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Abstract. Authorship attribution and identifying time period of literary works are fundamental problems 

in quantitative analysis of languages. We investigate two fundamentally different machine learning text 

categorization methods, Support Vector Machines (SVM) and Naïve Bayes (NB), and several style 

markers in the categorization of Ottoman poems according to their poets and time periods. We use the 

collected works (divans) of ten different Ottoman poets: two poets from each of the five different 

hundred-year periods ranging from the 15
th
 to 19

 th
 century. Our experimental evaluation and statistical 

assessments show that it is possible to obtain highly accurate and reliable classifications and to 

distinguish the methods and style markers in terms of their effectiveness. 

1 Introduction 

Automatic Text Categorization (ATC) methods aim to classify natural language texts into pre-defined 

categories and are used in different contexts ranging from document indexing to text mining [Sebastiani, 

2002]. In the literature there are a variety of studies on ATC; however, quantitative studies on Ottoman 

literary text are not available. One reason for this is the fact that Ottoman documents are scarce in the 

digital environment. Initiatives such as Ottoman Text Archive Project (OTAP) and Text Bank Project 

(TBP) release transcribed versions of handwritten Ottoman literary texts. By considering the gap in the 

studies for the Ottoman language, this paper is motivated to classify a text with unknown poet or time 

period by employing automatic text categorization methods.  

Our work contributes to research on quantitative analysis of Ottoman literature and diachronic 

computational studies on this language. In fact, it is the first quantitative study on Ottoman literature (a 

preliminary version can be seen in [Can et al., 2011]). In this study, we hypothesize that most-frequent 

word (MFW) style marker, quantitative text attribute, would be a good descriptor for Ottoman literary 

works since it is highly effective in the domain of Turkish language [Can & Patton, 2004] and the 

Ottoman language is primarily based on Turkish. Besides, two-word collocations (TWC) style marker is 

expected to provide high performance as phrases are commonly used in the Ottoman language. Accepting 

the Naïve Bayes (NB) as a baseline, Support Vector Machines (SVM) should provide higher 

performances considering the previous text categorization works in similar domains in other languages 

such as English [Yu, 2008].  

The rest of the paper is organized as follows. In Section 2 we present a survey of related work. In Section 

3 we introduce the experimental environment in terms of a brief description of the Ottoman language and 
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the data set we use in the experiments. In Section 4 we describe the style markers and the text 

categorization algorithms we use in the study. In Section 5 we present the experimental results in terms of 

the statistical assessment methods we use and then the results according to poets and time periods. 

Section 6 concludes the paper with a summary of findings and some future work pointers. 

2 Related Work 

In text-based data mining, statistical and machine learning methods aim to identify hidden occurrence 

patterns of objective text features [Witten et al., 2011]. Such patterns, which conceptually correspond to 

fingerprints of authors, are used for authorship attribution [Smalheiser & Torvik, 2009], author gender 

identification [Koppel et al., 2002], distinguishing works from each other according to intended audience 

[Binongo, 1994], finding the chronological order of works [Stamou, 2008], genre detection [Kanaris & 

Stamatatos, 2009], identifying an author’s literary style development [Juola, 2007], etc. In these 

applications text features are referred to as style markers. Statistical methods have been used for a long 

time in authorship and categorization tasks; however, machine learningmethods are used in relatively 

more recent works. In some studies these two approaches are used together [Bagavandas et al., 2009]. 

[Merriam, 1989] uses a Bayes’ theorem based method to classify twelve disputed Federalist Papers. 

[Clement & Sharp, 2003] and [Zhao & Zobel, 2005] use a similar method in their studies as well. 

[Houvardas & Stamatatos, 2006] employ SVM for author identification. [Joachims, 1998, Joachims, 

2001] makes use of SVM in the task of text classification and observes that SVM is robust and it does not 

require parameter tuning for the task. [Kucukyilmaz et al., 2008] use machine learning approaches 

including k-nearest neighbor (k-NN), SVM, and NB to determine authors of chat participants by 

analyzing their online messaging texts. [Yu, 2008], as in our work, focuses on text classification methods 

in literary studies and uses NB, and SVM classifiers. In her study, the effect of common and function 

words are tested for the eroticism classification of Dickinson’s poems and the sentimentalism 

classification of chapters in early American novels. 

Style markers have been used for authorship attribution for a long time. [Holmes, 1994] gives a detailed 

overview of the stylometry studies in the literature within a historical perspective and presents a critical 

review of numerous style markers. [Grieve, 2007] has a similar study on style markers. [Juola, 2006] and 

[Stamatatos, 2009] present types of analysis, features, and recent developments in authorship attribution 

studies. [Burrows & Craig, 2001] examine two Categorization of Ottoman Poems seventeenth-century 

poems by using most frequent words. [Holmes et al., 2001] investigate the exact author of the Pickett 

Letters as a complement to traditional historical research by using top 60 frequently occurring function 

words. [O’Brien & Darnell, 1982] uses word collocations frequency and cover six case studies in 

authorship attribution. [Stamatatos et al., 1999] study categorization of ten Greek newspaper columnists 

using a text-processing tool (Sentence and Chunk Boundaries Detector) that segments texts into 

sentences. They use 22 style markers: three token-level, ten phrase-level, and nine analysis-level. A study 

based on writing style for identification of individuals is carried out by [Abbasi & Chen, 2008]. They 

develop a Karhunen-Loeve transform-based write prints method for identification and similarity detection 

in terms of identity. 

Although there is no quantitative study on the Ottoman language, studies on contemporary Turkish do 

exist in literature. [Can & Patton, 2004] analyze change of writing style with time by using word lengths 

and most frequent words for the Turkish authors Çetin Altan and Yaşar Kemal. In another study the same 
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authors [Patton & Can, 2004] analyze four İnce Memed novels of Yaşar Kemal. In the study, they use six 

different style markers and determine the one that provides the best performance. Language change in 

Turkish and its quantification using time-separated parallel translations are studied by [Altintas et al., 

2007] by using various style markers including vocabulary richness. The study shows that Turkish words 

have become longer by time, word stems have become significantly shorter, suffix lengths have become 

significantly longer for types, and the vocabulary richness based on word stems has shrunk significantly. 

In a recent study [Can & Patton, 2010] analyze 20
th
 century Turkish literature in terms of change of word 

characteristics. 

3 Experimental Environment 

3.1 Ottoman Language 

The Ottoman language (Osmanlıca) describes the Western Turkish dialect spoken during the period of 

Ottoman rule in Anatolia, Eastern Europe, much of the western portion of the Central Middle East, and 

North Africa. More specifically, however, it describes the literary and spoken language of the Ottoman 

elites, which amassed a huge vocabulary by combining Turkish words with borrowings from Arabic and 

Persian, and much less frequently from Western languages such as Italian, Greek, Hungarian, and Slavic. 

Although the main sentence structure, morphology and syntax are Turkish, the Ottoman language is 

written with Arabic alphabet. This alphabet consists of thirty letters and is written from right to left. 

Except a few, letters are attached to each other and borrowed letters are written differently at the 

beginning, middle, and end of each word. The words adopted from Arabic and Persian are written with 

their original spelling. Besides, there is not a letter for every vowel which makes it difficult to read and 

understand the script. 

Ottoman literature is usually understood in the restricted sense of the literature written in this elite 

language in forms and genres most of which were adapted from Persian and Arabic models. 

3.2 Test Collection 

In this study, we focus on Ottoman literary texts from ten poets and five consecutive centuries. Table 1 

gives information about these texts, which is our test collection. It is created by an expert in the field: 

Prof. Kalpaklı, who is also from the OTAP project. The text associated with each poet is called divan 

which is an anthology of the poet’s work, as it might be selected poems or all poems of the same author. 

The poets in this study are selected in such a way that they all together provide a good representation of 

the underlying literature. There are nine male and one female (Mihrî Hatun) - which is a rare case in the 

Ottoman literary tradition- poets from five different centuries. Some of them have smooth styles; whereas, 

some of them do not. 

The works of the selected poets as given in Table 1 acquire almost all characteristics of the Ottoman lyric 

poetry [Andrews et al., 1997]. In our study, the poets whose life spanned two centuries are associated 

with the century they died (only exception is Mihrî Hatun since she lived in the 16th century for a short 

period of time). 
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Table 1. Ottoman literary texts-test collection. 
Poet (Divan #, No. of Poems) Century Life Span #Tokens #Types 

Mihrî Hatun (D1, 245) 15th 1460-1512 34,735 9,188 

Sinan Şeyhî (D2, 221) 15th 1371?-1431 27,743 10,784 

Hayalî Bey (D3, 619) 16th 1500-1557 54,338 15,727 

Revânî (D4, 141) 16th 1475-1524 24,881 8,315 

Nef’î (D5, 224) 17th 1572-1635 51,075 14,492 

Neşatî (D6, 186) 17th ?-1674 23,799 7,984 

Osmanzâde Tâ’ib (D7, 189) 18th 1660-1724 19,610 8,772 

Şeyh Gâlip (D8, 580) 18th 1757-1799 59,301 18,506 

Şânîzâde’s Atâullah (D9, 125) 19th 1771-1826 8,265 4,409 

Yenişehirli Avnî (D10, 425) 19th 1826-1884 54,927 18,785 

Total 15th-19th 1371-1884 358,674 62,609 

 

The texts are from the language resources OTAP and TBP. The first language resource, OTAP 

(http://courses.washington.edu/otap) is a cooperative international project employing computer 

technology and the resources of the World Wide Web to make transcribed Ottoman texts broadly 

accessible to international audiences. OTAP is an umbrella name for OTEP (Ottoman Text Edition 

Project) / OTAP (Ottoman Text Archive Project) / OHD (Ottoman Categorization of Ottoman Poems 

Historical Dictionary) and it is a joint effort between the University of Washington, in Seattle, WA, USA 

and Bilkent University in Ankara, Turkey. The second resource, TBP is a network of scholars of Ottoman 

literature and aims to provide an electronic transcribed texts pool for use of its members. Recently TBP 

has more than 120 members from all around the world. Its text pool contains Ottoman literary and 

historical texts from the 13
th
 to 20

th
 century. 

3.3 Blocking 

In order to prepare the data for experiments each document is split into blocks with k number of words, 

where k is taken as 200 to 2000 with 200-word increments. For example, if the block size (k) is 200 

words, each work is divided at every 200th word; accordingly, the first 200 words constitute the first 

block and so on. If the number of words in the last block is smaller than the chosen block size that block 

is discarded. Blocking is a common approach used in stylometric studies [Forsyth & Holmes, 1996]. 

4 Style Markers and Classification Algorithms 

In this section we first explain the style markers and classification algorithms we investigate in this study. 

The style marker information is needed in the presentation of the algorithms. 

4.1 Style Markers 

[Can & Patton, 2004] show that most frequent words and word lengths (in the form of token and type 

lengths) as style markers have remarkable performance in determining the change of writing style with 

time in Turkish. In another work the same authors [Can & Patton, 2010] provide consistent results with 

the aforementioned study (especially in terms of most frequent words). Because of their observations and 

since Turkish is the basis of the Ottoman language we use these text features in our study. We also use 

two-word collocations as another style marker, since phrases are one of the characteristic features of the 

Ottoman language and poets. 

In the rest of this section we describe the style markers. To begin with, a few definitions are in order: A 

token is a word and a continuous string of letters, type is defined as a distinct word. For example, there 
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are thirteen tokens and eleven types in the subset which consists of the words “Niçe feryada vara 

nâlelerüm âh sana, Niçe bir ‘arz ideyüm halümi her-gâh sana.” Besides, a word that contains a dash is 

counted as one token, such as “Gül-izâr” (means rose-cheeked). On the other hand, “Gül izâr” (means 

rose cheek) is counted as two tokens, and they u a do have different meanings. 

Table 2. Sixty most frequent words (MFW) for a training case with block of size 200 words (most to 

least frequent: bir, bu ile, ki…). In the experiments selected words or their rankings show minor 

variations from this. English translation of their (most frequent) meanings are also provided. 
bir/one bu/this ile/with 

ki/that ol/be kim/who 

her/every ne/what ey/hey 

olur/happens gibi/like ola/wish to be 

dil/soul yine/again olsa/if exists 

ben/me var/there is eyler/it does 

gül/rose oldu/happened sen/you 

ider/do cân/dear mi/adv.of interrog. 

vü/and içün/for dem/moment 

nice/how olup/to become felek/destiny 

idi/was-were olmaz/no eyledi/made 

ger/if hem/both cihân/earth 

dil/heart ehl/people dahi/even 

yok/absent sana/to you üzre/so as to 

gün/day böyle/like this bana/to me 

eyle/to make yâr/friend gam/sorrow 

`atâ/bestowal  beni/me olsun/so be it 

durur/stops ise/although itdi/caused 

kadar/till tâ/until şimdi/now 

iken/while iki/two anâ/pain 

 

 Most Frequent Words (MFW): We determine the sixty most frequent words appearing in the 

corpus excluding the test blocks (more details on test-block-exclusion during are provided in the 

next section). Then we obtain the normalized frequency of these words in each block. Table 2 

provides the most frequent words selected for one of the 200-word blocks (English translation of 

their most frequent meanings are also provided). Note that as explained later we use cross 

validation and therefore training text changes from one cross validation step to next even for the 

same block size.  This has a small impact on the set of the selected words or on their frequency 

ranking: about 90 percent of the words of this table is selected for all block sizes. 

 Token & Type Length (TOL-TYL): We consider the words of length 1 to 15. We ignore the 

words that contain more than 15 characters, since such words are uncommon and constitute only 

0.14% of the entire corpus. In this process, we count the number of occurrences of a token or a 

type with length of 1 to 15 individually in a block, then compute their normalized frequencies and 

obtain the corresponding block vector of size 15. 
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 Two-word Collocations (TWC): We determine the sixty most frequent two-word collocations 

appearing in the corpus excluding the test blocks. Then we obtain the normalized frequency of 

appearance of these phrases in each block and generate the corresponding numerical block vector 

of size 60. Table 3 provides the most frequent two-word collocations selected for one of the 200-

word blocks. Like the selection of the 60 most frequent words, different training cases has a small 

impact on the set of the selected two-word collocations: about 90 percent of the two-word 

collocations of this table is selected for all cases. 

 We also use all four style markers together. 

 

Table 3. Sixty most frequent two-word collocations (TWC) for a training case with block size of 200 

words ( most to least frequent: her dem, bu midur, `aceb mi, var ise…). In the experiments selected 

two-word collocations or their rankings show minor variations from this.  English translation of 

their (most frequent) meanings are also provided. 
her dem/always bu mıdur/is it this `aceb mi/wonder that 

var ise/if exists  her bir/each yâ rab/o Lord 

ne kadar/how many rûz şeb/day night bir gün/one day 

her ne/whatever şevk ile/with passion bir dem/once 

ile bir/with one nice bir/for how long bu gün/today 

gibi bir/like one ey dil/oy my heart ol kadar/that much 

gül gibi/like a rose tâ ki/until that ne var/what's the matter 

ben de/me too bir nefes/one breath mâh-ı nev/new moon 

ki bu/this one ile ol/be with kim ola/who's that 

bu dem/this moment lutf ile/with kindness derd ile/with sorrow 

gün gibi/apparently haşre dek/till doomsday nedür bu/what is this 

yine bir/again one dem ki/time that içinde gizlidir/hidden inside 

bu kadar/this much bu kim/who is this aşk ile/with love 

ol ki/be that böyle bir/like this olur bu/this becomes 

gel ey/come oh dil ki/hearts that can ile/with love  

etdin beni/you've made me virdüm hep/I always gave bilür bilmez/guessing 

bilmez sanur/thinks that doesn't know kim istemez/everyone wants bu gece/this night 

olmasa ger/if not dil cân/dear soul olma zînhar/beware don't be 

var iken/as it exists ey dost/oh friend devlet ile/with good luck 

güyâ ki/imagine that nice kim/how is that bir mertebe/to a certain point 

 

Since person and place names are context dependent they are manually skipped while determining the 

most frequent words and two-word collocations. In the experiments letters are in lowercase. 

4.2 Classification Algorithms 

We employ two machine learning-based classifiers: Naïve Bayes (NB): a generative classifier and 

Support Vector Machines (SVM): a discriminative classifier [Duda et al., 2000, Vapnik, 1995]. The use 

of fundamentally different classifiers provides us a wide test spectrum to investigate the performance of 
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machine learning methods in ATC of Ottoman literary texts. Furthermore, NB and SVM are commonly 

used in similar studies. For example, [Yu, 2008] indicates that SVM is among the best text classifiers. In 

the same work it is also indicated that NB is a simple but effective Bayesian learning method and often 

used as a baseline. Based on these observations we focus on these two methods and investigate and 

compare their performances in ATC of Ottoman literary texts. 

In Naïve Bayes classifier each feature is assumed to be independent of every other feature. Even though 

NB is based on a simple probabilistic schema with good results, in real life cases this assumption might 

not be valid or this may lower its success rate. In this study we employ the model used in [Zhao & Zobel, 

2005]. 

Support Vector Machines (SVM) classifier does not use the assumption that features are independent; it 

constructs a hyper-plane using a set of support vectors in a high dimensional space and tries to find 

decision boundary among the classes by making the separation or margin among them larger [Joachims, 

1998, Joachims, 2001, Vapnik, 1995]. In SVM we employ two different kernel functions; polynomial 

(poly), and radial-basis-function (rbf) kernels. In the experiments of SVM with the polynomial kernel 

(SVM-poly) we run tests when the degree is set to 1, 2, 3, 4, and 5. With the radial-basis-function kernel 

(SVM-rbf), we set γ (width of the kernel) to 0.6, 0.8, 1.0, 1.2, and 1.4. Considering the regularization 

parameter we use a default value (1.0) for all experiments. Similar settings for SVM are used in 

[Joachims, 1998] for text classification and successful results are obtained. 

In our study, for the construction of training and test corpora, we prefer cross validation (leave-one-out) in 

which division of data is not important compared to splitting the corpus as training and test set. The 

experimental results are then averaged across all iterations of cross validation. Since each element in the 

corpus is used in training and test set at least once. We use OpenCV library 

(http://sourceforge.net/projects/opencvlibrary/) that is based on LibSVM [Chang & Lin, 2011] to train the 

classifiers. For the construction of training and test corpora, we prefer K-fold cross validation in which 

division of data is not important compared to splitting the corpus as training and test set. In our study, we 

use ten for K.  

Instead of extracting two single lists of words for most frequent words and two-word collocations using 

the whole corpus, we extract individual lists of words for each iteration of the cross validation from the 

training corpus so that test corpus do not have any effect in the selection of the most frequent words and 

two-word collocations. In other words, for each test block we determine the most frequent words and two-

collocations by only considering the contents of the training blocks. In this way unbiased feature selection 

is guaranteed. 

5 Experimental Results 

5.1 Statistical Evaluation Approach 

We conduct a two way analysis of variance (ANOVA) in order to see if the classification performances of 

the tested cases are significantly different from each other. When the main effects of the factors, style 

markers and machine learning algorithms, are statistically significantly different in explaining the 

variance of classification accuracy, we conduct post-hoc multiple comparisons using Scheffe’s correction 

[Scheffe, 1953] for the levels of each factor. 
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Matlab’s Statistical Toolbox is used to conduct the ANOVA and multiple comparison tests. (Later, in Fig. 

3 and 5 we provide the multiple comparison results for the machine learning algorithms in poet and time 

period categorization for ρ < 0.05.) 

5.2 Classification by Poet 

In the experiments we analyze the performances of the classifiers with MFW, TOL, TWC, and TYL. For 

each case, we obtain a highly effective performance. 

In Table 4, we provide poet classification accuracies of the style markers MFW, TOL, TWC, and TYL 

with the machine learning methods NB, and two versions of SVM for different block sizes. The table 

shows that for MFW with SVM-poly, we obtain the best accuracy score when the polynomial degree is 1; 

similarly, we obtain the best accuracy score for SVM-rbf when γ is 1.2. In the table the values of these 

parameters that provide the best performances of TOL, TWC, and TYL are also given. 

Table 4. Poet classification accuracies of MFW, TOL, TWC, and TYL with NB, SVM-poly, and 

SVM-rbf for different block sizes. The paramters, polynomial degree for SVM-poly and γ for SVM-

rbf that yield the listed results, are also provided. 

Block 

Size 

MFW TOL TWC TYL 

NB 

SVM-

poly 

deg=1 

SVM-

rbf 

γ=1.2 

NB 

SVM-

poly 

deg=5 

SVM-

rbf 

γ=1.2 

NB 

SVM-

poly 

deg=1 

SVM-

rbf 

γ=1.0 

NB 

SVM-

poly 

deg=5 

SVM-

rbf 

γ=1.2 

200 63.13 73.36 74.75 30.98 28.25 26.99 34.85 34.23 35.76 37.12 34.65 35.78 

400 73.67 84.50 84.97 35.35 34.35 36.11 45.00 42.34 43.63 37.89 35.78 35.32 

600 81.71 87.88 88.37 43.66 40.33 41.48 49.91 48.99 49.57 46.28 40.78 37.93 

800 85.21 91.00 90.49 45.69 43.52 44.90 57.07 56.44 57.58 49.65 44.34 45.42 

1000 85.47 91.08 91.42 44.77 42.49 43.55 61.96 61.22 61.50 50.00 45.35 48.23 

1200 86.55 91.32 91.32 51.53 49.16 49.80 63.72 65.77 64.73 56.93 48.29 47.82 

1400 91.66 91.28 91.12 51.36 47.02 48.46 64.45 69.21 69.69 59.55 50.24 48.56 

1600 89.64 91.22 91.12 50.50 48.49 48.64 68.30 68.53 69.90 55.08 49.40 46.65 

1800 88.57 92.51 92.51 54.52 55.38 56.88 69.96 69.42 68.10 64.22 56.76 56.32 

2000 87.05 92.80 92.8 57.78 52.4 55.44 71.93 71.42 71.42 59.17 53.63 54.53 

Avg. 83.27 88.70 88.89 46.60 44.14 45.23 58.72 58.76 59.19 51.59 45.92 45.66 

 

For MWF for all block sizes SVM-poly and -rbf provide better results than NB. Both versions of SVM 

have similar results. For TOL for almost all block sizes NB provides slightly better results than SVM-

poly and -rbf. Scores of SVM-rbf are slightly better than the scores of SVM-poly. For TWC all methods 

yield similar accuracy scores. For TYL for all block sizes NB provides a slightly better performance that 

those of the SVM classifiers and both versions of SVM have similar performances. From the table we can 

see that for MFW the difference between NB and SVM classifiers are noticeable for the other cases NB 

and SVM classifiers performances are mostly compatible with each other. 

In Fig. 1 the average style marker classification rates are provided. The averages are for individual block 

sizes and are obtained by using the results listed in Table 4. The purpose of this figure is to show the 

performances of the style markers with a variety of learning methods (in our case they are NB and two 
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versions of SVM). As can be seen MFW provides a performance which is consistently better than those of 

the other style markers. TWC provides the second best performance, and TYL and TOL (in that order) 

follow TWC. Considering individual style markers or all-style markers, the performance gets better when 

the block size gets larger since larger blocks contain more evidence about what they are. 

 

Figure 1. Poet average correct classification accuracies for four (MFW, TOL, TWC, and TYL) style 

markers using results of NB, SVM-poly, and SVM-rbf classifiers. 

We also combined all four style markers and the results are given in Table 5. Both versions of SVM 

provide a consistently better performance than NB. Furthermore, SVM provides a slightly better 

performance than that of MWF, which yields the highest correct classification rate. However, NB 

provides a performance which is substantially lower than its best case which is again obtained with MFW. 

Table 5. Poet classification accuracies using all style markers. 

Classifier 200 400 600 800 1000 1200 1400 1600 1800 2000 Avg. 

NB 40.53 49.18 41.59 49.06 57.60 55.56 60.36 59.65 57.41 62.18 53.31 

SVM-poly  

(d=1) 
76.18 85.72 87.83 91.64 92.84 93.77 92.57 92.57 93.57 92.34 89.94 

SVM-rbf 

(γ=1.2) 
76.06 86.07 87.66 91.64 92.85 93.78 92.57 92.98 93.58 92.40 89.96 

 

In practical applications one may want to use a majority vote approach for the classification of a 

document based on the success rate with its blocks. In such an approach, it would be important to 

consider document level accuracy by considering the categorization accuracy obtained by not one but 

with all blocks. With this in mind, we also considered block level classification accuracy with smaller 

block sizes. In Fig. 2, we provide an example confusion matrix of poet categorization experiment (with 

SVM-poly, using all style markers together when the block size is 200). The figure illustrates the 
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predictions of the unlabeled blocks in the test phase. The prediction rates are mapped to a gray-scale color 

domain ("absolute" black represents 100%, and white represents 0%). In the figure, the diagonal cells 

give the ratio of the correctly classified blocks. As can be seen the majority of the blocks are classified to 

the right document. The first line of the matrix (D1 ) shows that the ratio of correct classifications for D1 

which is 0.78 (78%). However, 11% of the blocks are incorrectly classified as belonging to D2. As 

intuitively expected, texts of somewhat contemporaneous poets tend to mix with each other rather than 

texts of non-contemporaneous poets. In all cases the majority voting approach gives the correct result, i.e., 

the majority of blocks of a work goes to its own category. 

 

Divan D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

D1 0.78 0.11 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.06 

D2 0.00 0.77 0.08 0.00 0.08 0.00 0.00 0.08 0.00 0.00 

D3 0.04 0.08 0.79 0.04 0.00 0.00 0.00 0.04 0.00 0.00 

D4 0.08 0.08 0.00 0.69 0.08 0.08 0.00 0.00 0.00 0.00 

D5 0.00 0.00 0.00 0.04 0.79 0.04 0.08 0.04 0.00 0.00 

D6 0.07 0.00 0.00 0.07 0.00 0.71 0.07 0.00 0.07 0.00 

D7 0.00 0.00 0.00 0.00 0.00 0.10 0.80 0.10 0.00 0.00 

D8 0.00 0.03 0.00 0.00 0.03 0.07 0.03 0.79 0.03 0.00 

D9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.70 0.10 

D10 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.08 0.04 0.79 

Figure 2. Poet classification confusion matrix for the SVM-poly classifier  

using all style markers together when block size is 200 

(some row sums are not equal to 1.00 due to rounding). 

Summary and Statistical Analysis 

If we look at the experimental results we see that in general SVM is a more accurate classifier. For 

example, with the stand-alone use of the four style markers the SVM classifiers provide a performance 

compatible to (with TOL and TYL), or better than (with MFW) that of NB. When all four style markers 

are used together, SVM provides a substantially better performance than NB. This can be attributed to the 

fact that SVMs are robust with respect to large dimensionalities. 

Fig. 3 provides the multiple comparisons of the machine learning algorithms in poet categorization for ρ < 

0.05 using Scheffe’s method (the values in the comparisons are the scores in Table 4 and 5). In the figure, 

if the vertical dashed lines appearing at the edges of the horizontal lines (machine learning algorithms) cut 

another horizontal line then the groups of the lines are not significantly different, otherwise they are 

significantly different. According to comparisons, the SVM classifiers with different kernels are not 

significantly different from each other, but they are significantly different from the NB classifier. 
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Figure 3. Multiple comarison results using Scheffe's method 

for machine learning algorithms in poet categorization. 

5.3 Classification by Time Period 

In the classification of texts by time period (century) with individual style markers, MFW (Most Frequent 

Words) provides the best classification scores (up to 94%) with the SVM classifier. TWC provides the 

second best performance, and TOL and TYL follow the style marker TWC. SVM mostly performs better 

than NB with MFW. For TOL and TYL, NB provides slightly more accurate results than SVM. The NB 

and SVM classifiers have almost the same performance with TWC. 

In Table 6, the classification accuracies using all style markers for different block sizes and machine 

learning methods are provided. When we use all style markers, the performance of NB decreases with 

respect to its performance with the individual style markers. However, SVM provides a better 

performance when we compare the experiments focusing on individual style markers. As in the poet 

categorization, block size effect has a similar pattern on time categorization; i.e. the larger block size 

provides better performance. 

Table 6. Time period classification accuracies using all style markers. 
Classifier 200 400 600 800 1000 1200 1400 1600 1800 2000 Avg. 

NB  42.55 53.50 60.06 62.35 63.66 66.21 64.71 67.87 65.33 66.19 61.24 

SVM-poly 

(d=1)  
78.42 83.14 85.56 90.63 90.46 90.42 91.21 92.16 95.53 94.37 89.19 

SVM-rbf 

(γ=1.2) 
75.98 83.00 84.73 85.95 88.64 89.45 91.93 90.24 94.84 90.31 87.50 

 

Confusion matrix of time period categorization for SVM-poly using all style markers together when the 

block size is 200 is provided in Fig. 4. The majority of the blocks for the given case are classified to the 
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correct time period (indicated by the diagonal cell contents). As intuitively expected, texts coming from 

adjacent time periods tend to mix with each other rather than texts with distant time periods. 

 

Century 15th 16th 17th 18 th 19 th 

15th 0.83 0.14 0.00 0.03 0.00 

16th 0.09 0.77 0.11 0.03 0.00 

17th 0.00 0.08 0.78 0.14 0.00 

18th 0.00 0.03 0.05 0.82 0.11 

19th 0.00 0.00 0.08 0.19 0.73 

Figure 4. Time period confusion matrix for the SVM-poly classifier  

using all style markers together when block size is 200 

(for one case row sum is not equal to 1.00 due to rounding). 

 

Figure 5. Multiple comparison results using Scheffe’s method for 

machine learning algorithms in time period categorization. 

Summary and Statistical Analysis 

Summary and Statistical Analysis When we consider the time period experiments, MFW and SVM, 

respectively, appear as the most appropriate style marker and the machine learning method. 

Fig. 5 provides the multiple comparisons of the machine learning algorithms in period categorization for ρ 

< 0.05 using Scheffe’s method (the values in the comparisons are the scores in Table 4 and 5). According 

to comparisons, they are significantly different from each other for combinations of all pairs. 
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6 Conclusion and Future Work 

We contribute to research on quantitative and diachronic analysis of the Ottoman language. The 

experimental results confirm our hypotheses: SVM is a more accurate classifier compared to NB in 

categorization tasks; similarly, MFW outperforms the other style markers; furthermore, with no doubt 

TWC is the second best style marker for categorization. We show that it is possible to distinguish poets 

from each other and the same is also true for time periods. In this process we obtained remarkable results, 

almost 90% accuracy, even with small block sizes.  

Another contribution of the study is the Ottoman text categorization collection we constructed by using 

the OTAP and TBP Ottoman language resources. It is prepared by a literary scholar: the poets and their 

works provide a good representation of the underlying Ottoman literature. The same set of literary works, 

our test collection, can be used by other researchers in similar studies. For such cases our results provide a 

baseline for comparison. Our results can be used for the construction of tools in finding hidden patterns in 

text and understanding author and time period of Ottoman literary works. For such tools in other 

languages one may refer to the JGAAP [Juola, 2006], MONK [Guzmán-Cabrera et al., 2009], and Nora 

[Plaisant et al., 2006] projects. 

SVM and MFW yield performances that are mostly statistically significantly different from their 

counterparts. Based on these observations we recommend their use in future related studies. Furthermore, 

the majority vote-based classification of large documents gives excellent results. Additional experiments 

with various combinations of style markers can be fruitful to further improve the classification accuracy. 

In future work, diachronic investigation of the Ottoman language and supporting visual investigation of 

Ottoman script by lexical statistical information look interesting. For language change studies, an 

approach similar to the one defined in [Altintas et al., 2007] can be employed by using frequently 

(re)written famous stories, such as (Leyla and Mecnun), in different centuries; or nazires, different 

interpretations, of the poems of famous Ottoman poets. 
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