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SUMMARY

The computer-automated structure evaluation program has been
used to study 482 compounds relevant to the inhibition of the
aldose reductase enzyme. Major activating/inactivating frag-

ments were generated automatically. The significance of these
molecular descriptors with respect to the activity of the com-
pounds is discussed.

The aldose reductase enzyme, AR, involved in the sorbitol
pathway (Fig. 1), which is an important mechanism in the
regulation of mammalian glucose metabolism, has been found
to play a physiologically significant role in the initiation of
diabetic complications (1, 2). Therefore, over the past few years,
considerable efforts have been made by several research groups
to design inhibitors of this enzyme. The enzyme is primarily
found in the corneal epithelium, retina, optic nerve, placenta,
brain, kidney, muscle, and sperm (3-5).

Using NADPH as a cofactor, the AR enzyme catalyzes the
transformation of glucose into sorbitol, which, in diabetes, is
believed to accumulate in certain tissues such as nerve, kidney,
pancreas, retina, and lens. Increased concentration of sorbitol
can cause damage to these tissues, leading to diabetic compli-
cations such as microangiopathy, nephopathy, neuropathy, ret-

fatty acids (10) and tetramethylene glutaric acid (11), many
natural as well as synthetic compounds have been studied,
under both experimental and clinical conditions, for the treat-
ment of the aforementioned complications. One class of inhib-
itory compounds found to be effective is the flavonoids, which
are derived from many natural sources and exhibit a broad
range of bioactivity (5). Numerous analogs have been prepared
in the hope of improving their pharmacological profile with
respect to the inhibition of the AR enzyme (8, 12, 13). However,
few of the flavonoids have sufficient activity to warrant further
investigation. Their low water solubility as well as their inabil-
ity to penetrate biological membranes such as the blood-retina
barrier are additional deterrents to further evaluation of these

Numerous other molecules have been screened for potential
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ABSTRACT: Understanding the interaction between drug molecules and proteins is one
of the main challenges in drug design. Several tools have been developed recently to
decrease the complexity of the process. Artificial intelligence and machine learning
methods offer promising results in predicting the binding affinities. It becomes possible to
do accurate predictions by using the known protein—ligand interactions. In this study, the
electrostatic potential values extracted from 3-dimensional grid cubes of the drug—protein
binding sites are used for predicting binding affinities of related complexes. A new
algorithm with a dynamic feature selection method was implemented, which is derived
from Compressed Images For Affinity Prediction (CIFAP) study, to predict binding

affinities of Checkpoint Kinase 1 and Caspase 3 inhibitors.

H INTRODUCTION

Throughout history, mankind has struggled to cure diseases. In
the conventional approach, studies are conducted in laboratories
or by trial-and-error testing of drug candidates on animals." Till
now, there is a complementary approach called “in silico drug
discovery” such that drug experiments can be performed in
simulation environments with the help of high-performance
computers. Although this has eventually reduced the cost of the
process, the drug design is still a challenging task with many
successes and failures. In the last decade, more successful
approaches using machine learning techniques have become
popular in drug discovery. Especially, pharmaceutical companies
extensively use machine learning methods to model, analyze,
and predict the blologlcal results of a candidate drug in the
discovery process.”

Binary splits on the
electrostatic potential
grid cube of binding site

binding sites which gave the best results in predicting the
binding affinity values. Even with binding site analysis, there is a
large set of points that should be considered for electrostatic
potential values. Thus, there is a need for a data model that is
both efficient for time complexity and low on data-loss. In this
study, we propose a new machine learning method along with a
data model, which is used for predicting the blndmg affinities of
Checkpoint Kinase 1 (CHK1) inhibitors® and Caspase3
(CASP3) inhibitors’ effectively. The idea is inspired from the
basic idea defined in the Compressed Images For Affinity
Prediction (CIFAP) study.'*"'

In the previous study of Erdas et al,,'”!! electrostatic potential
values of the three-dimensional (3D) structure of the protein—
ligand interaction are used in the data modeling method called
CIFAP. In this approach, a candidate ligand is docked into the
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Pharmaceutical giant
Pfizer in late 2016
announced a
collaboration that will
utilize IBM Watson for
Drug Discovery. Pfizer is
using IBM’s Al technology
on its immuno-oncology
research, a strategy of
using a body’s immune
system to help fight
cancer. Based on our
research, this appears to
How Watson for Drug Discovery can help you accelerate be one of the first

drug research significant uses of Watson
for drug discovery. The

Watson for Drug Discovery is a cloud-based, cognitive solution that analyzes scientific knowledge and data to reveal move was a b I8 pu blic
known and hidden connections that can help increase the likelihood of scientific breakthroughs. announcement fo r both

IBM Watson for Drug Discovery

IBM Watson for Drug Discovery helps researchers identify novel drug
targets and new indications for existing drugs.

Request free trial ‘ See the research ‘
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The platform allows researchers to generate new hypotheses with the help of dynamic visualizations, evidence- Let's talk Pfizer and IBM.
backed predictions and natural language processing trained in the life sciences domain. It is used by pharmaceutical

companies, medical device companies and academic institutions to assist with new drug target identification and

drug repurposing.



Why do people respond differently to the same drug?



Personalized Drug Therapy
Precision Medicine

molecules



Pairs of Chromosomes
in a Human Cell

Strands

DNA Double Helix



THE CHEMICAL STRUCTURE OF DNA

THE SUGAR PHOSPHATE ‘BACKBONE’

BASE BASE BASE DNA strands are held together by hydrogen bonds between bases on adjacent
strands. Adenine (A) always pairs with thymine (T). while guanine (C) always
pairs with cytosine (C). Adenine pairs with uracil (U)in RNA.
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DNA is a polymer made up of units called nucleotides. The nuclectides are
made of three different components: a sugar group, a phosphate group, and a
base. There are four different bases: adenine, thymine, guanine and cytosine.
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FROM DNA TO PROTEINS

The bases on a single strand of DNA act as a code. The letters form three letter
codons, which code for amino acids - the building blocks of proteins.
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An enzyme, RNA polymerase, transcribes DNA into mRNA (messenger
ribonucleic acid). It splits apart the two strands that form the double helix, then
reads a strand and copies the sequence of nucleotides. The only difference
between the RNA and the original DNA is that in the place of thymine (T).
another base with a similar structure is used: uracil (U).

DNA SEQUENCE _ Go eoeeoooo
mRNA SEQUENCE (' OG eocoeoe JIU o

AMINO ACID Phenylalanine Leucine Asparagine Proline Leucine

In multicellular organisms, the mRNA carries genetic code out of the cell
nucleus, to the cytoplasm. Here, protein synthesis takes place. ‘Translation’ is the
process of turning the mRNA’s ‘code’ into proteins. Molecules called ribosomes
carry out this process, building up proteins from the amino acids coded for.
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Drug Design and Development

Developing pharmaceuticals through clinical trials can take more than a decade and cost

billions of dollars. Making this process faster and cheaper could change the world.
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Clinical studies
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On an average, it costs USD 2.5
billion to bring a new drug to the
market. For big pharmaceutical
companies, this average is around
USD 4 billion and has been shown
to go as high as USD 11 billion...!

Designing a new drug that binds to
any specific target requires a large
amount of time, as well as
computing power. In many ways,
deep learning algorithms are being
developed to accelerate this
process. It is anticipated that digital
solutions for drug discovery may
save significant time and money...!



Drug Design and Development

Problem Statement: Protein-Ligand Interactions

Binding site

Proten Uqand
. . Complex

=

- Propose a data model for predicting the binding
affinity representing the strength of binding.

- Find patterns which define the interaction.

- Determine the type of relationship between the
model and the binding site.







Facial Recognition System

A computer application for automatically ' . : l {3“’
identifying or verifying a person from a digital . . | VR
image. One of the ways to do this is by o =
comparing selected facial features from the @ E | *
image and a facial database. o R
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It is thought that electrostatic accommodation |EEEiEEEEEE : i

of diverse ligands by the receptor might be a

prerequisite for the evolution of cognate
recognition and may provide the mechanism

for interference by noncognate molecules.
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Problem Statement: Protein-Ligand Interactions
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CASP3-Compound]
PDB ID: 1GFW

Caspases have been strongly
implicated to play an essential role
in apoptosis

* The ligand fits to the target

like "a hand ina glove

* The strer “l;'{i h of the
inWQTf(fi[l'Wi""‘"“l INterac tion IS
measured by binding affinity

: Measurlng blndlng afflnlty
is difficult.




Ligand Preparation and Docking
Obtaining 3D Electrostatic Potential Grid Maps

Compressing 3D Cube into 2D Image
Feature Selection

Sequential Forward Selection  Sequential Backward Elimination

Algorithm 1 :Sequential Forward Selection  Algorithm 2 :Sequential Backward Elimination

Input: P = - initial feature set nput: P - the full set of feature set
Q - the full set of features J - criterion function to minimize

) - criterion function to minimize Output: P - final feature set
Output: P - final feature set repeat

repeat forallx Pdo

forallx Qdo setP PA{x}

setP P {x calculate J(P )

calculate J(P ) end for

end for set P P A {x-} where x- = argmax[J(P )]
setP P {x+}where x+ = argmin[J(P )] until no further improvement in
setQ QA {x+}

until no further improvement in |

DATA MIODELLING METHODS

Sequential Forward Floating Selectio

Algonthm 3 ‘Sequental Forward Flooting Selection
nput: P initial feature set
( - the full set of features

critenon funchon to minimize

{‘]l.": 1t P« final feature set

repeot

Step 1. Select the best feature x+ = argmin[ )P {x+}))
setP P .',‘}

Step 2. Select the worst feature x- = argn ax| (P A {x-))]

f NP A {x-} < J(P) then
setP PA{x-]



&= Adaptive Neuro-Fuzzy Inference System

L1: input layer
L2: fuzzyfication layer
computing the membership value

L3: rule layer, each rule is a node using soft-min
r proauct to

compute the rule matching factor [}

L4: normalization laver, each [li is scaled into N
n the

normalization layer

L5: defuzzification layer, Each Ni weighs the
result of its linear

regression | 11X 1 + bix2 in the function layer
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DESIGN
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# > News & Eveats > Programming smart mokecsles

Programming smart molecules

Harvard machine-leaming algorithms could make chemical reactons
intelligent

DecemBer 12, 2073

ambridge, Mass. - December 12, 2013 -~ Camrputer soientsis at the Harvard School
c of Engineering and Applied Sclences [SEAS) and the Wyss Institute for Blologically

Inspired Enginearing at Harvard Univarsity have anad forces ta pur posvartul
protabilstic reasoning agorithms in the hands of dicengineers

n 3D ANALYSIS OF THE BINDING SITE IMAGES FOR
PREDICTING BINDING AFFINITIES IN DRUG

Smart molecules...

If we agree the fact that the
consciousness of the molecules acting
on an relevant proteins and/or
DNA/RNA zones,

molecules to find the specific target

proteins to deal with the biological
activities...!







How do we know how close we are to the solution?

At level 10: 3x10°”

We need more deeper inside artificial intelligence methods...!




Genomics in personalized medicine

Py

Clinical Genome Sequencing
« Identify disease-causing mutations
in patients and family members
(e.g. cascade screening in FH)
Di'ectdseasemmmt(e.g LQ'I'S

subtype-informed drug s

« Clarify disease diagnoses

Induced Pluripotent
Stem Cells

» Model disease and test new

tlmpishvlm(c.g.hsﬂng

calmodulin knockdown in

« Potential source of au
allsforu'ansp!mutlm(e.g
iPSC-erythroblasts to treat



Genomics in personalized medicine

Effects of Mutations on Protein Structure and Function

A B

Normal Mutant

A, the predicted 3D structure of normal protein product of the BCKDHB gene (wild-type
E1B protein); B, the E330K mutant Ei protein structure. (Pictures prepared by Swiss
model software).



point mutation: substitution of a single base

silent: has no effect on the protein sequence

WIId type 5’ 1 ] ] ] ] 1 ] 1 |3‘»5l ] ] 1 I ] 1 ] ] ] |3'

DNA AGCGTACCCTAC AGC “GTHCCCTAC
5" 1 1 ] | B | 1 3' || 1 |l|||||3'

mMRNA AGCGUA A o UAC

amino

G G
acids N---m Noser vl po o brC

missense: results in an amino acid substitution

W“d'type 5'| [ |
DNA AGCG

L Dozl TR LR _ LI 1 I LI | AL | R
MRNA: T AGCCEUACCCLLAG P AGCCUAAEC UAL
acids  N-{iS6R) (WAl (pra) (- n-{sen) (vall) P (oi-c
nonsense: substitutes a stop codon for an amino acid
Wlld-type 5'l 0oL il ==y 1 1 l 1 # P L I l 1 l3'
DNA AGCGTACCCTAC AGCG\AC [ G
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mENA. AeeEACCE AR -’AGCGUACCCUAG
amino
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frameshift mutation: insertion or deletion of one or more hases

Insertion or deletion results in a shift in the reading frame
W"d'type 5’1 o) ) I ) O
DNA AGCG CCC

' A removed
/

T
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AG GCCC

i3
\

O-

= I
AC A
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GCCCUACUU
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mMRNA AGCGUACCC —>
amino
acids

Causes of Mutations

Mistakes in the process of DNA replication can
cause spontaneous mutations to occur

Various types of chemical mutagens interact directly with
DNA either by acting as nucleoside analogs or by modifying
nucleotide bases.

Strong ionizing radiation like X-rays and gamma
rays can cause single- and double-stranded breaks
in the DNA backbone through the formation of
hydroxyl radicals on radiation exposure

Nonionizing radiation, like ultraviolet light, is not energetic
enough to initiate these types of chemical changes

X-rays or y-rays thymine UV light

“:t—\\ single strand break s ’;r ? 7

3
ro\( T
it thymine
dimer kink *
5 T

double strand break covalent bonds
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Mcedicine Patient A  Patient B Patient C Patient D

Traditional Medicine



*— Support Vector Machine

®== Discriminant analysis
-
Metablomics m
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Decision tree
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- ‘ & ® Randam forest

Data fusion &
integration

Linear regression
Nutrients Nalve Bayes
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Hidden Markov Model

Genetic Algorithm
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Multifactor examination
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Knowledge base

Classlification
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Cluster




PATIENT A MUTATION A DRUGA
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Identifying Causal Genes

Family
Study Study
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Sequencing

Detection of Causal
or Associated
Geanes

Phenotypic and Genetic
Heterogeneity

ADHD Epilepsy
Autism

Spectrum
Disorders

CHD oco

lectual
Disabilities

Pleiotropy
Incomplete penetrance
Environmental factor

Dosage Imbalance

Polygenic Risk
Score and Gene-Gene
Interactions

Gene Expression
Regulatory OMIC Databases
Population Scale Mutational
Databases

Quantifying Polygenic Risk
Score and Gene-Gamna
Interactions

Drug Discovery

in vitro (Cell Line, Brain
Ormganoid) and in vivo (animal
modea ) modelto
characterize genetic

Muli-stage Chlinical Tnals



"

‘ : ’ Patient group

Drug toxic but
beneficial

Drug toxic but
NOT beneficial

Same diagnosis,
same prescription

o

Drug NOT toxic and
NOT beneficial

Drug NOT toxic
and beneficial

Source: Chakma Journal of Young Investigators. Vol 16, 20089.




Future (current) Drug Development

Bioinformatics testing of Human Phase Il trial only for
animal model toxicity expected responders
new drug
Human Phase Il trial
Genetic studies identify Animal models testing for on|y with expected

candidate protein to efficacy, dosage and responders
target toxicity

Bioinformatics Human Phase | trial with
assessment of drug genetic screening to
targets correlate response
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Timeline (years)



MinlON: A complete DNA sequencer on a USB stick







DRUGS
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FUTURE

Amazing
new medncunes

wilbebasedon

DNA

Find out how they will change

YOURLIFE

Personalized Medicine
Revolution

The Right Molecule

The Right Patient
For The Right Disease

At The Right Time
With The Right Dosage




Future Direction for Using Artificial Intelligence to Predict and Manage Gene Analysis and Editing

Hype



we mignt not be there yet
But we are closer than we were
yesteday...




