
 

 

Abstract— I implemented a Histogram of Oriented Gradients 

(HOG) detector for pedestrians using [1]. Although this new 

implementation gives good result on performance tests, it has 

some drawbacks when it comes to real application. Causes for it 

will be discussed. 

I. INTRODUCTION 

HIS report is a detailed presentation of the conducted 

research on Histogram of Oriented Gradients (HOG) for 

Human Detection. Fig. 1 shows some results of implemented 

HOG-based detector. After presenting the details of the 

method and dataset used for human detection, the obtained 

results will be explained. 

II. OVERVIEW OF THE METHOD 

I have a simple HOG detector and a sliding window pair for 

the application. A window slides through a test image, and for 

each shot HOG detector decides whether it is a pedestrian or 

not. 

As suggested, for simplicity some steps of the original 

HOG algorithm is skipped at implementation, which ended up 

 
 

in four main steps: gradient computation, orientation binning, 

descriptor blocks and block normalization. Before starting 

their explanation separately, it will be wise to mention about 

default of the implementation. 

The detector implemented at this experiment is based on the 

default detector suggested [1]. The detector has the following 

attributes: grayscale with no gamma correction; [-1 0 1] 

gradient filter with no smoothing; linear gradient voting into 9 

orientation bins in 0°-180°; 16x16 pixel blocks of four 8x8 

pixel cells; L2-Norm block normalization; block overlap 

(stride) of half of the block size; 64x128 detection window; 5-

nearest neighbor algorithm.  

III. DATASETS AND METHODOLOGY 

At the beginning of the tests, I have used [1]’s whole 

dataset containing 2416 positive images and 1218 negative 

images. But since the classifier test’s takes too long as I 

suspected, I had to drop the size a little bit.  

So, different from [1], I discarded the left-right reflections 

of positive training examples because of performance issues. I 

also sampled 7308 patches from 1218 negatives (six patches 

each), but because of the same performance issues, I reduced 
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Fig. 1. Some Results of HOG detector. Boxes indicates detection of a pedesterian. 



 

the negative images by only taking 1 patch from each image 

for 800 negatives (See Fig. 2). So, I ended up using 160 

positive images and 800 negatives for my default classifier. 

Positive training images are from 96X160H96/Train/pos 

directory. Negative training images are from Train/neg 

directory. Positive performance test images are from 

70X134H96/Test/pos directory, and negative performance test 

images are from Test/neg directory. 

 

 

IV. IMPLEMENTATION DETAILS 

A. Gradient Computation 

For gradient computation, first the grayscale image is 

filtered to obtain x and y derivatives of pixels using 

conv2(image,filter,’same’) method with those kernels: 
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After calculating x,y derivatives (IX and IY), the magnitude 

and orientation of the gradient is also computed: 
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One thing to note is that, at orientation calculation 

rad2deg(atan2(val)) method is used, which returns values 

between [-180°,180°]. Since unsigned orientations are desired 

for this implementation, the values which are less than 0° is 

summed up with 180°. 

Some computed gradient for positive and negative train 

data can be seen at Fig. 3 and Fig. 4, respectively. 

B. Orientation Binning 

The next step is to compute cell histograms for later use at 

descriptor blocks. As previously mentioned at Overview of 

the Method, 8x8 pixel size cells are computed with 9 

orientation bins for  [0°,180°] interval. For each pixel’s 

orientation, the corresponding orientation bin is found and the 

orientation’s magnitude |G| is voted to this bin. 

Two sample orientations before binning can be seen at Fig. 5 

and Fig. 6. 

C. Descriptor Blocks 

To normalize the cells’ orientation histograms, they should 

be grouped into blocks. From the two main block geometries, 

the implementation uses R-HOG geometry. Each R-HOG 

block has 2x2 cells and adjacent R-HOGs are overlapping 

each other for a magnitude of half-size of a block.  

D. Block Normalization 

Although there are three different methods for block 

normalization, L2-Norm normalization is implemented using 

norm(vec) method: 
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E. Detector Window 

As previously mentioned, the detector window size is 

64x128 pixels. This result in 8x16 cells and 7x15 R-HOG 

blocks, since blocks are overlapping. Each R-HOG block has 

2x2 cells, which also has 1x9 histogram vector each. So the 

overall size of R-HOG descriptor of a window is 7x15x2x2x9. 

Since there is no need for multi-dimensionality in R-HOG 

descriptor, a vector of size 3780 is used for each window.  

 

 

 

  

 

 
Fig. 3. Some samples from Pos. Train Dataset and their calculated 

magnitude vector visualizations  

 

 

 

 

 
Fig. 2. Six Patch Extraction vs Single Patch Extraction for Neg. Train Dataset 

 

 



 

 
 

F. Classifier 

When a test image is given to the system, two half-sizes are 

generated, resulting in three images with scales 1, 1/2 and 1/4 

of the original image. For each of these generated images, a 

window of size 64x128 is scrolled across the entire image 

with 32 pixel horizontal and 64 pixel vertical step sizes. And 

for each window that is cropped, a classifier is run as 

described below. 

The implemented classifier is a simple k-NN Classifier with 

Euclidian distance measure. It has three modes. NN classifier 

mode simply computes the nearest neighbor of a test window 

and sets this neighbor’s label as result. Strict 5NN classifier 

mode computes five nearest neighbors for a test window. 

Then if the closest neighbor’s label and the dominant label in 

five neighbors is both pedestrian, the resulting label will also 

be pedestrian. Similarly, Loose 5NN classifier mode also 

computes five nearest neighbors. But this time, if the closest 

neighbor’s label or the dominant label in five neighbors is 

pedestrian, the resulting label will also be pedestrian. 

To sum up, I can say that the hardest acceptor for 

pedestrian label is Strict 5NN classifier, where Loose 5NN 

classifier is the easiest. 

 

 
 

V. PERFORMANCE STUDY 

I have evaluated overall performance for different 

environments. The parameters were positive training dataset 

size, negative training dataset size and classifier method. Two 

different kind of performance are measured during tests.  

Positive Performance test is done using 1000 images 

(70x134) of true pedestrians. The reported percentage is the 

ratio of successfully recognized pedestrians and total number 

of pedestrians (i.e. 1000). In other words, if the percentage is 

low, probability of getting false negatives is high. 

Negative Performance test is done using 250 images having 

no pedestrians. For each image 4 patches are cropped and 

tested. The reported percentage is the ratio of successfully not-

recognized pedestrians and total number of patches (i.e. 

1000). In other words, if the percentage is low, probability of 

getting false positives is high. 

 

 

 

 

 

Fig. 6. A sample from Pos. Train Dataset, its magnitude and orientation 

visualization 

 

 

 

 

 

 

 

 

 

 

Fig. 5. A sample from Neg. Train Dataset, its magnitude and orientation 

visualization 

 

 

 

 

 

 

 
Fig. 4. Some samples from Neg. Train Dataset and their calculated 

magnitude vector visualizations 

 

 

 

 

 



 

The performance comparison of different configurations 

can be seen at Table 2, Table 1 and Table 3. As seen, overall 

performance is quite high for every scheme chosen. But there 

are some expected differences between each of them.  

 

 
Dataset Selection 

The first test configuration has full range of positive train 

images but having somewhat less negative train images. It has 

2416 positive train images and 1218 negative train images that 

are single-patched from actual neg. images. It can be seen that, 

Positive Performance of first configuration outperforms both 

second and third configurations. This is an expected case; 

since negative training set is not large enough; the closest 

neighbor of any test image is more happen to be pedestrian 

images. But the biggest failure of this configuration is that it is 

much worse at catching false positives, because of the same 

characteristic. Since false positives are the most unwanted 

behaviors by most detection algorithms, this configuration 

will not be favored. 

The second test case has the full dataset provided by [1]. It 

has 2416 positive train images and 7308 negative train 

images. Those 7308 negative train images are six patched 

from actual negative train images as shown at Fig. 2. Since this 

configuration has much more negative train data, the false 

positive failure is almost zero. 1000 Negative Performance 

images cannot be tested at this configuration, since the dataset 

was huge. But for a smaller test of 100 images, system does 

not detect any false positives. 

Although the second configuration is the most reliable one, 

it has a huge drawback of performance. So, the third 

configuration is derived from this need. It has 160 positive 

images and 800 negative images each single-patched from 

actual negatives. Unfortunately, the overall performance is 

dropped radically as I expected. It has nearly half of Positive 

Performance of second configuration, but Negative 

Performance is still good. Although it has a good performance 

gain, I can still say that Full Dataset Having 2416 Pos. and 

7308 Neg. Training is the best configuration among three of 

them. 

Classifier Selection 

Another important factor on performance is classifier 

method. There is actually not much to say about it. Strict 5NN 

had obviously the highest Negative Performance and the 

lowest Positive Performance, since it looks for both closest 

neighbor and dominant neighborhood. Oppositely, Loose 5NN 

had the lowest Negative Performance and the highest Positive 

Performance. Nearest Neighbor is at somewhere in-between.  

The best choice among those approaches would be Strict 

5NN. Although it looks like it lacks the Positive Performance 

of others; at application tests it occurred that Negative 

Performance is even more important, since most of the 

windows that are tested for a scene will not contain any 

pedestrian, we don’t want to have false positives out of 

everywhere.  

VI. OVERVIEW OF THE RESULTS 

As explained at Classifier, for a given image three different 

scales of 1,1/2 and ¼ are first generated. Than a window of 

size 64x128 is slide at all of those scales. For every window 

position, a R-HOG descriptor is computed and looked for the 

nearest neighbor. If it’s pedestrian, we have detection. 

Although the performance study promises a high applicability 

of the implementation to this real-life example; the tested full-

size images hardly say so. 

Upon further investigation, I see that when the detection 

window is a position so that the pedestrian is not exactly at 

center of the image with respect to left-right line, the 

performance drops drastically. To better explain the behavior; 

I had an additional test where all 1000 positive test images 

from performance tests are shifted left by 3 pixels. The 

detection performance of Small Dataset with Strict 5NN is 

dropped from 33.8% to 17.3%. This concludes that, the real 

problem of application is not just about calculating HOGs, but 

finding correct windows is also an important issue. The 

default step size between each window was 64x32. But when I 

further decrease it to a value like 8x8, both the computation 

time increase and false positive increase was at inacceptable 

degrees.  

At a first glance, it could seem like that with a negative 

performance of 98.8%, the false positives cannot increase that 

much. But consider the case, for an image of 640x480 pixels, 

with a step size 8x8 and window size 64x128, there will be 

around 3200 window tests. Let’s say 3000 window will not 

cover the pedestrian. So with a false positive rate of 0.4%, we 

will end up having 12 false detections! For an image with only 

1 pedestrian, it is not tolerable. 

This situation should be handled by using some intelligent 

window sliding technique like having a voting system of the 

detection results of each window with respect to their position, 

size etc. 

 

TABLE I-II-III 

PERFORMANCE RESULTS 

TABLE 1. FULLPOS DATASET HAVING 2416 POS & 1218 NEG 

TRAINING 

Classifier Positive 

Performance 

Negative 

Performance 

Nearest Neighbor 80.6% 96.6% 

Strict 5NN 77.9% 98.1% 

Loose 5NN 90.9% 94.3% 

 

TABLE 2. FULL DATASET HAVING 2416 POS & 7308 NEG TRAINING 

Classifier Positive 

Performance 

Negative 

Performance 

Nearest Neighbor 84.2% ~100%* 

Strict 5NN 81.3% ~100%* 

Loose 5NN 84.7% ~100%* 
* These are assumptions 

 

TABLE 3. SMALL DATASET HAVING 160 POS & 800 NEG TRAINING 

Classifier Positive 

Performance 

Negative 

Performance 

Nearest Neighbor 44.0% 99.3% 

Strict 5NN 33.8% 99.6% 

Loose 5NN 59.2% 97.8% 
 

 



 

VII. CONCLUSION 

Although my implementation’s performance results were 

good, to have a reasonable computation time, I had to use 

Small Dataset configuration for my detection application. This 

really lessens the product’s quality. But with a more compact 

dataset of pedestrians and with a better coding than my all for-

loop involved code, I believe a much successful application 

could be achieved.  

I had started the paper with Fig. 1, a demonstration of end-

user application, and I want to conclude it with some sample 

results from Positive Performance Tests. You can see them at 

Fig. 7 and Fig. 8. 
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 NEGATIVE TEST IMAGES     MATCHING TRAIN IMAGES 

  

  
 

 

 

 

Fig. 8. Some sample negative test images and their corresponding negative 

training matches 

 

 

 

 

 

 

 POSITIVE TEST IMAGES     MATCHING TRAIN IMAGES 

  

  

  
 

 

 

 

Fig. 7. Some sample positive test images and their corresponding positive 

training matches 
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