

Abstract— I implemented a Histogram of Oriented Gradients

(HOG) detector for pedestrians using [1]. Although this new

implementation gives good result on performance tests, it has

some drawbacks when it comes to real application. Causes for it

will be discussed.

I. INTRODUCTION

HIS report is a detailed presentation of the conducted

research on Histogram of Oriented Gradients (HOG) for

Human Detection. Fig. 1 shows some results of implemented

HOG-based detector. After presenting the details of the

method and dataset used for human detection, the obtained

results will be explained.

II. OVERVIEW OF THE METHOD

I have a simple HOG detector and a sliding window pair for

the application. A window slides through a test image, and for

each shot HOG detector decides whether it is a pedestrian or

not.

As suggested, for simplicity some steps of the original

HOG algorithm is skipped at implementation, which ended up

in four main steps: gradient computation, orientation binning,

descriptor blocks and block normalization. Before starting

their explanation separately, it will be wise to mention about

default of the implementation.

The detector implemented at this experiment is based on the

default detector suggested [1]. The detector has the following

attributes: grayscale with no gamma correction; [-1 0 1]

gradient filter with no smoothing; linear gradient voting into 9

orientation bins in 0°-180°; 16x16 pixel blocks of four 8x8

pixel cells; L2-Norm block normalization; block overlap

(stride) of half of the block size; 64x128 detection window; 5-

nearest neighbor algorithm.

III. DATASETS AND METHODOLOGY

At the beginning of the tests, I have used [1]’s whole

dataset containing 2416 positive images and 1218 negative

images. But since the classifier test’s takes too long as I

suspected, I had to drop the size a little bit.

So, different from [1], I discarded the left-right reflections

of positive training examples because of performance issues. I

also sampled 7308 patches from 1218 negatives (six patches

each), but because of the same performance issues, I reduced

An Implementation on

Histogram of Oriented Gradients for Human

Detection

Cansın Yıldız

Dept. of Computer Engineering

Bilkent University

Ankara,Turkey

cansin@cs.bilkent.edu.tr

T

Fig. 1. Some Results of HOG detector. Boxes indicates detection of a pedesterian.

the negative images by only taking 1 patch from each image

for 800 negatives (See Fig. 2). So, I ended up using 160

positive images and 800 negatives for my default classifier.

Positive training images are from 96X160H96/Train/pos

directory. Negative training images are from Train/neg

directory. Positive performance test images are from

70X134H96/Test/pos directory, and negative performance test

images are from Test/neg directory.

IV. IMPLEMENTATION DETAILS

A. Gradient Computation

For gradient computation, first the grayscale image is

filtered to obtain x and y derivatives of pixels using

conv2(image,filter,’same’) method with those kernels:

101xD and T

yD 101 (1)

After calculating x,y derivatives (IX and IY), the magnitude

and orientation of the gradient is also computed:

22

YX IIG and

X

Y

I

I
arctan (2)

One thing to note is that, at orientation calculation

rad2deg(atan2(val)) method is used, which returns values

between [-180°,180°]. Since unsigned orientations are desired

for this implementation, the values which are less than 0° is

summed up with 180°.

Some computed gradient for positive and negative train

data can be seen at Fig. 3 and Fig. 4, respectively.

B. Orientation Binning

The next step is to compute cell histograms for later use at

descriptor blocks. As previously mentioned at Overview of

the Method, 8x8 pixel size cells are computed with 9

orientation bins for [0°,180°] interval. For each pixel’s

orientation, the corresponding orientation bin is found and the

orientation’s magnitude |G| is voted to this bin.

Two sample orientations before binning can be seen at Fig. 5

and Fig. 6.

C. Descriptor Blocks

To normalize the cells’ orientation histograms, they should

be grouped into blocks. From the two main block geometries,

the implementation uses R-HOG geometry. Each R-HOG

block has 2x2 cells and adjacent R-HOGs are overlapping

each other for a magnitude of half-size of a block.

D. Block Normalization

Although there are three different methods for block

normalization, L2-Norm normalization is implemented using

norm(vec) method:

22

2
ev

v
f (3)

E. Detector Window

As previously mentioned, the detector window size is

64x128 pixels. This result in 8x16 cells and 7x15 R-HOG

blocks, since blocks are overlapping. Each R-HOG block has

2x2 cells, which also has 1x9 histogram vector each. So the

overall size of R-HOG descriptor of a window is 7x15x2x2x9.

Since there is no need for multi-dimensionality in R-HOG

descriptor, a vector of size 3780 is used for each window.

Fig. 3. Some samples from Pos. Train Dataset and their calculated

magnitude vector visualizations

Fig. 2. Six Patch Extraction vs Single Patch Extraction for Neg. Train Dataset

F. Classifier

When a test image is given to the system, two half-sizes are

generated, resulting in three images with scales 1, 1/2 and 1/4

of the original image. For each of these generated images, a

window of size 64x128 is scrolled across the entire image

with 32 pixel horizontal and 64 pixel vertical step sizes. And

for each window that is cropped, a classifier is run as

described below.

The implemented classifier is a simple k-NN Classifier with

Euclidian distance measure. It has three modes. NN classifier

mode simply computes the nearest neighbor of a test window

and sets this neighbor’s label as result. Strict 5NN classifier

mode computes five nearest neighbors for a test window.

Then if the closest neighbor’s label and the dominant label in

five neighbors is both pedestrian, the resulting label will also

be pedestrian. Similarly, Loose 5NN classifier mode also

computes five nearest neighbors. But this time, if the closest

neighbor’s label or the dominant label in five neighbors is

pedestrian, the resulting label will also be pedestrian.

To sum up, I can say that the hardest acceptor for

pedestrian label is Strict 5NN classifier, where Loose 5NN

classifier is the easiest.

V. PERFORMANCE STUDY

I have evaluated overall performance for different

environments. The parameters were positive training dataset

size, negative training dataset size and classifier method. Two

different kind of performance are measured during tests.

Positive Performance test is done using 1000 images

(70x134) of true pedestrians. The reported percentage is the

ratio of successfully recognized pedestrians and total number

of pedestrians (i.e. 1000). In other words, if the percentage is

low, probability of getting false negatives is high.

Negative Performance test is done using 250 images having

no pedestrians. For each image 4 patches are cropped and

tested. The reported percentage is the ratio of successfully not-

recognized pedestrians and total number of patches (i.e.

1000). In other words, if the percentage is low, probability of

getting false positives is high.

Fig. 6. A sample from Pos. Train Dataset, its magnitude and orientation

visualization

Fig. 5. A sample from Neg. Train Dataset, its magnitude and orientation

visualization

Fig. 4. Some samples from Neg. Train Dataset and their calculated

magnitude vector visualizations

The performance comparison of different configurations

can be seen at Table 2, Table 1 and Table 3. As seen, overall

performance is quite high for every scheme chosen. But there

are some expected differences between each of them.

Dataset Selection

The first test configuration has full range of positive train

images but having somewhat less negative train images. It has

2416 positive train images and 1218 negative train images that

are single-patched from actual neg. images. It can be seen that,

Positive Performance of first configuration outperforms both

second and third configurations. This is an expected case;

since negative training set is not large enough; the closest

neighbor of any test image is more happen to be pedestrian

images. But the biggest failure of this configuration is that it is

much worse at catching false positives, because of the same

characteristic. Since false positives are the most unwanted

behaviors by most detection algorithms, this configuration

will not be favored.

The second test case has the full dataset provided by [1]. It

has 2416 positive train images and 7308 negative train

images. Those 7308 negative train images are six patched

from actual negative train images as shown at Fig. 2. Since this

configuration has much more negative train data, the false

positive failure is almost zero. 1000 Negative Performance

images cannot be tested at this configuration, since the dataset

was huge. But for a smaller test of 100 images, system does

not detect any false positives.

Although the second configuration is the most reliable one,

it has a huge drawback of performance. So, the third

configuration is derived from this need. It has 160 positive

images and 800 negative images each single-patched from

actual negatives. Unfortunately, the overall performance is

dropped radically as I expected. It has nearly half of Positive

Performance of second configuration, but Negative

Performance is still good. Although it has a good performance

gain, I can still say that Full Dataset Having 2416 Pos. and

7308 Neg. Training is the best configuration among three of

them.

Classifier Selection

Another important factor on performance is classifier

method. There is actually not much to say about it. Strict 5NN

had obviously the highest Negative Performance and the

lowest Positive Performance, since it looks for both closest

neighbor and dominant neighborhood. Oppositely, Loose 5NN

had the lowest Negative Performance and the highest Positive

Performance. Nearest Neighbor is at somewhere in-between.

The best choice among those approaches would be Strict

5NN. Although it looks like it lacks the Positive Performance

of others; at application tests it occurred that Negative

Performance is even more important, since most of the

windows that are tested for a scene will not contain any

pedestrian, we don’t want to have false positives out of

everywhere.

VI. OVERVIEW OF THE RESULTS

As explained at Classifier, for a given image three different

scales of 1,1/2 and ¼ are first generated. Than a window of

size 64x128 is slide at all of those scales. For every window

position, a R-HOG descriptor is computed and looked for the

nearest neighbor. If it’s pedestrian, we have detection.

Although the performance study promises a high applicability

of the implementation to this real-life example; the tested full-

size images hardly say so.

Upon further investigation, I see that when the detection

window is a position so that the pedestrian is not exactly at

center of the image with respect to left-right line, the

performance drops drastically. To better explain the behavior;

I had an additional test where all 1000 positive test images

from performance tests are shifted left by 3 pixels. The

detection performance of Small Dataset with Strict 5NN is

dropped from 33.8% to 17.3%. This concludes that, the real

problem of application is not just about calculating HOGs, but

finding correct windows is also an important issue. The

default step size between each window was 64x32. But when I

further decrease it to a value like 8x8, both the computation

time increase and false positive increase was at inacceptable

degrees.

At a first glance, it could seem like that with a negative

performance of 98.8%, the false positives cannot increase that

much. But consider the case, for an image of 640x480 pixels,

with a step size 8x8 and window size 64x128, there will be

around 3200 window tests. Let’s say 3000 window will not

cover the pedestrian. So with a false positive rate of 0.4%, we

will end up having 12 false detections! For an image with only

1 pedestrian, it is not tolerable.

This situation should be handled by using some intelligent

window sliding technique like having a voting system of the

detection results of each window with respect to their position,

size etc.

TABLE I-II-III

PERFORMANCE RESULTS

TABLE 1. FULLPOS DATASET HAVING 2416 POS & 1218 NEG

TRAINING

Classifier Positive

Performance

Negative

Performance

Nearest Neighbor 80.6% 96.6%

Strict 5NN 77.9% 98.1%

Loose 5NN 90.9% 94.3%

TABLE 2. FULL DATASET HAVING 2416 POS & 7308 NEG TRAINING

Classifier Positive

Performance

Negative

Performance

Nearest Neighbor 84.2% ~100%*

Strict 5NN 81.3% ~100%*

Loose 5NN 84.7% ~100%*
* These are assumptions

TABLE 3. SMALL DATASET HAVING 160 POS & 800 NEG TRAINING

Classifier Positive

Performance

Negative

Performance

Nearest Neighbor 44.0% 99.3%

Strict 5NN 33.8% 99.6%

Loose 5NN 59.2% 97.8%

VII. CONCLUSION

Although my implementation’s performance results were

good, to have a reasonable computation time, I had to use

Small Dataset configuration for my detection application. This

really lessens the product’s quality. But with a more compact

dataset of pedestrians and with a better coding than my all for-

loop involved code, I believe a much successful application

could be achieved.

I had started the paper with Fig. 1, a demonstration of end-

user application, and I want to conclude it with some sample

results from Positive Performance Tests. You can see them at

Fig. 7 and Fig. 8.

REFERENCES

[1] Navneet Dalal , Bill Triggs, “Histograms of Oriented Gradients for

Human Detection,” in Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR'05) -

Volume 1, p.886-893, June 20-26, 2005

 NEGATIVE TEST IMAGES MATCHING TRAIN IMAGES

Fig. 8. Some sample negative test images and their corresponding negative

training matches

 POSITIVE TEST IMAGES MATCHING TRAIN IMAGES

Fig. 7. Some sample positive test images and their corresponding positive

training matches

http://portal.acm.org/citation.cfm?id=1069007&dl=GUIDE&coll=Portal&CFID=63315840&CFTOKEN=42200868
http://portal.acm.org/citation.cfm?id=1069007&dl=GUIDE&coll=Portal&CFID=63315840&CFTOKEN=42200868
http://portal.acm.org/citation.cfm?id=1069007&dl=GUIDE&coll=Portal&CFID=63315840&CFTOKEN=42200868
http://portal.acm.org/citation.cfm?id=1069007&dl=GUIDE&coll=Portal&CFID=63315840&CFTOKEN=42200868

