
An Implementation on Real-time Animation of Trees

Swaying in Wind Fields

Cansin Yildiz,

Bilkent University, Computer Engineering Department

06800 Ankara, Turkey

cansin@cs.bilkent.edu.tr

Abstract. Trees are one of the most important objects of everyday life. Many

studies have been made on simulating tree motion under influence of wind.

Most of the time, those studies use physical based approaches to generate the

branch motions. In this paper, I propose a hybrid method to create natural

motion of branches and leaves using both physical equations and stochastic

effects, based on [1]. This method enables real-time animation of branches,

leaves and a projective shadow of the tree.1

Keywords: tree, motion, wind, spring-force model, real-time animation.

1 Introduction

An accurate representation for vegetation is one of the most important topics in

computer graphics field. Starting with late 80’s, a lot of research has been done

concerning this issue. However, most of those studies [2] [3] [4] are solely focused on

modeling the shapes of trees and vegetation, while ignoring motion. But, fortunately,

there are also works which incorporate model with motion [1] [5] [6]. Most of these

methods generate branch motion using pure physical based approaches. Although,

physical approaches can create very accurate motion of branches under influence of

wind and other external forces, their calculation complexity makes real-time

execution hard. There is also a completely different approach for plant motion

problem; to use motion capture data as guidance for generating new plant motions

[10].

To the author’s knowledge, there are few methods which can realize real-time

execution [1] [7] [8] [9]. Similar to what is introduced by Ota et al. [1], this paper

proposes an efficient way of creating natural branch, and leaf motion. The method is a

hybrid one, which combines spring-force model for general motion and stochastic

sine oscillation for randomness and leaf motion. This method can easily handle

different kinds of trees, like weeping trees (see Fig. 1).

1 This work is a two-course project. The branch simulation and rendering part is implemented

at CS565 course of Prof. Ozguc at Bilkent University. Similarly, the leaf simulation,

rendering and shadow casting stages are implemented at CS568 course.

mailto:cansin@cs.bilkent.edu.tr

2 Cansin Yildiz,

Fig. 1. Some examples of trees; a weeping tree, a palm trunk and a regular tree.

In section 2, a brief description of overall process is given. Section 3 continues

with giving the details of branch simulation/rendering step of the method. After

giving some examples of branch motions as well, paper continues with explaining leaf

simulation/rendering at section 4. Then, at section 5, the projective shadow approach

that is used to generate tree shadow is explained. I conclude the paper with some

discussion on future work and so forth at section 6 and 7.

2 Overview of the Method

As all animation methods, the approach has two main concerns; simulation and

rendering. For simulating trees’ branch motion, a physical based approach is used.

The general motion of each branch is simulated as a mass-spring system. Using the

displacement caused by the external wind force, a displacement angle is calculated for

each branch segment, and it is accumulated through their children as well. The

resulting simulation is further enriched by adding oscillation behavior of sine-based

stochastic force. For that simulation to be as realistic as possible, some other measures

are also taken, which is discussed deeply in following section. Similar to branches’

stochastic behavior, leaf motion is simulated using a sine-based force. Since, leaves’

actual physically correct behavior is no concern for this real-time application, this

stochastic simulation was enough and pretty realistic.

The other issue that has to be handled was rendering. Basically, the concern is to

have a tree rendering as realistic as possible. To do that some problems are needed to

be overcome like skinning the tree, solving breaking of branch segments, etc. Another

issue, which is by no ways less important, is to have a supportive environment for tree

animation. The details of both rendering concerns are investigated at section 3. Then,

at section 4, the details of leaf rendering is given. Basically, a masking approach is

used to render alpha-blended leaves. Shadow is a major concern for realistic

rendering. Since, the environment had a flat ground surface; a projective shadowing

technique was enough to render the shadow.

I strongly suggest readers to watch the implementation videos to better see the

results, since this is a tree simulation/rendering.

An Implementation on Real-time Animation of Trees Swaying in Wind Fields 3

3 Branches

3.1 Simulation

To represent the wind effect on branches, I adapted a simulation method based on

cantilever spring model as proposed at [1]. The overall simulation that is obtained

from this cantilever spring model is supported by an oscillation simulation using sine-

based force functions. The rest of this section is first explains the branch model that is

used to represent the tree, and how it is actually simulated.

3.1.1 Branch Model of a Tree

The model for representing a tree is consists of branches. Between each two

consecutive joints, there is at least one branch segment (see Fig. 2), but there can be

multiple segments as well to have a soft motion of long branches; which is most

common in weeping trees. Each branch segment is given some properties, namely,

length, base width and initial angles x/y. Top width of a branch segment is calculated

according to its children’s base widths.

Fig. 2. Branch segments and their properties.

3.1.2 Simulation Based on Spring Model

Each branch segment has its own local coordinate system, which makes simulation

easier. The origin of this local coordinate system is set to bottom of the branch

segment, and axes are perpendicular to branch direction (see Fig. 3).

4 Cansin Yildiz,

Fig. 3. Local coordinate system of a branch segment.

The simulation method is based on cantilever flat-spring model, as proposed by

Ota et al. 1. As they described, a branch segment is approximated as a squared non-

elastic wood, and the displacement amount is calculated from the wind load given to

the branch segment. The pressure that is applied to the branch along x/y directions is

described as;

 (1)

 (2)

Here, the first term F(t) is the directional force that can be applied to a branch

segment. For current purpose, it is used as the wind force. Although the coefficient

that is applied to F(t) may seem complicated, it is pretty straight-forward. 1 is to

represent the wind force’s itself. a*sin(t+b) coefficient is the so called oscillation

behavior of the branch segment. By having a coefficient a in front of sine function,

the current strength of oscillation is controlled. a is a small number, which is derived

from the current angle of the branch segment. Basically, if a branch segment is

bended much, it will oscillate more as well. The randomness of this oscillation is

realized by b constant. It is basically a random number, which makes each branch

segment to be in different sine phases at same time step.

Using those loads, displacement amounts of the branches are calculated as;

 (3)

 (4)

Here, k is the spring constant of branch segment. It is determined by;

 (5)

E, the elastic modulus, is specific to each tree. Whereas, the width b, thickness t

(base width - top width), and length l is specific to each branch segment.

𝑃𝑥 𝑡 = 𝐹𝑥 𝑡 ∗ 1 + 𝑎 ∗ sin 𝑡 + 𝑏
𝑃𝑦 𝑡 = 𝐹𝑦 𝑡 ∗ (1 + 𝑎 ∗ sin⁡(𝑡 + 𝑏))

δ𝑥 𝑡 = 𝑃𝑥 𝑡 /𝑘

δ𝑦 𝑡 = 𝑃𝑦 𝑡 /𝑘

𝑘 =
𝐸𝑏𝑡3

4𝑙3

An Implementation on Real-time Animation of Trees Swaying in Wind Fields 5

Fig. 4. Simulation of branch motion.

After calculating the displacement amounts using spring constant and load, the

actual motion angles Θ(t) are needed to be calculated (see Fig. 4). Those angles are

calculated as;

 (6)

 (7)

It must be noted that, the final motion angles are further restricted to not exceed a

certain degree x (20° in current implementation) to force the natural behavior of tree

branches.

Although this method uses a physical approach, it can maintain real-time

performance because of the flat-spring model’s simplicity.

3.1.3 Integration of Branch Motions

The motions of individual branch segments are obtained as described at 3.1.2. After

that they must be integrated to form the final motion of the actual tree. As shown at

Fig. 5, the branch segments’ motion is summed up from parent to children branches.

Fig. 5. The accumulation of motion through parent to children segments.

𝛩𝑥 𝑡 = sin−1(δ𝑥(𝑡)/𝑙)

𝛩𝑦 𝑡 = sin−1(δ𝑦(𝑡)/𝑙)

6 Cansin Yildiz,

3.2 Rendering

A successful simulation should always be supported with a realistic rendering. There

are two main concerns about rendering; rendering a realistic tree and a beautiful scene

that the tree can live in. The rest of this section gives the details of those rendering

issues.

3.2.1 Tree

Unlike most computer animation problems, rendering an acceptable tree is a straight-

forward problem. To achieve that, the tree branches are rendered as cones and

covered with a decent bark texture. The only problem about this approach was that

there could be some breaking conditions; i.e. when the angle between two consecutive

branch segments are larger than a value, it could be seem like the branch is breaking.

This notion is overcome by simply rendering spheres of proper radius between each

branch segments (see Fig. 6).

Fig. 6. Breaking problem is handled using spheres of appropriate radius.

3.2.2 Scene

Plate that used is always as important as the food served. Therefore, a realistic

scene for tree animation is a top priority. Using only simple OpenGL tricks, a decent

scene is created. This scene has some fine details like a sky-dome with a nice texture,

a skyline between sky and ground, and even the little grasses that are near root of tree

trunk. Those details can be seen at Fig. 7.

An Implementation on Real-time Animation of Trees Swaying in Wind Fields 7

Fig. 7. Details of rendering.

3.3 Examples

In this section, some examples that are simulated using the actual implementation will

be demonstrated. But, since it is a tree animation, I urge you to watch the

supplementary videos.

The first figure (Fig. 8) is a regular tree which sways under effect of wind. You

can observe how overall movement is consistent with general wind direction yet has

randomness as well.

8 Cansin Yildiz,

Fig. 8. A regular tree under effect of wind. White arrows represent wind direction and

magnititude.

The second result is more interesting. The system is tested for a different kind of

tree; a weeping tree (see Fig. 9).

Fig. 9. A weeping tree under effect of wind.

In weeping tree test, it is realized that an important implementation detail was

skipped. When the branch segments lays upside-down, the wind force should decrease

their angle, rather than increasing it (see Fig. 10). After adding that little specification,

system is fully suitable for all kinds of trees.

Fig. 10. Upside-down branch vs. normal branch.

Last tree that is simulated is a trunk of palm tree (see Fig. 11). This run nicely

represent the notion that a trunk can consist of several branch segments, to simulate

the flexible behavior.

An Implementation on Real-time Animation of Trees Swaying in Wind Fields 9

Fig. 11. A palm tree under effect of wind.

4 Leaves

4.1 Generation

Since adding thousands of leaves to a tree manually is not a feasible idea, I have

implemented a generation process for the leaves. It is a simple procedure that follows

the idea: If branch is thin enough (i.e. it’s a twig rather than trunk), generate some

number of leaves with random local positions and orientations. At Fig. 12, you can

see a randomly dressed tree with leaves.

Fig. 12. A tree with randomly generated leaves.

10 Cansin Yildiz,

4.2 Wind Simulation

To simulate leaves, I am using a stochastic approach, which is proposed by Ota et al.

at [1]. To achieve the fundamental simulation, horizontal, vertical and rotational

motions are calculated separately (see Fig. 13).

The calculations are pretty straight-forward. For each motion component, there is a

pre-defined maximum angle, and a per-leaf randomly generated parameter. The

equations are;

𝛩𝐻 𝑡 = 𝑊𝐻 ∗ 𝑁𝐻(𝑡)
𝛩𝑉 𝑡 = 𝑊𝑉 ∗ 𝑁𝑉(𝑡)

𝛩𝑅 𝑡 = 𝑊𝑅 ∗ 𝑁𝑅(𝑡) + 𝑎 ∗ 𝛩𝑋 𝑡
where,

𝜣𝑯/𝑽/𝑹 𝒕 : Motion angles at time t,

𝑾𝑯/𝑽/𝑹: Maximum motion angles,

𝑵𝑯/𝑽/𝑹(𝒕): Sine function w.r.t. time t.

One thing to note in these equations is that rotation angle calculation has an extra

component, related to current horizontal motion. This additional parameter realizes a

more natural behavior of leaf bending when wind blows leaf far away. You can better

visualize the effect at Fig. 14.

Fig. 13. Leaf simulation procedure.

Fig. 14. Additional 𝛩𝐻(𝑡) related component at 𝛩𝑅(𝑡) achieves more

natural look.

Natural Straight

An Implementation on Real-time Animation of Trees Swaying in Wind Fields 11

4.3 Shedding Simulation

Although having leaves on top of the branches and letting them move according to the

wind added quite realism to the application, it was not enough for a successful tree

simulation. Trees shed leaves almost always; therefore leaf shedding is also simulated

(see Fig. 15).

The procedure for shedding is a stochastic approach, just like the vast amount of

other components of the application. Basically, the idea is to cut off a leaf from its

parent branch, according to a per-leaf basis random variable. If the random exceeds a

small threshold, the leaf starts falling down. This threshold is proportional to current

wind speed, thus the number of leaves falling down gets higher as wind speeds up.

4.4 Rendering

Arbitrary shaped leaves are rendered for a better realism. It is achieved by using an

alpha-blending procedure with masking. First, the mask texture is rendered at the

scene, with GL_BLEND option glBlendFunc(GL_DST_COLOR,GL_ZERO) (see Fig.

16).

Fig. 15. A tree is shedding its leaves.

Fig. 16. Rendering mask texture to scene.

12 Cansin Yildiz,

Then, actual leaf texture is rendered on top of mask using blend option

glBlendFunc(GL_ONE, GL_ONE) (see Fig. 17).

These two steps are not sufficient for a decent rendering. Since alpha-blending is

used, order of the rendering is important. For that reason, the leaves should first be

sorted according to their distance from the camera position and then they can be

rendered; if not, an occlusion problem would occur as in Fig. 18.

4.5 Light and Shadow

As a realistic touch, tree shadow is also implemented. Since this is a real-time

application, I want to keep shadowing simple for efficiency. Therefore, I have used a

projective shadowing technique. It is an easy-to-implement type of shadow where the

tree object is simply projected onto a plane, then rendered as a separate primitive.

Computing the shadow involves applying an orthographic or perspective projection

matrix to the model-view transform, then rendering the projected object in the desired

shadow color. According to [11], the needed sequence is as follows;

1. Render the scene, including the shadowing object in the usual way.

2. Set the modelview matrix to identity, then call glScalef(1.f, 0.f, 1.f).

Fig. 17. Rendering leaf texture on top of mask.

Fig. 18. The leaves first need to be sorted to avoid false occlusion problems.

An Implementation on Real-time Animation of Trees Swaying in Wind Fields 13

3. Make the rest of the transformation calls necessary to position and orient

the shadowing object.

4. Set the OpenGL state necessary to create the correct shadow color.

5. Render the shadowing object.

In the last step, the second time the object is rendered, the transform flattens it into

the object's shadow (see Fig. 19). Obviously there are some trade offs of this

technique. First of all, it is not easy to cast shadow on multiple planes; but since the

scene had a flat surface, it did not cause any problem. Second, it is not very easy to

control shadow color. Since the shadow is an actual object flattened to a surface;

when you enable blending, there appears some artifacts at intersection regions of the

shadowing object. In my case, this problem actually added some color differences in

the shadow, which made it even more realistic.

Fig. 19. Tree casting a shadow.

Fig. 20. As time gets late, the scene becomes darker and the shadow becomes more transparent.

14 Cansin Yildiz,

To reach the realism even more, a lighting effect is implemented as well (see Fig.

20). There is a directional light source which changes its direction as time passes, just

like a sun. And when this light source goes down and down, it diminishes. Also the

shadow becomes more transparent. By using such simple tricks, I believe a good

result is achieved in the name of simulating day/night circle.

5 Future Work

This system is a fully-functional tree simulation with a decent rendering. An essential

extension for the current work could be to implement a tree generation algorithm. So

far, tree models that have shown are generated by manual means, which is a long

tedious work.

6 Conclusion

Final state of the implementation is really satisfactory, though; there is always room

for cleaning and clarifying the code, as all application has. Without adding any new

features to the system, only improvement that comes to mind is to port the simulation

logic from CPU to GPU, for better performance. Other than that, it is a decent

simulation of trees swaying in wind. I strongly suggest you to watch the video to

better see the implementation results.

References

1. Shin Ota, Tadahiro Fujimoto, Machiko Tamura, Kazunobu Muraoka, Kunihiko

Fujita, Norishige Chiba, "1/fβ Noise-Based Real-Time Animation of Trees

Swaying in Wind Fields," Computer Graphics International Conference, p. 52,

Computer Graphics International 2003 (CGI'03), 2003

2. M. Aono and T. L. Kunii, “Botanical Tree Image Generation,” IEEE CG&A, Vol.

4, No. 5, pp. 10-34, 1984.

3. P. Reffye, C. Edelin, J. Francon, M. Jaeger, and C. Puech, “Plant Models Faithful

to Botanical Structure and Development,” Computer Graphics (SIGGRAPH ’88),

22(4), pp. 151-158, 1988.

4. R. Mech and P. Prusinkiewicz, “Visual Models of Plants Interacting with Their

Environment,” Computer Graphics(SIGGRAPH ’96), pp. 397-410, 1996.

5. Shinya, M. and Fournier, A., “Stochastic Motion – Motion Under the Influence of

Wind,” EUROGRAPHICS '92, pp. C-119 - C-128, 1992.

6. Sakaguchi, Tatsumi and Ohya, Jun, “Modeling and Animation of Botanical Trees

for Interactive Virtual Environments,” Symposium on Virtual Reality Software and

Technology (VRST99), pp. 139-146, December 1999.

http://doi.ieeecomputersociety.org/10.1109/CGI.2003.1214447
http://doi.ieeecomputersociety.org/10.1109/CGI.2003.1214447
http://doi.ieeecomputersociety.org/10.1109/CGI.2003.1214447
http://doi.ieeecomputersociety.org/10.1109/CGI.2003.1214447
http://doi.ieeecomputersociety.org/10.1109/MCG.1984.276141
http://doi.ieeecomputersociety.org/10.1109/MCG.1984.276141
http://doi.acm.org/10.1145/54852.378505
http://doi.acm.org/10.1145/54852.378505
http://doi.acm.org/10.1145/54852.378505
http://doi.acm.org/10.1145/237170.237279
http://doi.acm.org/10.1145/237170.237279
http://doi.wiley.com/10.1111/1467-8659.1130119
http://doi.wiley.com/10.1111/1467-8659.1130119
http://doi.acm.org/10.1145/323663.323685
http://doi.acm.org/10.1145/323663.323685
http://doi.acm.org/10.1145/323663.323685

An Implementation on Real-time Animation of Trees Swaying in Wind Fields 15

7. Jos Stam, “Stochastic Dynamics: Simulating the Effects of Turbulence on Flexible

Structures,” Computer Graphics Forum (EUROGRAPHICS '97), 16(3), pp. 159-

164, August 1997.

8. Thomas Di Giacomo, Stéphane Capo and François Faure, “An Interactive Forest,”

Eurographics Workshop on Computer Animation and Simulation, pp. 65-74,

September 2001.

9. Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., and Kaufman, A. 2003.

Blowing in the wind. In Proceedings of the 2003 ACM Siggraph/Eurographics

Symposium on Computer Animation (San Diego, California, July 26 - 27, 2003).

Symposium on Computer Animation. Eurographics Association, Aire-la-Ville,

Switzerland, 75-85.

10. Long, J., Reimschussel, C., Britton, O., and Jones, M. 2009. Motion capture for

natural tree animation. In SIGGRAPH 2009: Talks (New Orleans, Louisiana,

August 03 - 07, 2009). SIGGRAPH '09. ACM, New York, NY, 1-1.

11. Tom McReynolds. Programming with OpenGL: Advanced Techniques. In

SIGGRAPH "97 Course Notes, Course No. 9.4. 1997.

http://doi.wiley.com/10.1111/1467-8659.00152
http://doi.wiley.com/10.1111/1467-8659.00152
http://doi.wiley.com/10.1111/1467-8659.00152
http://doi.wiley.com/10.1111/j.1740-9713.2007.00212.x
http://doi.wiley.com/10.1111/j.1740-9713.2007.00212.x
http://doi.wiley.com/10.1111/j.1740-9713.2007.00212.x
http://doi.wiley.com/10.1111/j.1740-9713.2007.00212.x
http://doi.wiley.com/10.1111/j.1740-9713.2007.00212.x
http://doi.acm.org/10.1145/1597990.1598067
http://doi.acm.org/10.1145/1597990.1598067
http://doi.acm.org/10.1145/1597990.1598067

