Therefore, the method-

ology proposed here is of pioneering nature.

In the second section the concept called "term discriminator"
is revisited and a new measure based upon the cover coefficient concept
is proposed. The new metric is computationally cheaper and very
meaningful. In connection with this, in the third section, an iterative
algorithm for finding the optimum weights of indexing terms is
illustrated. The algorithm utilizes the user assigned weightsas input
and optimizes them by using the new concepts of term discrimination
value and the identical concept for documents, which is the document

discrimination value.

- 225 -

Section four presents the use of the C' matrix for the construc-
tion of effective indexing vocabularies. In the methodology proposed,
very frequent and infrequent terms are mapped into terms which have

better indexing capability.

8.1. ON THE CORRESPONDENCE OF DOCUMENT AND TERM CLUSTERS

In Chapter 3 it is shown that the number of document clusters
(nC) and the number of term clusters (né) are identical if one
employs the cover coefficient concept for determining the number of
clusters within a collection (nC = 151 8 = i§1 6%). This property
also implies that the clustering of documents (terms) is nothing but
also the clustering of terms (documents). A similar property is
observed in Crouch's algorithm for clustering of documents 127] (This
algorithm is briefly introduced in Section 3.3.6). However, in Crouch's

case the clustering process was order dependent and there was no

analytical formula for the number of clusters.

Testing of the correspondence of term and document clusters can

be done in various ways. Two of them are presented in the following :
First approach :

a) Obtain the document clusters : Dc
b) Obtain the term clusters : Tc

c) Find the term clusters implied by the document clusters : Té
For this purpose (i.e., as Té), the document cluster centroids

can be used.

d) Find the document clusters implied by the term clusters : Dé
Similar to step-c, for this purpose, the term cluster centroids
can be used. Notice that, definition of term cluster centroids

will be made by using the documents.

- 226 -

e) Find an association measure between Dc:Dé and Tc:Té
Second Approach :

a) Obtain the document clusters : Dc.

b) Obtain the term clusters : Tcu

c¢) Recluster the documents by assigning them to term clusters : Dé.
d) Recluster the terms by assigning them to document clusters : Té.

e) Find an association measure between Dc:Dé and T :Té.
c

In similarity association, one should use a method like the Rand's or
Goodman-Kruskal's coefficient because one cannot assume a one to one
correspondence between the c1usters of DC:Dé and TC:Té. In the first
approach, the clusters Dé and Té will be overlapping type. The
Goodman-Kruskal's coefficient is defined for partitions. Therefore

it cannot be used. The Rand's coefficient is also defined for parti-
tions, however, it can be used for overlapping clusters after some
minor modifications IBO]. In the second approach, Dé and Té are the
partitions. Therefore, both the Rand's and Goodman-Kruskal's coeffi-

cients can be used directly.

In the second approach, during document assignment process
(step-c) one could apply the cover coefficient concept again. A
document to be clustered can be assigned to the term cluster which
covers it maximally. For this purpose construct a matrix (say matrix
A) whose first N, rOWs correspond to term clusters. The entry aij is
T if term-j is assigned to cluster-i. The row numbers nc+1 to N+
correspond to the rows of the original D matrix, where each row of

the D matrix corresponds to a document. In constructing the clusters

of Dé, a document will be assigned to the term cluster which covers

- 227 -

it maximally, i.e., assign document-i to the term cluster-j where j
is the second index of the entry chosen by the maximum function
C }. It is assumed that a C matrix is

max{C .,C

n+i,1> “n +i,2°"" n_+i,n

c c C c
created from the A matrix. A similar approach can be used for con-

structing the Té.

It is obvious that a high degree of association between DC:Dé
and TC:Té is also an indication for the correspondence of term and

document clusters.

8.2. THE USE OF THE COUPLING COEFFICIENT CONCEPT FOR TERM
. DISCRIMINATION PURPOSES

‘The study for finding the importance of indexing terms is one
of the leading activities of information retrieval field. The metric
called "term discrimination value" is well known [88,92|. This metric
is usually computed by first creating a centroid, G, for the document
collection. Each entry of G, gj, (j=1,...,n) 1is then defined as the

average weight of term-i in all of the m documents :

d...
1 W

I~

[
S[—

i

The centroid G is used to calculate the space density function, Q,
defined simply as the sum of the similarity coefficients between

centroid G and all documents Di’ that is,

)
I
o~

T ~13

S(G,Dj). (0 <S<1,0<Q<m, where k is a

1 constant)

J

The space density of the collection is then calculated once more,

after removing term-k from all document vectors, call this new Q

- 228 -

the Qk. If tk is a good discriminator then this will Tead to Qk:>Q.
Since the deletion of a term, which makes documents more distinct,
will increase the similarity among documents. For poor discriminators
the reverse will be true. The discrfmination value of tk can be taken
as DVk = Qk-Q]88,92!. According to this metric, it is seen that the
best terms have average document frequency-neither too high nor too
Tow-. The bad terms (discriminators) have high collection frequency,
and are present in most documents of a collection. Zero discrimination

values are obtained for very low frequency terms |92, p.69].

A very efficient algorithm that computes discrimination values
of terms is proposed by Crawford [22|. This algorithm requires 5t,
t, 2t, 2t, 4t multiplications, additions, divisions, square root
operations, and subtractions, respectively (where t is the total
number of term assignments, i.e., t = .§1 .21 dij in terms of our D
matrix-see Chapter 3-). B

In the remainder of this section, a method for using the coupling

coefficient concept for term discrimination will be proposed and the

findings of an experiment will also be presented.

According to the coupling coefficient concept, the number of

clusters within a collection can be found as follows :
m m
ne=) 6:=) o, x(d, «8, +d. %8, + ... +d. %8)

(The definitions for a, B and the derivation of the formula for ne
can be found in Chapter 3.) If a term, tz’ is deleted from the
description of documents, its contribution for n. can also be deleted

, as follows :

to obtain the new n_, n
C 2C

- 229 -

..+d. *R +d

R T T R T Y,

2+1 n

H I~

3
Noc ox(dy «8 +d,) *8

i=1

where a? indicates that in the description of di (i=1,...,m) the

di.)'l: (a?l—d.z)—%
j=1
i=e

M SN

existence or tz is omitted. In other words, a? = (

A way of calculating the n__ is the following

c

In the above formula the term -d1£~hﬁz eliminates the contribution

of term-2 on N, e via its individual term generality (82 = 1/tg).
%

Gi/ai eliminates the contribution of term-2 on Noe due to its effect

~on depth of indexing (ai = 1/Xd.); a? reintroduces the effect of the
modified depth of indexing. It }s obvious that the above formula for
Noc is extremely inefficient. Notice that not all of the documents

contain the deleted term, tz‘ After this observation one may use the

value of nC to calculate nzc'

8.
2 i)
| [oy * (&;' iy * By -6,]’\V/dieDz

Ii

where, tgz = [DQI and D, {d, !dieD and diz = 0}, i.e., tgz is the
generality of term-2 and D is the set of documents which uses t,-

2
In the above formula the contribution of a document on the number of
clusters is deleted (by term—éi) and then the contribution of the
same document is reintroduced by disregarding the existence of term-g.
(If the D matrix is weighted, then one should replace diz with d?z in

the above formula -refer to the general formula for Cij')

- 230 -

By deleting term-g, it is expected that there will be a change
in the number of clusters. It is expected that the deletion of the
terms which has more importance (better discriminators) would decrease
the number of clusters by decreasing the decoupling coefficient of the

documents and/or terms, i.e., n < nC (Notice that the number of

2C
clusters is given by the product of the number of documents-~terms-

with the overall decoupling of the documents-terms-, i.e.,

N =MmMx§ = n«¢&'). The decrease in the number of clusters indicates
that the documents (terms) of the D matrix are more similar to each
other. Conversely, the deletion of the terms with less significance,

or correspondingly worse discriminators, would increase the number

of clusters, i.e., nzc:>n. The terms which do not have any significance

for document description (i.e., the non-discriminators) would not

change the number of clusters in the collection, 1i.e., Nee = N

After the above explanation, the term discrimination value for

term-2, DVQ, would be defined as follows :

By this formula, better, worse, and non-discriminators will have a
DV value of DV>1, DV<1, and DV = 1, respectively. The value of

DV2:>D, since Ne and n (2=1,...,n) are always greater than zero.

Lc

The computational aspects of the new metric will be illustrated
in terms of the computation of Nes Nyeo and sz' For this purpose the
total number of operations (additions, subtractions, multiplications,

and divisions) will be computed :

- 231 -

a) The computation of ne a's and 8's require 2xm*n additions
with —an appropriate data structure (1like inverted file this)
this will reduce to 2t (i.e., the total number of term
assignments) and m and n division, respectively. The summa-
tion for n. will require (t+m) additions and (m+t) multi-
plications (t counts for dij'*Bj’ where D is assumed as

weighted).

b) The computation of n : in this computation all n c values

Lc L

(2=1,...,n) can be initialized as nC and then the nZC values

can be found by considering the documents one by one, i.e.,

the effect of a document is reflected on each nzc for the

terms used by this document. This means that a? and Si/ai
will be computed once. Where they involve 2 divisions,

1 subtraction and 1 division, respectively. The computation
of Noc involves 1 addition, 2*Xdavg subtractions, 2xX

davg

multiplications (D is assummed as weighted), and Xdavg

additions. Xdavg is the average depth of indexing (i.e., t/m).
For all documents this makes (m+t) additions, (m+2t) subtrac-

tions, 2t multiplications, and 3m divisions.

c) The computation of DV, : involves n divisions (for ¢=1 to n).

The overall computational requirement is as follows :

Additions : (3t+m) + (m+et) + (0) = 4t + 2m
Subtractions : (0) + (m+2t) + (0) = 2t + n
MuTtiplications: (m+t) + (2t) + (0) =3t + m
Divisions : (m+n) + (3m) + (n) = 4m + 2n

- 232 -

If we assume a weighted D matrix the additional cost due to this
will be t and t multiplications, respectively, for the computation of

n_and n (Notice that these new costs count for d..*B..).
c C 13 1J

A comparison of the computation of term discrimination values
with respect to cover coefficient and similarity concepts |22] is
given in Table 8.1. In this table the value of t>>m and n. Hence,
the computational requirements for additions, subtractions, multiplica-
tions, and divisions can be approximatedkas 4t, 2t, t, and 0, respec-
tively. Furthermore, the method proposed does not require any square
root operation which inherently involves iterations requiring multi-

plications and divisions.

TABLE 8.1 - The Computation Involved for the Term Discrimination
Values with Respect to Cover Coefficient (DV1) and
Similarity (DV2) Concepts.

Operation DV1 DV2
-Add. 4t(+2m) t
Subt. 2t(+m) 4t
Mult. 3t(+m) 5t
Div. (4ms2n) 2t
A - 2t

The overall complexity of the computation can be given in terms
of the multiplications and divisions involved. Accordingly, the
complexity of the whole operation would be 0(t) or more precisely
0(3t). The computational simplicity of the method and its very evident

meaning deserves consideration to be checked as a measure for term

- 233 -

discriminator. If we assume a binary D matrix, the multiplication

for the aij » B would drop. This would decrease the number of multy-
plications from 3t to t (t number of less multiplications both for

Ne and ngc). The same assumption for the discrimination value

tion based on the similarity concept would also decrease the number

of multiplications from 5t to 3t (see equation-12 of [22|). The compu

computational requirement of DV in terms of cover coefficient concept

is always Tless than the one based on similarity concept.

8.2.1. An Experiment for Checking the Consistency of the Two

Term Discriminator Measures

In this section an experiment for checking the consistency of
the two term discriminators will be illustrated. For the experiment
a FORTRAN program has been written and the term disgrimination values
are computed according to the Crawford's algorithm [22] and the proposed
new method using the cover coefficient concept for all terms of a
binary D matrix. After this, the terms are sorted according to their
discrimination values. The. consistency of the two measures can be
compared by checking the rank of the terms in the two sorted lists.
It is obvious that, the overall ranks of the term groups according
to these. two metrics might be rather consistent; however, any two
terms may not always have exactly the same rank in the two lists.
Therefore, it would be very strict to expect for equivalent ranks.
Hence, it is better to use a range of ranks to check the consistency.

This will be illustrated in the experiment which follows.

- 234 -

The experiment is performed on the D matrix of the T4 experiment
discussed in Chapter 4. The D matrix for the T4 experiment consists
of 167 documents and 543 terms (The program which creates the D
matrix, GENMAT, is firstly written on an IBM machine by FORTRAN. The
GENMAT 1is translated into FORTRAN77 for the Burroughs machine which
is available at the METU. Because of this reason, there is a slight
difference on the D matrix which is used in this experiment-the number
of terms is 543 in the D matrix of this experiment while it was 539
in the D matrix of the T4 experiment-. However, this difference in
the D matrix does not change the results of the T4 experiment). The

rank difference comparison of the two metrics is given in Table 8.2.

TABLE 8.2 - The Rank Difference Comparison of the Two Term Discrimina-
tion Measures for the D Matrix of the T4 Experiment.

AbsoTute Rank No of % of No of Observ. < % Terms of|
Difference Observations Observations Rank Differenca <Rank Dif.

0 12 2.9 16 2.9
-5 - 143 26.3 159 29.2
6-10 94 17.3 253 46.5

11-15 56 10.3 309 56.8
16-20 57 10.5 366 67.3
21-25 35 6.4 401‘ 73.7
26-30 26 4.8 427 78.5
31+ 116 21.4 543 100.0

- 235 -

Table 8.2 states that 16 terms (2.9%) of the total 543 terms
have exactly the same ranks; 143 terms have rank differences of 1 to
5 which makes the 26.3% of all the terms, and 159 terms (29.2%) have
a rank difference less than or equal to 5. The table also shows that

309 terms (56.8%) have a rank difference less than or equal to 15.

The average rank difference for all terms is also calculated

and found as 19.39.

Another way of checking the consistency is to compare the average
rank of "k" terms at the beginning and at the end of the one of Tists
and to compare this average with the average rank of the same terms
in the other list |88|. This is done for k=25 and depicted in Table
8.3. In Table 8.3 DV1 and DV2 indicate the term discrimination values,
for cover coefficient and similarity concepts; respectively. The
average rank for the first 25 terms is obviously 12.5, for the last
25 terms (terms 519 through 543) it is 531. The first 25 terms of the
discrimination measure according to the cover coefficient concept has
an average rank of 13.6 in the measure according to the similarity
concept. From all the entries of Table 8.3 it is observed that the

term ranks are rather consistent for the first and last 25 terms.

TABLE 8.3 - Comparison of Average Rank for the First 25 and Last 25
Terms of the D Matrix for the T4 Experiment.

E
cover ..
DV1 (coef.) DV2 (simil.)
First 25 terms 2.5 13.6
Last 25 terms 531.0 521.1
First 25 terms 14.4 12.5
Last 25 terms 520.0 531.0

- 236 -

In the experiments it is observed that there is an inverse
correlation between the generality of a term (tgj = 1§1 dij) and its
value as a discriminator. The terms with high genera]gty (with a
maximum of 29) are bad discriminators, the terms with the average
generality (about 6) are non-discriminators, and the terms with 1ow
generality (with a minimum of 3) are good discriminators. This is
the reverse of what is stated in the previous publications |22,88,92],
since the situation observed for the terms with the average generality
and low generality should be reversed. No correlation is observed
between the decoupling coefficient of a term (6%, i=1,...,543) and
its value as a discriminator. This is valid for both of the discrimina-
tion measures. However, in an experiment with larger D matrix one
~would expect to observe the terms with the average frequency and with

the average decoupling value as good discriminators.

The experiment depicted above shows the compatibility of the
term discrimination value based on the cover coefficient concept with
respect to the term discrimination value based on the similarity
concept. The method proposed in this section requires less computation.
This properties make the new approach attractive for use in the IR

systems.

8.3. AN APPROACH FOR FINDING THE OPTIMUM WEIGHTS FOR INDEXING TERMS

In this section an iterative algorithm for finding the optimum
weights of indexing terms is illustrated. The algorithm utilizes the
user assigned weights as the input and optimizes them by using the

concepts of term and document discrimination values.

- 237 -

In the previous studies, it was observed that the better term
weightiné strategies will decrease the similarity among the documents
of a collection. Such strategies will make the clusters more separated
from each other, while at the same time will make the members of a
cluster more close to each other 187,88,91,92|. In other words, better
indexing strategies will increase the homogeneity within clusters and
the heterogeneity between clusters since the document clusters are
based on a concept of cohesion among the members. The algorithm to

be defined in this section will use the coupling coefficient concept.

For the implementation of the method, a concept called "signif-
icance value" of the documents will be introduced. Similar to a term,
deletion of a document may change the number of clusters. After the
deletion of a document, dy, inorder to find the new number of clusters,
Nkcs for the collection, a computation similar to the one illustrated
in Section 8.2 will be performed. This computation is illustrated in

the following :

(The definitions for a, B and the derivation of the formula for n.
can be found in Chapter 3). If a document, dk’ is deleted from the
document collection, its contribution on n. can be deleted as follows

to obtain the new n. (nkc)

n
oDk
e 1.2151(‘111'0‘1*‘1210‘2*'"*dk~1,1 o1 eeg 1% g T g

where B? indicates that on the description of ti (i.e., the jth column

- 238 -

of the D matrix) the existence of d, is disregarded, i.e.,
m

k _ -l -1 -1 - . .
8. = (£§1 dgi) = (Bi dki) . Similar to e which is found for

2=k
the terms, an efficient way of calculating e by using the n. is

the following :
d i
k 8. T
_ : k 1 et
Mee = M * _Z_ [Bi *(gm - dy xo) 51J’\7t1€dk

where the summation is done for the terms which appears in the
description of the document-k and Xdk is the depth of indexing for

document-k.

Similar to the nzc case, _dki*ak eliminates the direct contribu-
tion of document-k via its depth of indexing (ak = 1/Xdk); 6%/81
eliminates the contribution of document-k due to its effect on
individual term generalities (Bi = 1/tgi); B? re-introduces the

effect of deletion of document-k on individual term generalities.

Like that of the term discrimination concept, it is expected
that the deletion of the significant documents would decrease the
number of clusters by decreasing the decoupling coefficient of the
documents and/or terms, 1'.e.,,nkc>nC (Notice that the number of

clusters is given by the product of the number of documents-terms-

with the overall decoupling of the documents-terms, i.e., nC=m*6=n*6').

The decrease in the number of clusters indicates that the documents
(terms) of the D matrix are more similar to each other. Conversely,
the deletion of the documents with less significance would increase
Mo i.e., e > e The documents which do not have any significance

in the collection would not change the number of clusters, i.e.,

- 239 -

Aftgr the above explanation, one could define the document
significance value for document-k, SVk, as follows :

n
sy = %

k Nec
The interpretation of the SV is 1ike that of DV. In other words,
SV>1, SV<1, and SV=1 will correspond to more, less, and non-
significant - documents, respectively. It is obvious from the defini-
tion of SV that,it is the counter part of DV.(For a document one can
not mention about its discrimination value, but one can say the
significance of a document. For that reason the concept "significance

value" is introduced.)

For the modification of the weight of tj in d1 (i.e., dij) the

product SVi*-DVj will be used.

The above product will be referred to as "weight modification factor"

for theweight of term-j in document-i and it will be shown by Aij’

The D matrix will be redefined as follows :

dij = Aij * dij for di=1,...,m and j=1,...,n.

The rationale of using the above approach for term weight modifi-

cation is the following :

a) n. <n n. <n_: occurence of a good discriminat .) 1in
) ic <Nes Nye <N g criminator (tJ)

a significant document (d1> should be more important than the

- 240 -

occurrence of a worse discriminator- -DV2<:DVj— (better
aiscriminator-z —DV£:>DVJ—) in a more significant document-k

—SVk >SVi— (in a less significant document-k -SVk<<SVi-).

b) Nic <Neo nje<ng @ occurrence of a bad discriminator (tj) in
a significant document (di) should be more important than the
occurrence of a bad discriminator (Tike ‘term-j) in a Tess

significant document-k —SVk4<SVi—.

. . > : f a good discriminator (t.) i
Nic>Nes n;. >N, @ occurrence o good disc nato (tJ) n
a non-significant document (di) should be more important than
the occurrence of a worse discriminator-g -DV2<<DVj- nonsig-

nificant document 1like di'

3

Nic Ne Njc Nc + occurrence of a bad discriminator (tj) in
a non-significant document (di) should be less important than
the occurrence of a bad discriminator in a significant docu-

ment or the occurrence of a good discriminator in a bad document.
The product svi* va, i.e., Aij will satisfy the above .requirements.

The optimum weights of the indexing terms will be found by an

iterative method. The following algorithm will be used for this purpose.

sc = .false. /xstopping criterionx/

repeat ;
Find DV2 (4=1,...,n), SVk (k=1,...,m);
dij = Aij * dij (i=1,...,m; j=1,...,n);

Set sc according to the new D matrix definition;

until sc ;

- 2471 -

In each iteration of the above algorithm it is expected that
there will be a feedback from the previous state of the D matrix and
this feedback process will continue till D reaches to the steady state
condition which is indicated by setting the sc (stopping criterion)

to true. (see Figure 8.1).

Calculate
DVj(j=1,...,n)

SVi(i=],...,m)

original D ¥ optimized D

[

new D Aij

Figure 8.1 - The feedback process in modifying the D matrix

At the iteration step that obtains the optimum, it is expected
that the average coupling of the cluster members with the correspond-
ihg cluster seed (WC) and the normalized coupling of the cluster

members (WN) will reach a steady state. ¥C and vy, are defined as

N
follows :
n- nu
Ne €5 e CJ _
D S P Y N
y = J9=1 =1 "3 _j=1idi=1 J
c n
c n-n
E Ne. “Ne ‘
Jj=1 J
lyc
N

- 242 -

In the above formula, na is the number of documents in the jth

J
cluster (di;tdj’ cluster seeds are assumed as the natural members of
the clusters, where d1 is the document to be clustered and dj is the

cluster seed).

The increase in ¥, means that documents within a cluster will
be more and more similar to the cluster seeds and consequently more
similar to the other members of the clusters. The increase in ¥y is
not only due to the increase in WC but also due to the decrease in v.
Since collection documents become Tess and less similar to (or

decoupled from) each other.

The stopping criterion of the algorithm can be one of the

following :

a) The number of clusters of two consecutive iterations are equal

to each other.

b) The documents chosen as the cluster seeds in two consecutive
itreations are identical, or at least have a number of common

seeds greater than a given threshold.

c) If one sorts the sign%ficance value of the documents in two
consecutive iterations, then the ranks of the documents in
two consecutive iterations should be compatible. For this
purpose a rank consistency measure Tike that of the previous

subsection can be utilized.

d) Generate the cluster of documents after each step and check
the stability of the clustering process according to a cluster
stability criterion |2,37,82| and/or observe WC and WN of the

clusters until they reach a steady state.

- 243 -

The .complexity of the weight optimization algorithm can be found

as follows :

Computation of P (i=1,...,m) : O(m*navg), which is also equal
to 0(t).

Computation of 5% (i=1,...,n) : O(m*navg)’

Computation of n . (k=1,...,m) : U(m*navg)'

Computation of Noe ‘(z=1,...,n) : O(m*navg).

Computation of new dij (i=1,...,m 3 j=1,...,n) : O(m*navg)'

Computation of the stopping criterion : The first three criteria are
less expensive therefore preferable. The computation of ne is very
easy. The computations of (b) and (c) firstly require the calculation
of seed powers and significance values of the documents. The computa-
tional complexity of the seed powers is 0(m), the significance values
are already taken into consideration. The sorting activity will have

a complexity of O(m«logm). The overall complexity for one iteration

is then

0(5*rn*navg) + {0 or 0(m) or 0(m7logm)}.

- 244 -

8.4. THE USE OF THE C' MATRIX FOR THE CONSTRUCTION OF EFFECTIVE
INDEXING VOCABULARIES

It is known that not all of the indexing terms are good for

document representation |88, 92, 106|. Because of this reason, it is

necessary to make some transformations on index terms to make them

better document descriptors |88|. For this purpose, the following two

approaches are used :

a) Try to use very frequent terms to construct a higher order

term or continuous word phrase. This means that if ti and tj
are very frequent terms (tgj’ tg'>>tg), -where tgi (tg_) and
tg indicate the generality of term-i (term-j) and the average
term generality, respectively- then do not use them in the D
matrix, but use a new term tij instead of them. Obviously,
there should be a considerable association between t. and tj
for the construction of t].j (This concept can be used among

n number of terms, where n>2). The terms 1like tij will be
called fcomposite terms" in this section (the sequence of the

terms in a composite term is immaterial, i.e., AB = BA).

The use of very infrequent terms also does not have a good
contribution to the effectiveness of an IR system. Instead
of using these terms a new "virtual term" is introduced. Very
infrequent terms, which are assigned to the same term cluster

will be represented by a single "virtual term".

The above process are referred to as "right-to-left" and "left-

to-right" transformations, respectively |88, p.43]. The reason for

this is depicted in Fiqgure 8.2. By left-to-right transformation, 1ow

- 245 -

(8:21) | (8120)
Low Frequency Medium Frequency , High Frequency

/iiiina L] LI,

Figure 8.2 - Term characterization in document frequency ranges.

frequency terms will have medium frequency. The same argument is valid
for the right-to-left transformation. The effect of these processes

on recall and precision are also shown in the figure.

I'f one considers the decoupling coefficients, 6% (i=1,...,n),
of the terms, it will be observed that very frequent (infrequent)
terms have a very low (high) 6% value (0 < 6%5 1). For the above

vocabulary transformation one can use the foi1owing methods.
Treatment of very frequent terms

a) Obtain Gi of all terms, i.e., i=1,...,n.

b) Sort the terms in ascending order according to their 6;
values. By this way very frequent terms will appear at
the beginning of the list. Select first n, number of
terms for deletion ?nd can be specified beforehand or

can be found experimentally).

¢) Resort the selected terms according to their seed power,

pf==65WfBTf where BTI is the generality of term-i.
1 ii7°1 i

d) The consecutive terms of this newly sorted list can be
used for constructing the composite terms. Assuming that
the terms ti and t, are consecutive, in order to create

J

tij from these two, the following conditions should be

- 246 -

= P;, Si = 6;, Céj = cfi. Furthermore, the

mutual coverage of the terms (cij and c;i) should have a

7

satisfied : p;
value comparable with 6£ (6;).

Notice that step-c will put the terms which have the same or close
seed power consecutively into the resorted list. If the consecutive
terms, satisfy the conditions set forth in step-d, then this means
that the terms have the same pattern of distribution among the docu-
ments. If C%j’ Cji have a value comparable with 5% (63) this means
that, these are assigned to the same set of documents. Therefore,
they can be used for constructing a composite term tij' Although the

above conditions are given for two terms they are easily for more

than two terms.
Treatment of very infrequent terms

a) Obtain the 6; values for all terms, i.e., i=1,...,n.

b) Sort the terms in descending order according to their Si
values. The terms with very high decoupling coefficient
and with very little indexing Gapability will .appear at

the beginning of this -1ist.
c) Obtain the term clusters.

d) The terms which appear at the beginning of the sorted
list will be mapped into "virtual terms" if they appear

in the same term cluster.

- 247 -

9, SUMMARY AND CONTRIBUTIONS OF THE THESIS
AND DIRECTIONS FOR FUTURE RESEARCH

9.7. SUMMARY

The thesis, firstly presents the information systems and in par-
ticular information (document, text) retrieval systems. This presenta-
tion also contains the information explosion problem, the evaluation

criteria and the hardware solution for information retrieval systems.

After this, the concept of clustering and a model for seed
oriented clustering are presented. This is followed by the illustra-
tion of two partitioning type clustering algorithms. Both algorithms
use the "seed power" concept for selecting the cluster seeds; however,
the assignment of documents to the seeds is different. The first algo-
rithm uses the new "cover coefficient" concept and it is a single-pass
algorithm. The second one uses the Dice's similarity measure for docu-
ment assignment to the cluster seeds and is a multi-pass algorithm. A
new centroid generation method in connection with the cover coefficient
concept and an illustration of both of the algorithms are also presented.
A cluster maintenance algorithm for dynamic (expanding) document envi-
ronments is presented. The thesis also includes the complexity analysis

of the algorithms.

The similarity and stability analysis of the clustering algorithms

are presented with respect to two different metrics. A set of experiments

- 248 -

using a document collection consisting of the titles, abstracts, and
keywords of 167 ACM TODS publications are performed and the findings

of them are presented in detail.

In the experiments a close relationship is observed between the’
policy of indexing and the clustering behavior. These’re1ationships
are formulated by using the concepts of the indexing theory, such
as depfh of indexing and term generality (In the thesis, these rela-
tionships are referred to as "indexing-clustering association™ basic

relationships.).

For the text retrieval operations a set of new instructions are
introduced into the RAP database machine. The implementation of the
typical text retrieval operations with the RAP programs incorporating
the new text retrieval instructions is presented. Performance of the
RAP database machine during the execution of the new instructions is
examined. In the RAP.3 architecture the term matecher and query resolver

subsystems of a text retrieval computer are combined into one.

A model for integrated fact/document information systems, which
aims to synthesize a relational DBMS and IRS capable of context.sensi-
tive full text searches, is presented. The IR system relies on a
clustering subsystem for database partitioning and relation fragmenta-
tion. The support architecture for the context sensitive search opera-

tions is the RAP.3 database machine.

A comparative performance analysis of the single-pass and the
multi-pass clustering algorithms in information retrieval is presented.
The performance of both of the algorithms validates their usage for

information retrieval purposes.

- 249 -

Various new concepts/methodologies based on the cover coefficient
concept are introduced. These are the following: (a) a methodology
showing the correspondence of document and term clusters; (b) a com-
putationally cheaper method for "term discrimination” value; (c) an
iterative algorithm for finding the optimum weights of indexing terms;
and (d) the use of the C' matrix for the contruction of effective

indexing vocabularies.

9.2. CONTRIBUTIONS OF THE THESIS

The major contributions of the thesis can be summarized as

follows :

(a) Some new concepts for clustering algorithms are introduced;
these are : cover coefficient, decoupling coefficient (6), coupling

coefficient (¥), and cluster seed power (p),

(b) The identification of robust clustering procedures for the
partitioning type clustering algorithms is important, and the thesis
provides a novel algorithm for doing this by using the cover coeffi-
cient and cluster seed power concepts. Another clustering algorithm
has been developed to show the\validity of the use of the cover coeffi-

cient concept for clustering purposes.

(c) A new algorithm for the maintenance of clusters in dynamic
(expanding) document collections is proposed. This algorithm also uses

the cover coefficient and cluster seed power concepts.

(d) A novel centroid generation policy is introduced in connection
with the cover coefficient concept. A new methodology to test the

goodness of centroid generation policy is also presented.

- 250 -

(e) ‘A systematic evaluation of the stability and similarity of
two clustering algorithms is presented. This kind of evaluation of

clustering algorithms is usually overlooked in the literature.

(f) A set of dependencies, which are referred to as:indexing- .
clustering association" basic relationships, are observed in the
experiments. These observations state close relationship between
the policy of indexing and the clustering behavior. Such relationships

have not yet been encountered in the Titerature.

(9) The RAP.3 database machine is enhanced with the new text
retrieval instructions. Context sensitive free text retrieval opera-
tions are implemented by using the new instructions. It is observed
that the RAP.3 database machine when used in the IRS architecture
will considerably enhance the system efficiency; furthermore, it will
bring the capability of DBMS operations into the system. Hence the

system will easily become an integrated IR and DBMS.

The changes made in the RAP.3 is such that its performance in
the text retrieval operations is favorably comparable with the other

existing architectures.

(h) The thesis presented a new model for the integration of
fact and document retrieval systems. Unlike the previous studies
aimed at this purpose, which more or less reduce one system into the
other, the proposed model aimed to accomplish this integration by a

synthesis of the techniques and methadologies of both systems.

(i) Additional concepts/methodologies are introduced in conhnec-

tion with the cover coefficient concept.

- 251 -

9.3. DIRECTIONS FOR FUTURE RESEARCH

In this section, a 1ist of future research possibilities will

will be given

a) A proposal for cluster validity checking :

Testing cluster validity is one of the active research issues in
clustering analysis |32,33|. Here an intutive way of testing the cor-
rectness of n. and the validity of the generated clusters will be
illustrated. The method will utilize the maximal cover coefficient
concept for clustering. In the single-pass algorithm the test for
maximal coverage takes place between an ordinary (non-seed) document
and all the seed documents..The test procedure proposed here tests
maximal coverage among all documents (no discrimination is made among
the documents). The document which is maximally covéred by any other
document s assumed to appear in the same cluster. If there are more
than one candidates for the maximally covering document, the one which

has the highest seed power is chosen as the maximal cover.

The clusters generated by the above method wil] provide the
following : (1) a comparison of the number of clusters implied by this
method and implied by the cover coefficient concept; (2) a check to
see whether all the seeds determined by the seed power method appear
in different clusters in the above method; (3) a similarity analysis
of the clusters generated by the above method and by the single-pass

algorithm,

The validity analysis of the generated clusters requires rigorous
mathematical analysis 132,33,34], such as finding a hypothesis

testing. This is another possibitily for future research.

- 252 -

(b) Some observations on the C™! and C'C matrices :

The rows of the C matrix are Tinearly independent. This means
that klc1 +k2c2 +...-+kmcm==0 if ki =0 (i=7,...,m); where C.
(i=1,...,m) indicates the ith row of the C matrix. Because of this
property, the inverse of the C matrix does always exist. Each row sum
of the ¢™* matrix is equal to 1 (a formal proof is not provided yet).
After careful analysis of the ¢! matrix one may arrive at interesting
conclusions. It would worth to work on the ¢! matrix and to make

observations.

The summation of the entries of the CTC matrix is equal to m
(i.e., number of documents). This is trivial to prove. Since, if a
matrix A is obtained by the multiplication of BTB (B is any matrix
Without negative entries), then the summation of the. elements of A is
equal. to the sum of the square of the row summations. In the cle case,
the row sum of the ¢ matrix is equal to 1 by definition. Therefore,
squared sum of its row sums will be equal to 1. Furthermore, CTC is a
symmetric matrix,since it is the multiplication of a matrix and jts
transpose (Notice that the summation of the elements of cC' is not
equal to 1, since the summation of its elements wil] be equal to the

sum of the square of the co]umnisummations).

An entry of the CTC matrix, Cm’ is defined as follows :

2 2 _
" 21%C31> le2"°11*C12+°21*C12+C31*Csz‘

After these observations, it is easy to see that, C. s is the mutual

_ _.2
For example, for m=3, Cn =Ci;*C

coverage among documents di and dj. If =3, it is the independent coverage

- 253 -

of document-i. These properties of Cm may lead to interesting results.

The only drawback of ™! and C, matrices is their high computa-

tional requirements for creation.

(c) Cluster maintenance experiments :

In Chapter 4 an algorithm for cluster mainténance is proposed.
Some experiments can be employed to test the performance of the algo-
rithm. Such as c]ustering_a1] the documents (m) of the collection
together, then clustering the documents by parts, i.e., first clustering
the m, documents, then clustering the m, documents by the cluster
maintenance algorithm (where m==m1‘+m2). Then a similarity analysis
may be employed bétween these two clustering patterns and information

retrieval performance of the maintenance algorithm in terms of recall

and precision can be studied.

(d) Stemming in D matrix generation :
In the creation of the D matrix a stemming algorithm can be

incorporated for better language normalization 17, 84-pp.88-89].

(e) Physical database organization considerations for the clustered
documents :

The use of the integrated database management and information
retrieval system for very larde document collections requires an
efficient way of distributing the cluster documents on the backup
storage. The methodo]ogy to be 1ntroducedshou1dprov1de'uuafullut111za-
tion of the data channels among the RAP memory and the secondary storage
that will carry the document contents, i.e., it shoyld provide a uniform

distribution of the load among the data channels.

- 254 -

(f) The concepts/methodologies which are introduced in Chapter

8 can be tested experimentally.

(d) A11 of the concepts and the algorithms of the thesis can be

tested by the well known document collections of the IR literature.

- 255 -

REFERENCES

Akman, V. "Design and Implementation of the Front-end and Controller
Hardware/Software Systems for the RAP Database Machine." M.Sc.
Thesis, Dept. of Comp. Eng., Middle Fast Tech. Univ., August 1980.

Anderberg, M.R. Clustering Analysis for Application. New York :
Academic Press; 1973.

Angione, P.V. "On the Equivalence of Boolean and Weighted
Searching Based on the Convertibility of Query Forms " Journal of
the American Society for Information Science. 26(3-4):112-12431975.

Bates, M.J. "Information Search Tactics." Journal of the American
Society for Information Science. 30(7):205- 2145 1979.

Bertziss, A.T. Data Structures Theory and Practice, 2nd ed. New
York : Academic Press; 1975.

Bird, R.M., Tu, J.C., Worthy, R.M. "Associative/Paralle] Processors
for Searching Very Large Textual Data Bases". Workshop on Comp.
Arch. for Non-Numeric Proc., pp.8-16, May 1977.

Boyer. D.E., Moore, J.S. "A Fast String Searching Algorithm."
Communications of the Association for Computing Machinery. 20(10):
762-772; 1977.

Bookstein, A. "A Comparison of Two Systems of Weighted Boolean
Retrieval." Journal of the American Society for Information
Science. 31(7):240-247; 1980.

- 256 -

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bookstein, A. "Fuzzy Requests : An Approach to Weighted Boolean
Searches." Journal of the American Society for Information Science.

32(7) : 275-279; 1981.

Buchanan, B.G.s Dudas R. "Principles of Rule-Based Expert System."
In: Yovits- M.C. Ed. Advances in Computers. New York: Academic
Press; pp.163-210; 1983.

Can, F., Uzkarahan, E.A. "Text Retrieval with the RAP Database
Machine." Comp. Eng. Dept., Middle East Tech. Univ., Tech. Rep.
ISDB-10; June 1981.

Can, F., Ozkarahan, E.A. "A Clustering Scheme." Proceedings of
the Sixth Annual SIGIR Conference, Association for Computing

Machinery, Bethesda, Maryland, pp.115-121; 1983.

Can, F., Uzkarahan, E.A. "Two Partitioning Type Clustering Algo-
rithms." Journal of the American Society for Information Science.
35(5) : 268-276; 1984.

Can, F., Ozkarahan, E.A. "Similarity and Stability Analysis of
the Two Partitioning Type Clustering Algorithms." Journal of the

American Society for Information Science. 36(1): 3-14; 1985.

Can, F. "Bilimsel Arastirmalarin Vazgecilmez Araci, Bilgi Erisim
Sistemleri." Bilgisayar. 36: 42-44, 45-47; 1984.

Can, F., Uzkarahan, E.A. fBe1ge Erisim Sorununa Bir Yaklasim."
Bilisim'84 Bildiriler Kitabi. s.202-214, istanbul; 1984.

Chen, P.P. "The Entity-Relationship Model--Toward a Unified View
of Data." ACM Transactions on Database Systems. 1(1):9-36; 1976.

Codd, E.F. "A Relational Model of Data for Large Shared Data Banks."
Communications of the Association for Computing Machinery. 13(16):

377; 1970.

Copeland, G.P. "Editing Requirements for Database Applications and
Their Implementation on the Indy Backend Kernel." Fourth Workshop

on Comp. Arch. for Non-Numeric Proc., Syracuse, N.Y., pp.8-17;

Aug. 1978.

- 257 -

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Cormack, R.M. "A Review of Classification." Journal of Royal
Statistics Society. (A134):321-367; 1971.

Corneil, D.G., Woodward, M.E. "A Comparison and Evaluation of
Graph Theoretical Clustering Techniques." INFOR. 16:74-89; 1978,

Crawford, R.G. "The Computation of Discrimination Values."
Information Processing and Management. 11:249-253; 1975.

Crawford, R.G., Coughlin, L.A., Mayes, L.W. "MISTRAL/11 Users'
Manual." Techn1ca] Report 78-69, Queen's University, K1ngston,
Ontario, Canada; Feb. 1979.

Crawford, R.G. "The Relational Model in Information Retrieval."
Journal of the American Society for Information Science. 32(1):

51-64; 1981.

Croft, W.B. "Clustering of Large Files of Documents Using the
Single-Link Method." Journal of the American Soc1ety for Informa-
tion Science. 28:341-344; 1977.

Croft, W.B. "A File Organization for Cluster-Based Retrieval."
Int. Conf. on Info. Stor. and Ret, SIGIR. 13(1); 1978.

Crouch, D.B. "A File Organization and Maintenance Procedure for
Dynamic Document Collections." Information Processing -and

Management. 11:11-21; 1975.

Date, C. An Introduction to Database Management Systems, 2nd ed.
Reading Massachusetts: Addison Wesley; 1977.

Day, W.H.E. "The Complexity of Computing Metric Distances Between
Partitions." Technical Report No.7901, Memorial Univ. of
Newfoundland, st. John's, Newfoundland, Canada.

Dodac, A. "Design and Implementation of a Generalized Database
Management System-METUGDBMS." Ph.D. Thesis, Dept. of Comp. Eng.,
Middle East Tech. Univ., Sept. 1980.

Doszkocs, T.E., Rapp, B.A., Schoolman, H.M. "Automated Information
Retrieval in Science and Technology." Science. 208:25-30; 1980.

- 258 -

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Dubes, R., Jain, A.K. "Clustering Methodologies in Explanatory
Data Analysis." In: Yovits, M.C. Ed. Advances in Computers.
New York: Academic Press; pp.113-228; 1980.

Dubes, R., Jain, A.K. "Validity Studies in Clustering Methodolo-
gies." Pattern Recognition. 11:235-254; 1983.

Duda, R.0., Hart, P.E. Pattern Classification and Scene: Analysis.
Wiley, New York; 1973.

Everitt, B.S. "Unresolved Problems in Cluster Analysis." Biometrics.
35:169-181; 1979.

Everitt, B.S. Cluster Analysis. New York: Halsted Press Div. of
John Wiley and Sons; 1980.

Goodman, L.A., Kruskal, W.H. "Measures of Association for Cross
Classifications." Journal of the American Statistical Association.
49:732-764; 1954, '

Gotlieb, C.C., Kumar, S. "Semantic Clustering of Index Terms."
Journal of the Association for Computing Machinery. 15(4):493-513;

1968.

Hall, J.L., Marjorie, J.B. Online Bibliographic Databases An

Internationa]vDirectory, 2nd ed. 01d Woking Surrey, The Gresham

Press (Published by As1ib), 1981.

Harding, A.F., Willet, P. Indexing Exhaustivity and the Computa-
tion of Similarity Matrices. Journal of the American Society for
Information Science. 30:298-300; 1979.

Harris, J.L. "Terminology Change: Effect on Index Vocabularies."
Information Processing and Management. 15:77-88; 1979.

Hartigan, J.A. Clustering Algorithms. New York: John Wiley and
Sons; 1975.

Haskin, R.L., Hollaar, L.A. "Operational Characteristics of a
Hardware-based Pattern Matcher." Association for Computing
Machinery Transactions on Database Systems. 8(1):15-40; 1983.

- 259 -

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

Heaps, H.S. Information Retrieval Computational and Theoretical

Aspects. New York: Academic Press; 1978.

Hollaar, L.A. "Specialized Merge Processor Networks for Combining
Sorted Lists." Association for Computing Machinery Transactions
on Database Systems. 3(3):272-284; 1978.

Hollaar, L.A. "Text Retrieval Computers." Computer. 12(3):40-50;
1979.

Hollaar, L.A. "Hardware Systems for Text Information Retrieval.™
Proceedings of the Sixth Annual SIGIR Conference, Association

for Computing Machinery. Bethesda, Maryland, pp.3-9; 1983.

Horspool, R.N. "Practical Fast Searching 1in Strings;“ Software
Practice and Experience. 10(6):501-506; 1980.

Hsiao, D.K. "Database Computers." In: Yovits; M.C. Ed. Advances
in Computers. New York: Academic Press; 1980:pp.1-64.

Jardine, N., Sibson, R. Mathematical Taxonomy. London and New York,
John Wiley; 1971.

Jardine, N., Van Rijsbergen, C.J. "The Use of Hﬁerarchica]
Clustering in Information Retrieval." Information Storage and

Retrieval. 7:217-240; 1971.

Knuth, D.E., Morris, J.H., Pratt, V.R. "Fast Pattern Matching in
Strings." SIAM Journal of Computing. 6(2):323-350; 1977.

Koksal, A. "Bilgi Erisim Sorunu ve Bir Belge Dizinleme ve Erisim
Dizgesi Tasarim ve Gerceklestirimi." Docentlik Tezi. Ankara; 1979.

Koksal, A. "Timiiyle Ozdevimli Deneysel Bir Belge Dizinleme ve
Erisim Dizgesi: TURDER. Bilisim'80 Bildiriler Kitabi. pp.37-44,
Ankara; 1980.

Lancaster, F.W. Information Retrieval Systems: Characteristics,
Testing and Evaluation, 2nd ed. New York: John Wiley and Sons;

1979.

- 260 -

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Lefkovitz, D. File Structures for on Line Systems. New York:
Hayden Book Co.; 1969.

Macleod, I.A. "Towards an Information Retrieval Language Based
on a Relational View of Data." Information Processing and

Management. 13:167-175; 1977.

Maron, M.E. "Depth of Indexing. “"Journal of the American Society
for Information Science. 29:224-228; 1978.

McCarn, D.B. "MEDLINE: An Introduction to On-line Searching."
Journal of the American Society for Information Science.

31(2):181-192; 1980.

Meadow, C.T., Cochrane, P. (A) Basics of Online Searching.
New York: John Wiley and Sons; 1987.

Mukhopadhyay, A. "Hardware Algorithms for Nonnumeric Computation.™
IEEE Transactions on Computers. C-28(6):384-394; 1979.

Oflazer, K. "A Microprocessor Based Approach to RAP Database
Machine Cell Structure: Design and Analysis." M.Sc. Thesis, Dept.
of Comp. Eng., Middle East Tech. Univ., June 1979.

Oflazer, K., Ozkarahan, E.A., Smith, K.C. "RAP.3-A Multi-micro-
processor cell Architecture for the RAP Database Machine." Proc.
of Int. Workshop on High Level Language Computer Architecture.

pPp.108-119; May 1980.

Oflazer, K. Ph.D. Thesis Draft Proposal, Carnegie Mellon

- University; 1983.

Ozkarahan, E.A., Schuster, S.A., Smith, K.C. "RAP-An Associative
Processor for Database Management." Proc. of AFIPS NCC. 44:379-387;
1975.

‘Ozkarahan, E.A. "An Associative Processor for Relational Data

Bases-RAP." Ph.D. Thesis, Department of Computer Science,
University of Toronto, Jan.1976.

- 261 -

67.

68.

69.

70.

71,

72.

73.

74.

/5.

76.

Ozkarahan, E.A., Schuster, $.A., Sevcik, K.C. "Performance
Evaluation of a Relational Associative Processor." Associatiqn
for Computing Machinery Transactions on Database'Systems. 2(2):
175-195; 1977.

Ozkarahan, E.A., Sevcik, K.C. "Analysis of Architectural Features
for Enhancing the Performance of a Data Base Machine." Association
er,Computing>Machinery Transactions on Database Systems. 2(4):
297-316; 1977. |

Uzkarahan, E.A., Oflazer, K. "Microprocessor Based Modular Database
Processors." Proceedings of the 4th Int. Conference on Very Large
Databases. Berlin, Sep. 1978, pp.300-311.

Ozkarahan, E.A. "RAP Veri Tabani Bilgisayarinin Genel Amacla
Kullaniminin Saglanmasi." Docentlik Tezi, Orta Dodu Teknik
Universitesi, 1980.

Ozkarahan, E.A., Can, F. "Integration of Fact/Document Retrieval
Systems Within a Database Machine." Dept. of Computer Science,
Technical Report TR-82-02, Arizona State University, Nov.1982,

Ozkarahan, E.A., Tansel, A.U., Smith, K.C. "Database Machine/
Computer Based Distributed Databases." Proc. of the 2nd Interna-
tional Symposium on Distributed Databases.kBer11n, 1982. Published
by North Holland Pub. Co.

Ozkarahan, E.A. "Implementations of the Relational Associative
Processor (RAP) and Its System Configurations." Arizona State
University, Tech. Rep. 82-05, 1982.

Ozkarahan, E.A. "Desirable Functionalities of Database Architectures."
Proc. of IFIpP World Congress. 1983.

Ozkarahan, E.A., Can. F. "An Integrated Fact/Document Information
System for Office Automation." Information Technology: Research
and»Deve]opment. 3(3); 1984,

Peterson, J.L. "Computer Programs for Detecting and Correcting
Spelling Errors." Communications of the Associatjon for Computing
Machinery. 23(12):676-687; 1980.

R R * A

- 262 -

/7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Porter, M.F. "An Algorithm for Suffix Stripping." Program. 14:
130-137; 1980.

Raghavan, V.V., Yu, C.T. "A Comparison of the Stability Charac-
teristics of Some Graph Theoretical Clustering Methods." IEEE,
Transactions on Pattern Analysis and Machine Intelligence. PAMI-

3(4): 393-402; 1981.

Raghavan, V.V. "Approaches for Measuring the Stability of Cluster-
ing Methods." Assoc1at1on for Computing Machinery SIGIR Forum.
17(1):6-20; 1982.

Raghavan, V.V., Ip, M.Y.L. "Techniques for Measuring the Stability
of Clustering: A Comparative Study." Association for Computing
Machinery SIGIR Conference, W. Berlin; 1982.

Radecki, T. "A Model of a Document-Clustering-Based Information
Retrieval System with a Boolean Search Request Formulation."
Joint BCS & ACM Symposium. pp.334-344; June 24-26 1980.

Rand, V.M. "Objective Criteria for the Evaluation of Clustering
Methods." Journg] of the American Sﬁatistipa] Association.
66:846-850; 1971.

Roberts, D.C. "A Specialized Computer Architecture for Text
Retrieval." Fourth Workshop on Comp. Arch. for Non-Numeric Proc.,
Syracuse, N.Y., Aug. 1978, pp.51-59.

Salton, G. Automatic Information Organization and Retrieval.
New York: McGraw Hill; 1968.

Salton, G. (editor) The smart Retrieval System Experiments in

Automatic Document Processing. Englewood C11ffs, New Jersey:

Prentice-Hall; 1971.

Salton, G. Dynamic Information and Library Processing. Englewood
Cliffs, New Jersey: Prentice Hall; 1975. ‘

Salton, G., Wong, A., Yang, C.5. "A Vector Space Model for

- Automatic Indexing." Communications of the Association for

Computing Machinery. 18(11):613-620; 1975.

- 263 -

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Salton, G. "A Theory of Indexing." Regional Conference Series
in Applied Mathematics No.18, Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania, 1975.

Sa1ton, G., Wong, A. "Generation and Search of Clustered Files."
Assoc1at1on for Computing Machinery Transact1ons on Database

Systems. 3(4):321-346; 1978.

Salton, G. "Automatic Information Retrieval." Computer. 13(9):
41-56; 1980.

Salton, G., Wu, H., Yu, C.T. "The Measurement of Term Importance
in Automatic Indexing." Journal of the American Society for

Information Science. 32(3):175-186; 1981,

Salton, G., McGill, M.J. Introduction to Modern Information

Retrieva]. New York: McGraw Hil1l; 1983.

Salton, G., Fox, E.A., Wu, H. "Extended Boo1ean Information
Retrieval." Communications of the Association for Computing

Machinery. 26(12):1022-1036; 1983.

Scheck, H.J. "Methods for the Administration of Textual Data in
Database Systems." Proc. Joint BCS and ACM Symp., pp.218-235;
1980.

Schuster, S.A., Ozkarahan, E.A., Smith, K.C. "A Virtual Memory
System for a Relational Associative Processor." Proc. of AFIPS.
45:291-296; 1976,

Schuster, S.A., Nguyen, H.B., Uzkarahan, E.A., Smith, K.C. "RAP.2-
An Associative Processor for Databases and Its Applications."
IEEE Transactions on Computers. C-28(6):446-458; 1979.

Smith, L.C. "Artificial Intelligence in Information Retrieval
Systems." Information Processing and Management. 12:189-222; 1976.

Stellhorn, W.H. "A Processor for Direct Scanning of Text." Workshop
on Comp. Arch. for Non- -Numeric Proc. Oct., 1974.

- 264 -

99.

100.

101.

102.

103.

104.

105,

106.

107.

108.

Stonebraker, M. et.al. "Document Processing in a Relational
Database System." Association for Computing Machinery Transac-
tions of Office Information Systems. 1(2):143-158; 1983

Tague, J.M., Nelson, M.J. "Simulation of User Judgements in
Bibliographic Retrieval Systems." Proceedings of the Fourth
Intérnational Conference on Informat1on Storage and Retrieval,

ACM-SIGIR. Okland, California, pp.66-71, 1981.

Tansel, U.A. "Design and Evaluation of a Query Processing System
for Distributed Database Machine Networks." Ph.D. Thesis, Dept.
of Comp. Eng., Middle East Tech. Univ., Sept. 1981.

Onll, S. "Design and Implementation of a Software Emulator for
the Relational Associative Processor-RAP." M.Sc. Thesis, Dept.
of Comp. Eng., Middle East Tech. univ. » August 1979,

Van Rijsbergen, C.J., Sparck Jones, K. "A Test for the Separation
of Relevant and Nonre]evant Documents in Experimental Retrieval
Collections." Journal of Documentation. 29:251-257; 1973.

Van Rijsbergen, C.J. "Further‘Experiments with Hierarchical
Clustering in Document Retrieval." Information Storage and
Retrieval, 10:1- -14; 1974,

Van Rijsbergen, C.J. The Best- Match Problem in Document Retrieval."
Communications of the Association for Comput1ng Machinery. 17(11):

648-649; 1974,

Van Rijsbergen, C.J. Information Retrieval, 2nd ed. London:
Butterworths; 1979.

Willet, P. "Document Clustering Using an Inverted File Approach."
Journal of Information Science. 2:223-231; 1980.

Ziman, J.M. "The Proliferation of Scientific Literature: A
Natural Process." Scjence. 208:369-371; 1980.

- 265 -

APPENDICES

APPENDIX - A

TYPICAL FREE TEXT RETRIEVAL OPERATIONS

A KEYWORD SEARCH

Finds any document that contains the word A

A OR B EITHER WORDS

Finds any document that contains either the word A or the word B.

S

A AND B BOTH WORDS

Finds any document that contains both the word A and the word B.

A AND NOT B: ONE BUT NOT THE OTHER

Finds any document that contains the word A but not the word B.

(A,B) IN SENT SPECIFIED CONTEXT
AN
Finds any document that contains both the word A and word B in

the same sentence.

AB FINDS A WORD PHRASE
Finds any document that contains the word A immediately followed

by the word B.

A...B ONE FOLLOWED THE OTHER
Finds any document that contains the word A followed (either

immediately or after an arbitrary number of words) by the word B.

- 266 -

<A.n.B> DIRECTED PROXIMITY
Finds any document that contains the word A followed by the word

B within n words.

<A,B>n UNDIRECTED PROXIMITY
Finds any document that contains the words A and B within n

words of each other.

(A,B,C,D) # n THRESHOLD OR
Finds any document that contains at least n of the different
words A,B,C,D. Note that if n=1 this is an "QR" operation;
hence the retrieved document contains one or more of the strings
A,B,C, or D. If n equals the number of different words specified,
then this is an "AND" operation; the retrieved document must

contain all the specified words in any order.

A??27B FIXED_LENGTH DON'T CARE
Matches the character string A, followed by three arbitrary

characters, then followed by the string B.

A B VARIABLE LENGTH DON'T CARE
Matches the character string A, followed by zero or more charécters,

then followed by the character string B.

- 267 -

STOP WORD LIST USED

A
ALMOST
ANOTHER
ASPECTS
BETWEEN
CANNOT
DEFINED
END
GIVEN
HOWEVER
IT

MORE

OF

OUR
REQUIRED
SHOW
SUCH
THERE
THUS
USE
WELL
WHICH
WITHOUT

ABOUT
ALONG
ANY
AT
BOTH
CASE
DOES
ETC
HAS
IMPORTANT
ITS
MOST
ON
OVER
RULES
SHOWN
THAN
THEREFORE
TIME
USING
WERE
WHILE
WOULD

APPENDIX - B

AFTER
ALTHOUGH
APPROACH
BE

BUT
CASES
DONE
EVERY
HAVE

IN
ITSELF
MUCH

ONE
PAPER
SOME
SIMILAR
THAT
THESE
TIMES
VARIOUS
WHAT
WHOSE

AGAINST
AMONG
ARE
BECAUSE
BY
CHANGES
EACH
FAULTS
HERE
INTO
MADE
MUST
ONLY
PER
SECOND
SINCE
THE
THEY

TO

VERY
WHEN
WILL

- 268 -

ALL

AN
AROUND
BEEN
CALLED
CONSIDER
EITHER
FOR

HOC
INTRODUC
MANY

NEW

OR
POSSIBLE
SEVERAL
SOME
THEIR
THOSE
UNDER
WAS
WHERE
WITH

IN THE EXPERIMENTS OF CHAPTER 4

ALLOWS
AND

AS
BEING
CAN
COULD
ELSEWHERE
FROM
HOW

IS

MAY

NOT
OTHER
PROBLEM
SHOULD
STUDY
THEN
THROUGH
UPON
WAY
WHETHER
WITHIN

APPENDIX - C

TIMING ANALYSIS OF THE RAP.3 VERSION~I CELL..OPERATIONS

The following analysis describes the relationships among certain

timing parameters |[7,8]

Let

TB1T

TUPLEN

s

TAVLNW

NT

TOTAL

REST

1t

CM bit time = 1/CM data rate.
length of a tuple in bits.

number of subcells/cell (k >=3 because of the data move
strategy incorporated).

time to load (store) via DMA = T = TUPLEN.

BIT
available time to process a tuple if no wait is imposed
(this time is naturally available in the architecture).

T = (k=2) »T

AVLNW LS®

number of tuples in the circulating memory (CM).

total circulation of CM from the start of loading of

the first tuple to the end of storing the Tast tuple.

extra time needed to store the last (k-1) tuples (It
should be noted that CM circulation is completed only

after the Tast tuple is restored. Some extra time is

- 269 -

needed to restore the last (k- 1) tuples because the
total dynamic capacity of the cell memory is equal to
the CM capacity plus the capacities of the (k-1) subcell

buffers).

Trest = (k=1 % Ty

Assume that all tuples require exactly L times the time allowed
by the architecture (the value of L is dependent on the complexity of

the RAP instruction), that is :

T (L>1)

ReQ = * Taviww 3 2

Assuming also that mod(NT,k) = 0, then during the circulation,
NT/k tuples will be processed by a subcell.The time to handle a tuple

is :

T T + 2% T

TUPLE = 'REQ LS
where the Tast term accounts for the load and store times.

Since the processing of the tuples are overlapped over the k
subcells, the total time for a circulation will be -

T

TrotaL = (NT/K) % Toyp g + Tpeot

+ (L-1) » (k-2) » TLS

where the first term is the time to process NT tuples with k subcells
in parallel, the third term is the initial extra time (beyond the
allocated time) required by subceﬂ1 for tup1e1.

- 270 -

~ APPENDIX - D

A BRIEF SUMMARY OF RAP INSTRUCTIONS

Mapping and retrieval instructions

(over all occurrences)

MARK
RESET
READ

READ-MARKS
CROSS-MARK
CROSS-RESET
- GET-FIRST

SAVE

: Selects and marks (tags) record occurrences.
: Selectively removes tags.

: Selects and reads qualified tuple (o; attribute value)

occurrences.

: The same as read but output includes also the mark bits.
: Performs a RAP semi-join between two record types.
: Combines two semi-joins on a target record type.

: Sets and moves cursor within a record type also saves

attribute values from the tuple occurrence indicated

by the cursor.

: Saves attribute value from a single record occurrence.

Update instructions

(Select and in-place update over all occurrences)

ADD,SUB ,MUL ,DIV(AOP) : Select and Attribute - Attribute AOP Attribute

value - 1 Value - 1 Value - 2
‘ (or constant)

- 271 -

REPLACE :

Select and Attribute Attribute

Value - 1 © Value - 2
(or constant)

Statistical (set or aggregate) function

(Select and compute functions in-place over all occurrences)

SUM,COUNT ,MAX ,MIN ,AVERAGE (SOP) : Select and compute the SOP function

over the selected occurrences.

Definition and storage manipulation instructions

RELATION

CREATE

DESTROY

DELETE

INSERT

Defines a new relation (record type). Size, type, length
parameters for the data are declared. (Key atributes and
access paths are defined it the software emulator rather
than the actual machine is used). User capabilities,
access rights, and the protection parameters are also

declared with the use of this command.

Populates the database for the specified record types

which have been defined by the RELATION command.
Dé]ets a record type.

Selects and deletes record occurrences from the record

type.

Inserts a single record occurrence into the record type.

System instructions

AUTHORIZE :

LOCK

RELEASE

Grants access by user authentication.

Specified record types are locked against concurrent

accesses.,

Releases locks.

- 272 -

Multiprocessing/multiprogramming and DDB related instructions

LOCATE : Returns the site address of the record type to the

requesting site.

STATUS : Provides status information on a record type for the
requesting site for branch control in iterated RAP

programs.

SAVE MARKS : Current mark bit values in each record occurrence
are saved in a specified data attribute within the

record occurrence.

RESTORE_MARKS : Restores previously saved mark bits in each record

occurrence into the active mark bit positions.

Register manipulation instructions , .

(Operate on the specified RAP registers)

READ REG : Reads out register contents.
RSET : Enters immediate data into the operand registers.
DEC_REG : Decrements register contents.
INC REG : Increments register contents

RADD,RSUB,RMUL ,RDIV (ROP) : Performs specified arithmetic operations

on the register as : <reg> « <reg> <ROP> <operand>

Control instructions

BC : Branch conditional or unconditional (condition includes test

of marked record occurrence within a record type).

EOQ : Indicates end of a query program.

- 273 -

Document retrieval instructions

MATCH, MATCH-WS, MATCH-WWC : Search for specified pattern combinations
with respect to instruction context within the record type containing

the document(s).

LINK-PASS : Perform text match overflow resolution between the record

occurrences.

- 274 -

APPENDIX - E

TEXT RETRIEVAL MACROS FOR THE RAP SYSTEM

As an aid to the user of RAP Text Retrieval System, a macro
processes and a number of macros have been implemented. In this
appendix the properties of the macro processor and the text retrieval

macros will be described.

'PROPERTIES OF THE MACRO PROCESSOR

A macro processor for RAP, called RAPMAC, has been implemented
on the INTEL MDS225 development system under the operating system
ISIS-II. FORTRAN-80 has been utilized for the implementation in order
to provide portability for RAPMAC. After the RAPMAC macros are
expanded into RAP code, the development system passes this code to
the RAP emulator: SERAP, running on the INTEL single board computer
iSBC 86/12A, for execution. |

A RAPMAC macro definition contains the following :

a. a header statement,
b. a prototype,
c. model statements, and

d. a trajler statement.

- 275 -

The header and trailer statements are very simple. The header
contains the keyword MACRO between the columns 2-72 and the trailer
contains the keyword MEND (for Macro END) again between columns 2-72.

After these keywords, a commend can be entered on the same card.

The prototype follows the header statement. This statement first
contains the name of the macro. The name starts with an alphabetic
character and should not exceed 16 characters. The user definéd macros
cannot have the same name with the library macros. The prototype
statement also includes the formal parameters of the macro (if any).
The parameters are separated with commas and obey the rules of macro
names, however, the first symbol of a parameter can be '&'. A non-
blank character on column 72 indicates the continuation of the

prototype card.

£

Model statements are any strings which may include the formal
parameters. The occurrence of a formal argument is rebognized between
non-alphabetic and non-numeric characters. An actual argument concat-
enated with a alphanumeric string can appear with formal arguments

that start with '&'.

A maximum of 40 macros can be defined with each macro holding up

to 30 parameters.

A valid macro definition can be as follows :

MACRO Header

REGSET REGNAM, PARAM Prototype
RSET[REGNAM, PARAM| MODEL Statements
MEND Trailer

- 276 -

Macro Calls

Macro definitions end with a *JOB card. After this card, a
sequence of cards which may include macro calls will follow. To in-
crease the scanning speed all macro call cards should start with the
symbol '%' on their first column. A literal constant as an actual
parameter starts and ends with a quotation mark end if it contains a
quotation mark quotes must be doubled. The maximum length of a literal
constants is 30. A non-blank character on column 72 indicates the

continuation of the macro call card.

Some typical macro call statements are shown below:

% MOVE 'LITERAL STRING', SYMBOLA
% REGSET REGU_1," TEXT "™
% REGSET REGU 1,'10'

The macro names and formal and non-literal actual parameters may
include the symbol '$' in their body. This symbol is used to improve

readability and ignored by the macro processor.

During macro processing the first column and columns 73 through

80 of all the input cards are ignored.

An actual parameter can be concatenated with a string by making

the first symbol of the former a '&' as shown below :
RSET REGUT, '&A.BASE'

will cause the generation of the following statement :
RSET [REGUT, 'DATABASE']

if the corresponding actual parameter for A is DATA.

- 277 -

A complete example, for macro definition and macro calT, is

shown in the fololwing :

MACRO
CMARK R1, A1, R2, A2, R3, A3
R2.A2| [MKED (T1)]

1]

CROSS MARK. (T2) [R1:A1

1

CROSS_MARK (T2) [R3:A3 = R1.A1] [MKED (T2)]
MEND

*J0B
MARK (T1) [REL2:ATT1 <=10]

% CMARK REL1, ATT1, REL2, ATT1, REL3, ATT1

I

+CROSS MARK (T2) [REL1:ATT1 REL2.ATT1] [MKED (T1)]

+CROSS MARK (T2) [RELB:ATT1 RELT.ATT1] [MKED (T2)]
other SERAP Statements

EOQ

In the above illustration, the RAP commands generated due to

the model statements of the macro definition are preceeded by '+',

The output file generated by RAPMAC as input to the SERAP will

Took Tike the following :

*J0B
MARK (T1) [REL2 : ATTY <=10]
CROSS_MARK (T2) [REL1:ATT1

1

REL2.ATT1] [MKED (T1)]

CROSS_MARK (T2) [REL3:ATT3 RELT.ATT1] [MKED (T2)]

1

other SERAP statements
EOQ

During macro call, unspecified actual parameters will be replaced

by the null symbol. For example, in the following calling statements:

- 278 -

% CMARK REL1,,REL2,ATT1,REL3
% CMARK REL1,,REL2,ATTI,REL3,

second and the Tast, i.e., sixth, actual parameters are not porvided.

The macro bodies defined may contain Tabels that are necessary
for the transfer of control during execution of the generated RAP
assembler instructions. These labels are replaced by distinct strings
as follows. If the symbol "@" is followed by an integer "n", the
symbol and the following integer is replaced with the number equal to
SYSNDX+n, where SYSNDX is a system variable defined in RAPMAC. This
system variable is incremented by the maximum “n" (@n), which appears’
in the macro body, after each macro expansion. For example, if we have

the following statements, within a macro body :

BC LOOP @1
LOOP @1°

BC LOOP @2
LOOP @2

If the macro containing the above lines is called twice, the

following sequence of RAP instructions will be generated:

+ BC LOOP1

+LOO0P1

+ BC LOQOP2

+.00P2

second call follows

+ BC LOOP3

+L00P3

+ LOOP4

+LO0P4
- 279 -

Macro calls within macros are not allowed in RAPMAC.

During macro processing, the macro bodies are saved in a macro
definition file and this file is used during macro expansion. After
macro processing this file is saved and can be specified as a macro

Tibrary in the subsequent uses of RAPMAC.

LISTING OF THE RAP TEXT RETRIEVAL MACROS

‘Text retrieval applications in the RAP system are programmed with
the use of RAP instruction set and nine available text retrieval macros

which are Tisted in the following :

1. MATCH$A : Finds any document that contains the word A.

2. MATCHALLA : Finds any document that contains the word A.

Different than MATCH$A it searches for a11 occurrences of A.

3. MATCH$ASOR$B : Finds any document that contains either the word

A or the word B.

4, MATCH$ASANDSB : Finds any document that contains the word A and

the word B.

5. MATCH$ASANDSNOT$B : Finds any document that contains the word A

but not the word B.

6. MATCHSASANDS$BSINSSENT : Finds any document that contains both

the word A and the word B within the same sentence.

7. MATCHSASANYWORDS$B : Finds any document that contains the word
A (either immediately or after an arbitrary number of words)

followed by the word B.

- 280 -

8. MATCH$ASNWORDSSB : Finds any document that contains the word A

followed by the word B within n words.

| 9. MATCH$THRESHOLD$OR : Finds any document that contains at least

n of the m distinct words : A, A

1 g Am; where n <= m.

In the following, the meanings of the macro parameters are

explained together with their actual use in the macro call statements.

STRIN61 (i <

REL
LA
NA. (i <= 2)
T. (i <= 5)

the strings to be matched (i.e., A and B) in the

text.

the relation name containing the Titeral domain

to. be searched.

the Titeral attribute of relation REL which
corresponds to the literal domain that holds the

text to be searched.

the numeric attributes of relation REL which are

needed during the execution of the macro body.

the distinct mark bits of relation REL needed for
the execution of the macro body. Before calling a
text retrieval macro, all of the mark bits specified
in the macro call statement, should be cleared.
After execution of the macro body, the first mark
bit indicates (shown as T, in the call statements)
the qualified tuples for the text retrieval opera-
tion on the unary relation DOCUMENT (whose only
attribute is DOCID). The first mark bit given in

the macro call remains clear in relation REL.

- 281 -

QUAL : the tuples for text retrieval are selected with respect to
the qualifier which is a literal constant and contains a RAP
qualification expression. If all the tuples of relation REL
are to be considered, this parameter is omitted. A typical

QUAL specification would be ':MKED(T1)"'.

The macro call statements for the text retrieval operations in
RAPMAC are demonstrated in the following (the character '%' is omitted

in the following illustration) :

1. Macro MATCHSA :
MATCH$A STRING, REL,LA,T1,QUAL

2. Macro MATCHS$ALLS$A

MATCHSALLSA STRING1,N,REL,LA,NA1,NA2,NA3,T T, ,T,, QUAL

1272273

After execution of the macro body, the documents which have at least
N number of occurrences of STRING1 are marked T1; T2 and T3 remain

clear.

3. Macro MATCHAORSB
MATCHAORSB STRING1,STRINGZ,REL,LA,T1, TZ* QUAL

4. Macro MATCH$ASANDSB : i
MATCH$ASANDSB STRING1,STRINGZ,REL,LA,T1,TZ,QUAL

After execution of the macro body, T2 remains clear.

5. Macro MATCHANOTSB :

MATCHANOT$B STRING1,STRINGZ,REL,LA,T1,TZ,QUAL

After execution of the macro body, T2 remains clear.

6. Macro MATCHASANDSBSIN$SENT -

MATCHSASANDSBS INSSENT STRING1,STRINGZ,REL,LA,NA1,T T.,T ,TA,QUAL

1°2°2°°3

- 282 -

After execution of the macro body, the mark bits T2 through T3 remain

clear.

7. Macro MATCHAANYWORDSB :
MATCH$SASANYWORDS$B STRING1,STRINGZ,REL,LA,NA1,T1,T2, QUAL

After execution of the macro body, T2 becomes garbage.

8. Macro MATCH$ASNWORDSSB :
MATCH$ASNWORDSS$B STRING1,STRINGZ,N,REL,LA,NA1,T1,T2,T3,T4,T5,QUAL

After execution of the macro body, T2, T3 and T4 remain clear, T5

becomes garbage.

9. Macro MATCH$THRESHOLDS$OR :
MARCH$ THRESHOLD$OR M,N,REL,LA,NA1,NA2,T1,QUAL

In the call statement of this macro, M is a Titeral constant
indicating the total number of the search operands. Similarly, N is
a literal constant that indicates the minimum number of matches

required out of M search operands.

- 283 -

MACRO DEFINITIONS FOR THE TYPICAL TEXT RETRIEVAL OPERATIONS

- Macro definition of the keyword search

MACRD

MATCHSA A, TENT, Di, T, guAL
I R Search for A #/
RSET [REBU 1, *@"3

MATCH{T1) [TEXT(D1) @URL]

BNC Lief, TEXT. RATL_STATITI)

CROSS_MARK(T2) [DOCUMENT:DOCID = TEXT.DOCIDI DMKED{TI)]
Ligy

MEND

Macro definition of the N number of occurrences of a term

HRCRD
MATCHSALLSA A, N, TEXT, 0, D2, D3, T3, T, T2, ouAL
/% ... % Sparch for all ’Q’s the deeumEﬁts which has at least N number of
occurrences will be selected, %/
RET [REBU_2, NI
REET [&EEU i, A1
REPLACE ETEXT(Dz) GUALY 03
MATCH(TY) [TEXT(D1, D2, D3) ouaLl
BNC LL83, TEXT.RHIL STQT(TI)
)]
BET_FIRST [TEXT(DOCID): WXED(TI)]
MARK{T2} [TEXT: DOCID = REBC_13
BUM [TEXT: MKED{T2)1 [REBF 13
BC LLB2, REGF 1 (N
MQRK(TS) [TEXT: DOCID = REBC 1]
LLez
RESET{TY T2) [TEXT: DOCID = RERL 11
BC LL@1, TEXT.RAIL_STAT(TD
CROSS NQRK('B) LDOCUMENT:DOCID = TEXT.DOCIDI [MKED{TZ)]
Lieg
HEND

ES

Macro definition of the A OR B

MACRO
MATCHEASORSB A, B, TEXT, Di, T2, Ti, QupL
/% ... %% Maich 8 or Bt %/
REET IREBU i, A3
MATCH{TL) [TEXT{Di) BUALJ
REET [REBU 1, 8%
MATCH{TL) [TEXT(DI) QUALI
BNC LLBY, TEXT.RAIL_STAT(TL

CROSS_MARK{T2) (DOCUMENT:DOCID = TEXT.DOCIDI IMKED(TI)I
LLBi
HEMD

- 284 -

ﬂMacro:definjtipn of the A ANDvB

HACRD
MATCHSAGANDSE B, B, TEXT, DI, Ti, 72, fUAL
/% ... #% Match A and Bt &/
REET [REGH I, *A’]
MPTCH(TL) [TEXT(DI) BUALD
BNC LLBY, TEXT.RAIL_BTAT(TL)
RGET £REGU i, &1
MRTCH(TZ) [TEXTCBI) BUAL]
BNC LL®1, TEXT.RAIL_STAT(TZ)
CROSS_MARK(T1) TDOCUMENT:DDCID = TEXT.DOCIDI IMKED(TL)]
CROSS_MARK(T2) [DOCUMENT:DOCID = TEXT.DOCIDI DMKED(TZ)]
LLe}
HEND

Macro definitionrof the A AND NOT B

MACRD

MATCHSASANDSNOTSB A, B, TEXT, DI, Ti, T2, GUAL

/% ... ¥ Match A NOT Bt #/

RSET IREBU_L, ']

MATCH(T1) TTEXT(D1) GUALD

BN LLB1, TEXT.RAIL_STAT(T)

-~ CROSS_MARKITL) [DOCLWENT:DOCID = TEXT.DOCID] [MKED(TL)?
CROSS_MARK(T1) [TEXT: DOCID = DOCUMENT.DOCIDI DMKED(T2)3
RSET IRESL !, *B']

MATEH(T2) TTEXTIDI)t MKEDIT1)]
BNC LRI, TEXT.RAIL_STAT(T2)
CROSS_MARK(T2) [DOCUMENT:DOCID = TEXT.DOCIDI DWKED(T2)I
RESETITZ) [TEXT: MKED(T2)]
LBt
HEND

Macro definition of the (A,B) IN SENT

WACRD

MATCHSASANDEBSINSSENT A, B, TEXT, D1, D2, T3, 71, 12, T3, BUAL
7% ... #% Match within sentence A & Bt #/

HARK(T13) [TEXT QUAL]

REPLACE [TEXT{(D2) QUALI 103
Ligl ‘

BNC LL@3, TEXT.RAIL _STATITIR

RSET [REBH 1, *A%]

BNC LL82, RAIL STAT{TY) RESET(TL) I[TEXT: MKED(T1)] LLeZ2
HATCHATL) [TEXT{D, D2): MREDATIZIZ

BNC LLB3, RRIL_BTAT(TL)

/% .., %% Reset the wnnecessary fupies. #/

REBET{TL3) ITEXT: UNMKED(T1)]

- 285 -

REET REGL_1, *B"]

HATCH_YS(T2) CTEXT(D1, D2):MKED(TL)]

BNC LLB1, RAIL_STAT(TY)
CROSS_WARK(TY) [DOCUMENT:DOCID = TEXT.DOCID] CHKED(T2)I
CROSS_MARK{T3) [TEXT:DOCID = DOCUMENT,DOCIDI [MKED(Ti)]
RESET{TI3) [TEXTHMKED(T3)]
BC LLE!

LLE3

HEND

Macro definitidn of the A...B

MACRO
MATCHEASANYWORDSSR A, B, TEXT, DI, D2, T2, Ti, @upL
/% ... %% Match A (any words) B: %/
REET [REBU_1, *A"3
REPLACE [TEXT{D2) QUALI [03
MATCH(TY) LTEXT(D1, D2) QUALI
BNC LL81, TEXT.RAIL_STAT(TL)
LINK_PRSS{TY, T LTEXT(DI, D2)]
LINK_PASS(T1, T1) [TEXT{D{, D2)] /* For cell boundary. ¥/
RGET [REBU_I, °B'I
MATCH(T2) [TEXT(Di, D2): MKED{T1)I
BNC LLBY, TEXT.RAIL_STAT(T2)

CROSS_MARK{T2) [DOCUMENT:DOCID = TEXT.DOCIDI [MKED(T2)]
LLe1
MEND

Macro definition of the <A,B>n

MACRD
MATCHSASNWORDSSB A, B, N, TEXT, D1, D2, 13, T2, T4, T13, Ti, GUAL
F% ... #% Match B (N words} B #/
MARK{T13) [TEXT QUALI
REPLACE [TEXT{(D2) GUALI [0]
LLeg
BNC LLES, TEXT.RAIL_STAT(TIH)
BNC LL@2, RAIL_STAT(T1) RESET{(T1) LTEXT: MKED(T1)I LLBZ
RSET IREGU_1, "A’] ‘
MATCH(TL) [TEXT{DI, D2): MKED{(T13)3
BNC LL85, TEXT.RAIL_STATITH
RESET(TI3) [TEXT: UNMKED(T1)I
RSET [REBU_1, "B']
MATCH_WWC(T2) [TEXT(DL, D2, D3): WKED{TD)] D3
BNC LL®4, TEXT.RAIL_STAT(T2)
LLE3
CROSS_MARK{T1T3) [DDCUMENT:DOCID = TEXT.DOCIDI IMKED(TZ)]
CROSS_MARK{T3) [TEXT: DOCID = DOCUMENT.DOCIDI [MKED(T1)3
RESET{T3T13T14) [TEXT: MKED(T3)]
LLeg

- 286 -

. BNC LR, TEXT.RAIL STAT(TiA)
LINK_PAGS(TA, T14) [TEXT{D3)]
WATCH_WWCATZ) [TEXT(DI, D3): MKED{TAI
RESET{T4) [TEXT: WKED{T4)]

BC LLET, RAIL_STAT(T2)
BC LLE4

LLES

HEND

Macro definition of the (A,B,C,D) # n

HACRD
MATCHSTHRESHOLDOR M, N, TEXT, D1, B2, Ti, BUAL
7% ... %% Match threshold or: match M words oub of N words: #/
REET [REGU 2, N3
REPLACE [TEXT(DZ) QUALI 103
LLet
READ _REG [REGY 11
MATEHITL} [TEXT(DL) 8uALl
BNC LLBZ, TEXT.RAIL_STATITH
CROSS_MARK(T1) [DDCUMENT:DOCID = TEXT.DOCIDI [MKED(Ti)3
CROSS MARK(TI) LTEXT:DBCID = DOCUMENT.DOCIDI DMKED(Ti)I
ADD LTEXT(D2): MKED{TD)] [13 ‘
RESET(TL) LTEXT: MKED{T1)]
LLez
BEC_REG [REBY 2]
BC LL@Y, REBU 2) 0
BARK(TL) [TEXT: D2)= M1

CROSS_MARK(T1) [DOCUMENT:DOCID = TEXT.DOCIDI DMKED(TI)]
MEND

- 287 -

VITA

VITA

Fazl1 CAN was born in Ankara, Turkey, on December 21, 1951. He
received the BS degree from the Department of Electrical Engineering

of Middle East Technical University (METU), Ankara, Turkey, in 1976.

He continued his studies in the Department of Computer Engineering
at METU and obtained his MS in 1979. During his graduate studies he
worked as a research assistant and as an 1nstructor€1n the Department
of Electrical Engineering and thought courses on basic electrical
engineering, numerical ana]ysis,’data structures, and information
retrieval. During his Ph.D study, he went to the USA and worked as a
research assistant at the Department of Computer Science of Arizonak
State University in 1982 and 1983. There, he was awarded an industrial
fellowship. During the summer of 1982, he worked as a summer hire
engineer in the RAP project at‘INTEL corporation of Arizona. His
research interests include problems relating to automatic information
retrieval and database management systems. He has pub]ished articles
in the Journal of the American Society for Information Science, and
the Information Technology : Research and Development. He has also

presented papers at the national and international conferences.

He is a citizen of the Republic of Turkey.

- 288 -

	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	AcrAEEE.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif

	AcrB1A5.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	AcrAEEE.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	p711.pdf
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	AcrAEEE.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif

	AcrB1A5.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	AcrAEEE.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	AcrACA6.tmp
	AcrA995.tmp
	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif
	page-0070.tif
	page-0071.tif
	page-0072.tif
	page-0073.tif
	page-0074.tif
	page-0075.tif
	page-0076.tif
	page-0077.tif
	page-0078.tif
	page-0079.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif
	page-0056.tif
	page-0057.tif
	page-0058.tif
	page-0059.tif
	page-0060.tif
	page-0061.tif
	page-0062.tif
	page-0063.tif
	page-0064.tif
	page-0065.tif
	page-0066.tif
	page-0067.tif
	page-0068.tif
	page-0069.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif
	page-0046.tif
	page-0047.tif
	page-0048.tif
	page-0049.tif
	page-0050.tif
	page-0051.tif
	page-0052.tif
	page-0053.tif
	page-0054.tif
	page-0055.tif

	page-0001.tif
	page-0002.tif
	page-0003.tif
	page-0004.tif
	page-0005.tif
	page-0006.tif
	page-0007.tif
	page-0008.tif
	page-0009.tif
	page-0010.tif
	page-0011.tif
	page-0012.tif
	page-0013.tif
	page-0014.tif
	page-0015.tif
	page-0016.tif
	page-0017.tif
	page-0018.tif
	page-0019.tif
	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif
	page-0032.tif
	page-0033.tif
	page-0034.tif
	page-0035.tif
	page-0036.tif
	page-0037.tif
	page-0038.tif
	page-0039.tif
	page-0040.tif
	page-0041.tif
	page-0042.tif
	page-0043.tif
	page-0044.tif
	page-0045.tif

