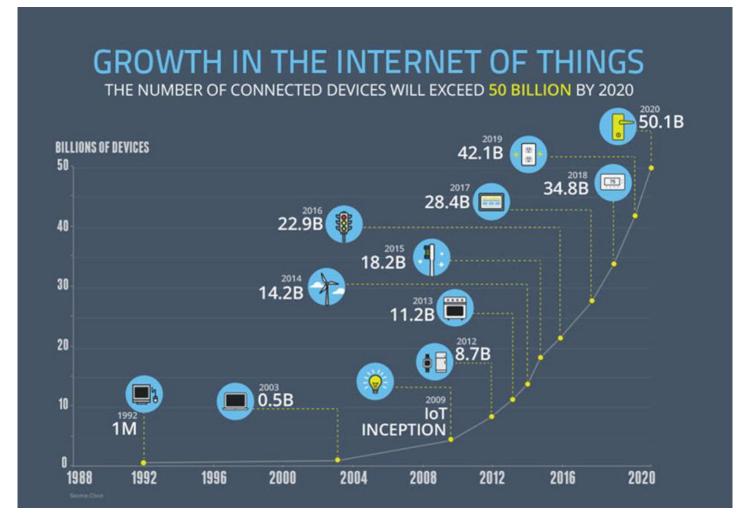


Securing The Internet of Mobile Things in the World of 5G and Beyond

PELIN ANGIN

NOVEMBER 23, 2020


METU SYSTEMS SECURITY RESEARCH LABORATORY (S2RL), METU WIRELESS SYSTEMS, NETWORKS AND CYBERSECURITY LABORATORY (WINS)

IoT: Now Everywhere

And Growing Very Fast...

Source:

https://www.forbes.com/sites/louiscolumbus/2015/12/ 27/roundup-of-internet-of-things-forecasts-andmarket-estimates-2015/2/#2b677f9f5fa7

With Very High Economic Impacts

Potential economic impact of IoT in 2025, including consumer surplus, is \$3.9 trillion to \$11.1 trillion

	Size in 2025 ¹ \$ billion, adjusted to 2015 dollars	Low estimate High estimate
	otal = \$3.9 trillion-11.1 trillion Major applications	Major applications
Human	170– 1,590	Monitoring and managing illness, improving wellness
Home	200-350	Energy management, safety and security, chore automation, usage-based design of appliances
Retail environments	410- 1,160	Automated checkout, layout optimization, smart CRM, in-store personalized promotions, inventory shrinkage prevention
Offices	70- 150	Organizational redesign and worker monitoring, augmented reality for training, energy monitoring, building security
Factories	1,210- 3,700	Operations optimization, predictive maintenance, inventory optimization, health and safety
Worksites	160- 930	Operations optimization, equipment maintenance, health and safety, IoT- enabled R&D
Vehicles	210- 740	Condition-based maintenance, reduced insurance
Cities	930 - 1,660	Public safety and health, traffic control, resource management
Outside	560- 850	Logistics routing, autonomous cars and trucks, navigation

1 Includes sized applications only. NOTE: Numbers may not sum due to rounding.

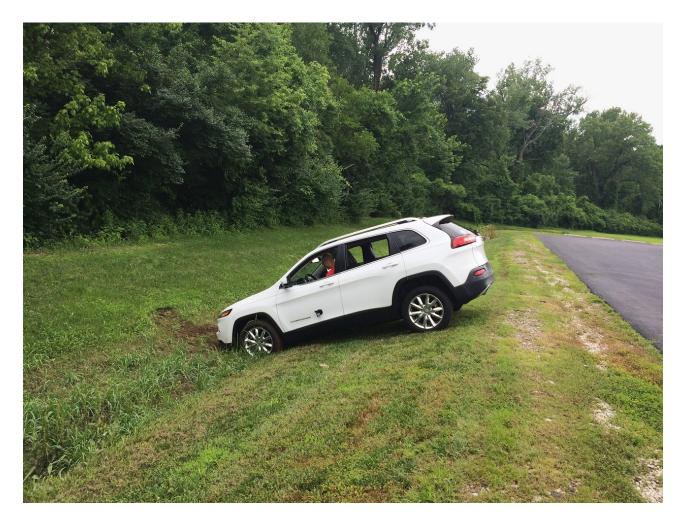
SOURCE: McKinsey Global Institute analysis

IoMT

How Secure is IoT?

1. https://ahmedbanafa.blogspot.com.tr/2016/10/a-wake-up-call-foriot.html

2. <u>https://thehacktoday.com/hackers-can-easily-hijack-popular-baby-monitors-to-watch-your-kids</u>



3. https://thehackernews.com/2015/02/smart-tv-spying.html

4. https://www.thedailybeast.com/the-terrifying-us-israeli-computer-

worm-that-could-cause-world-war-iii

How Secure is IoMT?

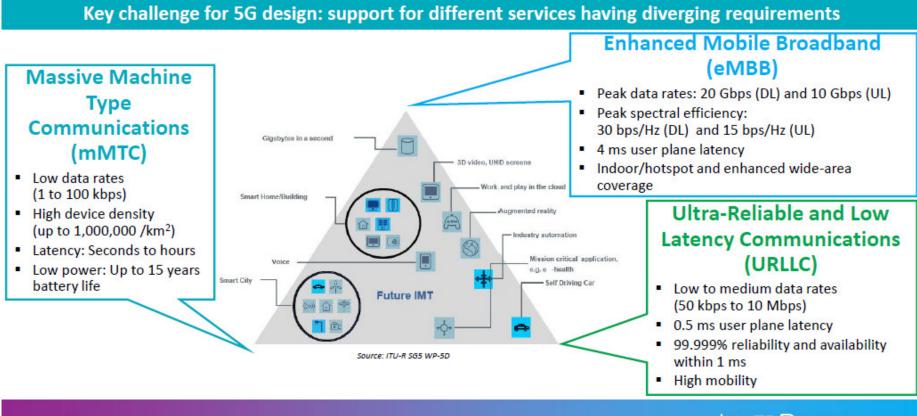
And AI on Top of All...

Offensive AI: a paradigm shift in cyberattacks

- 1. Impersonation of trusted users
- 2. Blending into the background
- 3. Faster attacks with more effective consequences

IoT Security Problems

- Confidentiality
- Device authentication
- Enlarged attack surface
- Data integrity
- Distributed denial of service (DDoS)
- Repudiation
- Device capacity constraints


Security Not The Only Problem for IoMT

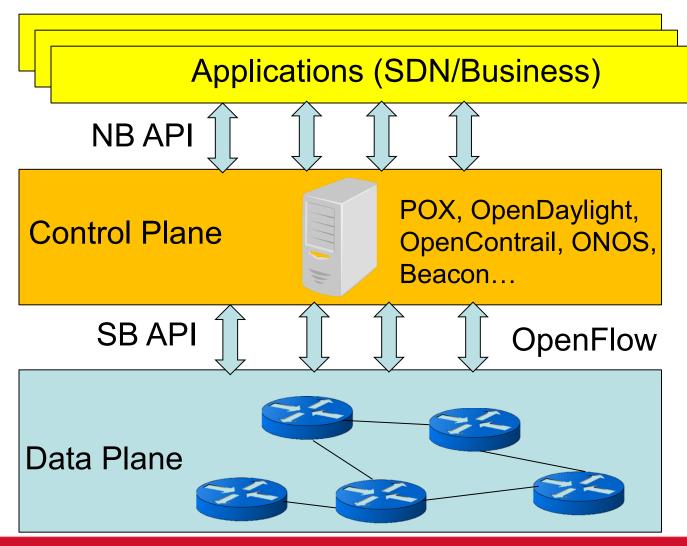
- Low latency
- Ultra-reliable communications
- High bandwidth
- Low energy

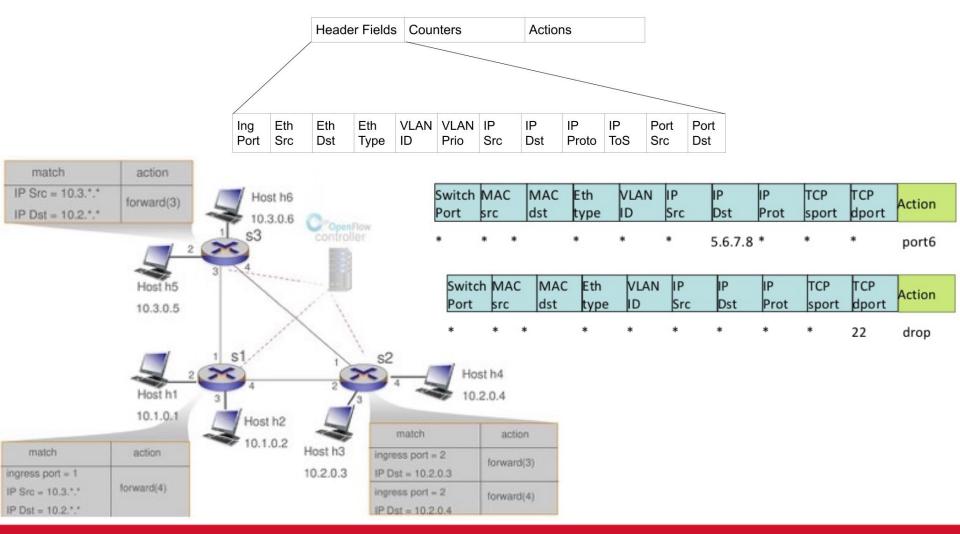
What Does 5G Promise?

5G Use Cases & Requirements

© 2019 InterDigital, Inc. All Rights Reserved

INTERDIGITAL.


Two Key Enablers

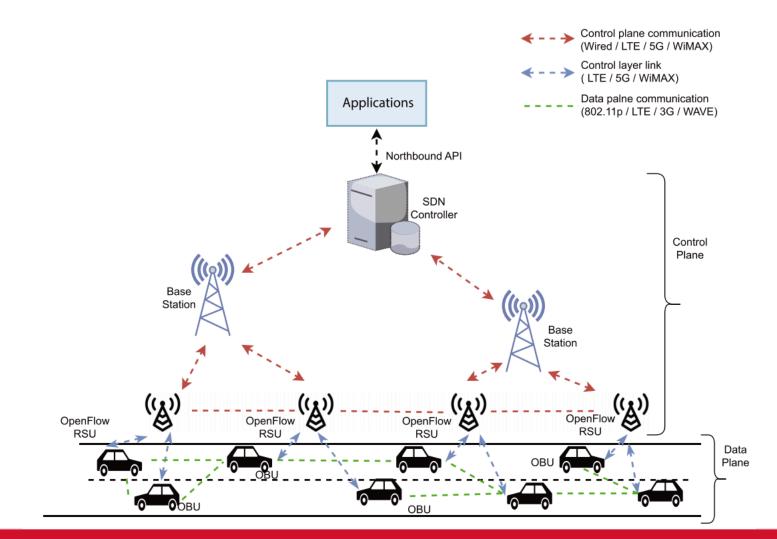


SDN Architecture

A key enabler for 5G due to the high flexibility & scalability needs!

OpenFlow

* Figures from "Computer Networking: A Top Down Approach" by Kurose and Ross



SDN: An Enabler for Network Security

- Easier collection of network usage information
 Support for improved algorithm design for detecting attacks
- Improved policy enforcement
- Improved anomaly detection
- Intelligent response through selective blocking of malicious traffic
- Acting on anomalies by diverting specific flows to special enforcement points/security services

Use Case: SDN-Enabled VANETs

Jitendra Bhatia et al., "Software defined vehicular networks: A comprehensive review," Int J Commun Syst. 2019.

SDN-Enabled VANETs (SDVN)

- Appropriate Path
 - Detailed routing decisions
 - Avoidance of congestion due to shortest path node use
- Channel/Frequency
 - Availability of multiple wireless interfaces, cognitive radios...
 - Adaptive radio frequency selection
 - Conserving channel for emergency services
- Transmission Power
 - Selection of proper energy level of wireless interfaces and transmission range through controller's feedback based on collection of neighbor information from vehicles

SDVN – Specific Use Cases

- Smart Parking
- Smart Grid for Electric Vehicles
- Platooning
- Emergency response

How Does SDVN Provide Security?

- Smart Parking:
 - Sensors (Zigbee, LoRa, Wi-Fi...) vulnerable to wide range of attacks
 - Jamming to prevent reception of sensor data at WSN gateway, hence RSU --> RSUs gather detailed info about channel quality, build list of bad channels
 - Eavesdropping on vehicle beacons --> decoupling ID from vehicle using pseudonym system switching IDs by RSUC

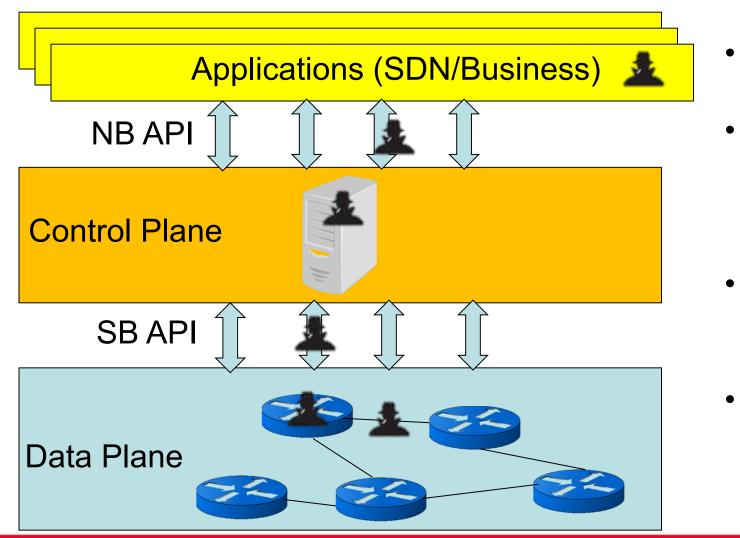
How Does SDVN Provide Security?

- Smart Grid for Electric Vehicles:
 - Malware in infrastructure
 - Electrical power level not tolerated by internal charging component of OBU, shortened battery life, battery explosion...
 - Detect, isolate and mitigate attacks as soon as they appear
 - SDN can detect fixed Electrical Vehicle Supply Equipment behaving suspiciously and isolate from network

How Does SDVN Provide Security?

- Platooning:
 - Replay attack for messages by platoon leader
 -> Use globally synchorized time by controller for all vehicles / nonce generated by RSUC
 - Jamming to prevent beacon receipt by platoon leader
 -> Dynamic selection of good channels / channel
 blacklisting by controller
 - DoS to prevent platoon instructions

-> Adjusting flow timeouts / SDN controller monitoring all communication, extracting topological and forwarding information to build holistic graph for comparison with incoming traffic



SDVN Challenges

- Rapid change management
- Security***
- Latency control
- Scalability
- Network heterogeneity
- Trustworthiness evaluation, misbehavior detection, revocation
- Definition of boundaries for SDN integration

Attacking SDN

- Route
- poisoning

Controller

identity

spoofing

DoS

DoS Mitigation Approaches For SDN

- Thresholding techniques
- Statistical/entropy-based approaches
- Rule (policy)-based approaches

May deny legitimate traffic

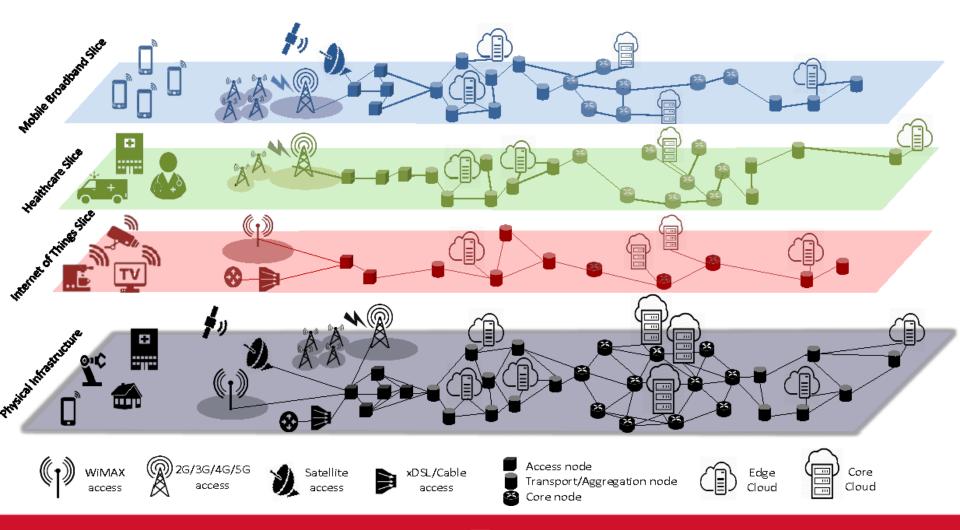
Requires expert analysis, may be slow, hard to implement

- Table entry-based approaches

Programming Protocol-Independent SDN

- Do pace Is P4 Programming the Future prc of SDN?
- Prosta

out


- De April 27, 2018 | Marian Pritsak
 independence of underlying naroware
- A P4 program can work on any switch that can support P4, rec Can P4 save Software-
- Wc (pe Defined Networking? ³ rule

Published by castroflaviojr on October 24, 2017

N

One Slice For Each...

https://www.onug.net/blog/5g-network-slicing-and-enterprisenetworking/ 26

Why Does Slicing Matter For IoT?

- Service quality and reliability guarantees
- Enhanced security through traffic isolation
 - Assigning resources that cannot be influenced by services on different slices
 - Like running several different networks on one physical network
- Ease of network management

Slicing Challenges

- Effective and efficient resource allocation
- Dynamic slice creation and management
- Slice isolation
- Virtualization attacks
- Mobility management
- E2E security policy enforcement

THANK YOU ③

QUESTIONS?

