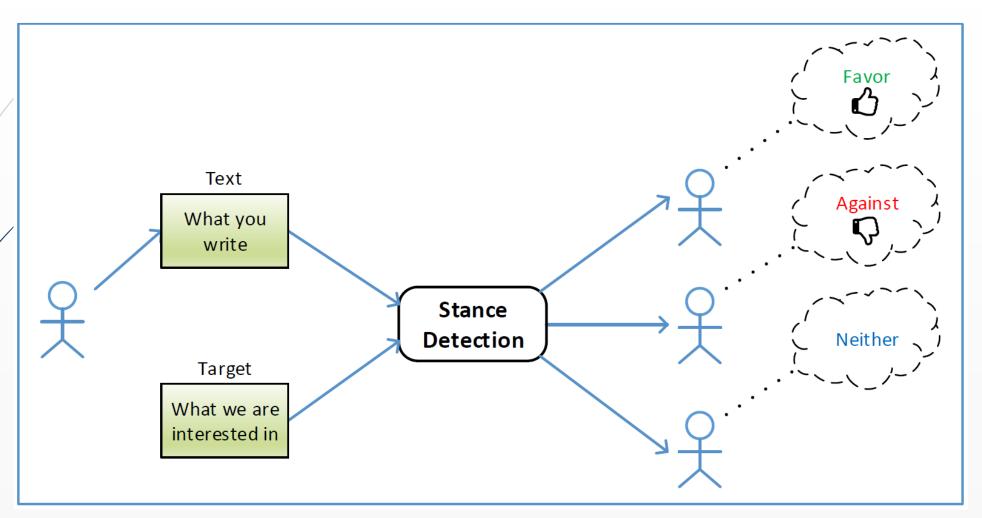
Stance Detection: A Review

Assoc. Prof. Dilek Küçük Chief Researcher TÜBİTAK Marmara Research Center - Energy Institute


This talk is based on the following publication:

Küçük, D. and Can, F. (2020) "Stance Detection: A Survey". ACM Computing Surveys, 53 (1), Article No: 12, 1-37.

Outline

2

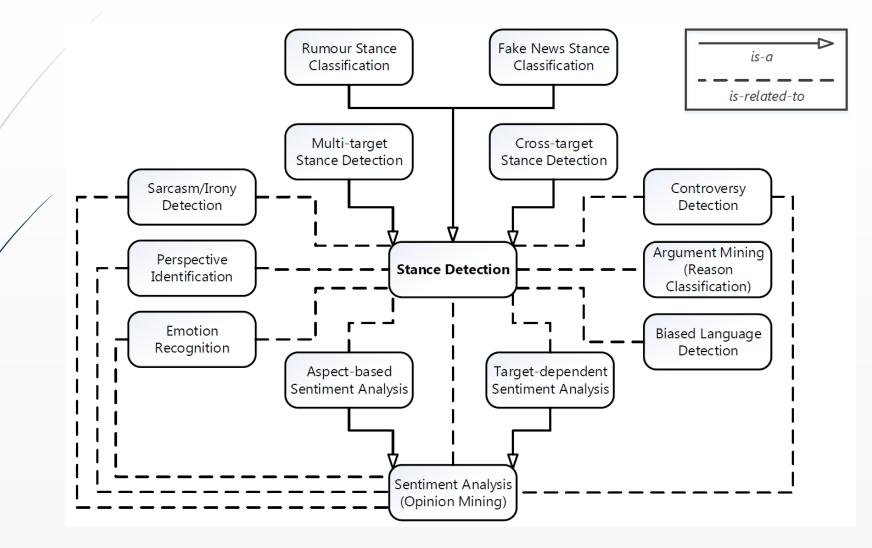
- Introduction
- Stance Detection and Related Problems
- A Generic System Architecture
- A Historical Perspective
- Approaches to Stance Detection
- Datasets and Evaluation Metrics
- Software and Tools
- Stance Detection Experiments on Turkish Tweets
- Application Areas
- Outstanding Issues
- Conclusions

4

Definition 1.1 (Stance Detection). For an input in the form of a piece of text and a target pair, stance detection is a classification problem where the stance of the author of the text is sought in the form of a category label from this set: {*Favor*, *Against*, *Neither*}. Occasionally, the category label of *Neutral* is also added to the set of stance categories [Mohammad et al. 2016b] and the target may or may not be explicitly mentioned in the text [Augenstein et al. 2016a; Mohammad et al. 2016b].

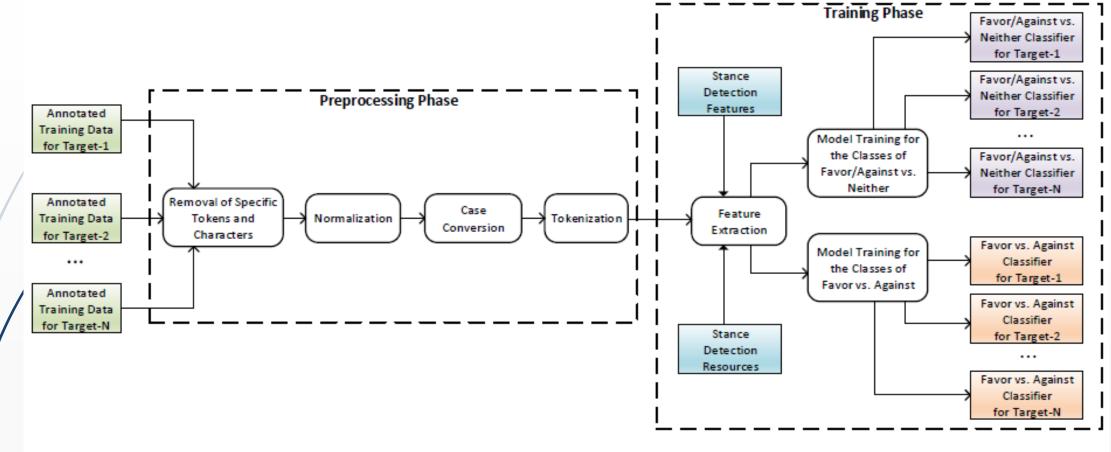
Definition 1.2 (Multi-target Stance Detection). For an input in the form of a piece of text and a set of related targets, multi-target stance detection is a classification problem where the stance of the text author is sought as a category label from this set: {*Favor*, *Against*, *Neither*} for each target and each stance classification (for each target) might have an effect on the classifications for the remaining targets [Sobhani 2017].

Definition 1.3 (Cross-target Stance Detection). Cross-target stance detection is a classification problem where the stance of the text author is sought for a specific target as a category label from this set: {*Favor*, *Against*, *Neither*}, in a settings where stance annotations are available for (though related but) different targets, i.e., there is not enough stance-annotated training data for the target under consideration [Augenstein et al. 2016a; Xu et al. 2018].

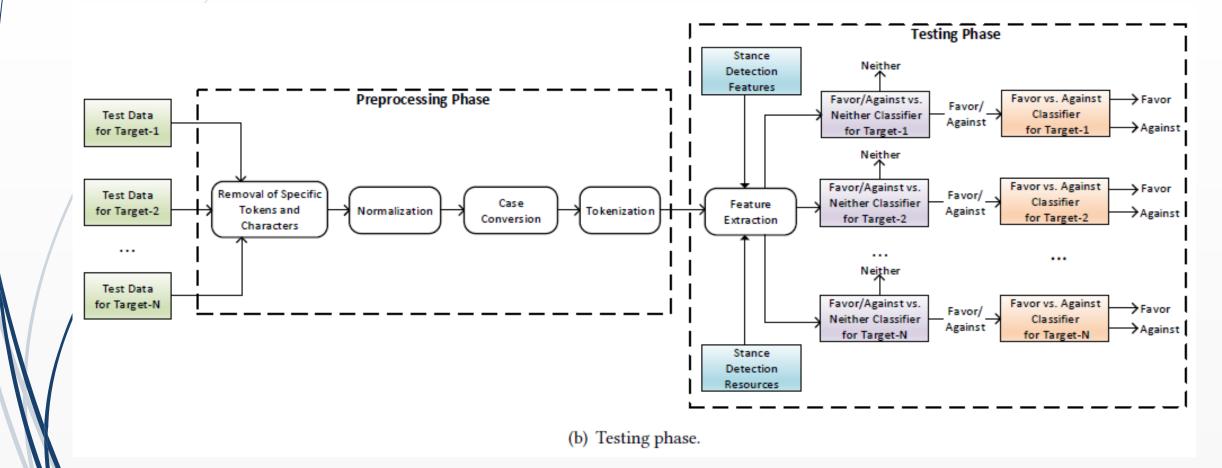

Definition 1.4 (Rumour Stance Classification). For an input in the form of a piece of text and a rumour pair, rumour stance classification is a problem where the position of the text author towards the veracity of the rumour is sought for, in the form of a category label from this set: {Supporting, Denying, Querying, Commenting}. As the set of possible category labels, a subset of this set such as {Supporting, Denying} is occasionally employed [Zubiaga et al. 2018].

Definition 1.5 (Fake News Stance Detection). For an input in the form of news headline and a news body pair (where the headline and body parts may belong to different news articles), this is a classification problem where the stance of the body towards the claim of the headline is sought for, in the form of a category label from this set: {Agrees, Disagrees, Discusses (the same topic), Unrelated}. This problem is defined in order to facilitate the task of fake news detection [FNC 2017].

Table 1. Sample Tweets from SemEval 2016 Stance Dataset [Mohammad et al. 2016b].


Tweet	Stance Target	Stance	Sentiment
RT @TheCLF: Thanks to everyone in Maine who contacted their legis-	Climate Change	Favor	Positive
lators in support of #energyefficiency funding! #MEpoli #SemST	is a Real Con-		
	cern		
We live in a sad world when wanting equality makes you a troll	Feminist Move-	Favor	Negative
#SemST	ment		
I don't believe in the hereafter. I believe in the here and now. #SemST	Atheism	Favor	Neither
@violencehurts @WomenCanSee The unborn also have rights #de-	Legalization of	Against	Positive
fendthe8th #SemST	Abortion		
I'm conservative but I must admit I'd rather see @SenSanders as presi-	Hillary Clinton	Against	Negative
dent than Mrs. Clinton. #stillvotingGOP #politics #SemST			
I have my work and my faith If that's boring to some people, I can't	Atheism	Against	Neither
tell you how much I don't care. ~Madonna Ciccone #SemST			
@BadgerGeno @kreichert27 @jackbahlman Too busy protesting :)	Hillary Clinton	Neither	Positive
#LoveForAll #BackdoorBadgers #SemST			
@ShowTruth You're truly unwelcome here. Please leave. #ygk #SemST	Legalization of	Neither	Negative
	Abortion		
@Maisie_Williams everyone feels that way at times. Not just women	Atheism	Neither	Neither
#SemST			

Stance Detection and Related Problems


7

8 A Generic System Architecture

(a) Training phase.

A Generic System Architecture

9

10 A Historical Perspective

Earlier Work on Stance Detection [2006 - 2015]

- Earlier work are carried out on
 - Congressional-floor debates
 - Company internal discussions
 - Online social, political, and ideological debates (in public forums)
 - Online debates about products
 - Spontaneous speech (a single study by Levow et al. (2014))
 - Student essays
 - Tweets (few studies)
- Approaches in earlier work
 - Few rule-based methods
 - Supervised learning methods (SVM, decision tree, random forest, HMM, CRF, ILP, ...)

11 A Historical Perspective

Stance Detection Competitions [2016 - 2017]

SemEval-2016 shared task on stance detection in English tweets

(Mohammad et al., 2016)

 Targets: Atheism, Climate change is a real concern, Feminist movement, Hillary Clinton, Legalization of abortion, Donald Trump

NLPCC-ICCPOL-2016 shared task on stance detection in Chinese microblogs

(Xu et al., 2016)

- Targets: iPhone SE, Set off firecrackers in the Spring Festival, Russia's anti terrorist operations in Syria, Two child policy, Prohibition of motorcycles and restrictions on electric vehicles in Shenzhen, Genetically modified food, Nuclear test in DPRK
- IberEval-2017 shared task on stance detection in Spanish and Catalan tweets (Taulé et al., 2017)
 - Target: Independence of Catalonia

12 Approaches to Stance Detection

Table 5. Temporal Distribution of Published Papers on Stance Detection

Publication Year	Number of Papers
2006 - 2010	5
2011 - 2014	8
2015 - 2016	38
2017 - 2019	78

Approaches to Stance Detection

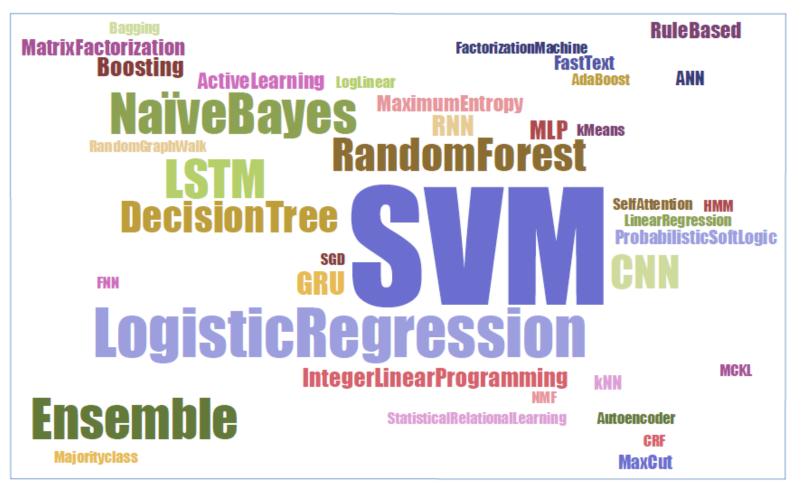


Fig. 4. A word cloud of the algorithms used for stance detection problem in the published papers included in this survey paper.

Approaches to Stance Detection

Feature-based machine learning approaches

SVM, Logistic Regression, Naïve Bayes, Decision Trees, ANN, ILP, kNN, ...

Deep learning approaches

14

LSTM (RNN), RNN, GRU (RNN), CNN

Ensemble learning approaches

Random Forest, Majority Voting, Proprietary ensemble learners, Boosting, Bagging, ...

15 Datasets

	Authors	Domain	Annotation	Target(s)	Size		
/			Classes				
	[Mohammad	Tweets	Favor, Against,	Atheism, Climate change is a	4,870 tweets		
	et al. 2016a]	(English)	Neither	real concern, Feminist movement,			
				Hillary Clinton, Legalization of			
				abortion, Donald Trump			
	[Mohammad	Tweets	Favor, Against,	Atheism, Climate change is a	4,870 tweets		
	et al. 2017]	(English)	Neither for stance;	real concern, Feminist movement,			
			Positive, Negative,	Hillary Clinton, Legalization of			
			and Neither for	abortion, Donald Trump			
			sentiment				
	[Xu et al.	Microblogs	Favor, Against, None	iPhone SE, Set off firecrackers in the	4,000 annotated		
	2016b]	(Chinese)		Spring Festival, Russia's anti terror-	and 2,400 unanno-		
				ist operations in Syria, Two child	tated tweets		
				policy, Prohibition of motorcycles			
				and restrictions on electric vehicles			
				in Shenzhen, Genetically modified			
				food, Nuclear test in DPRK			
	[Taulé et al.	Tweets	Favor, Against, None	Independence of Catalonia	5,400 tweets in		
	2017]	(Catalan &			Spanish and 5,400		
		Spanish)			tweets in Catalan		

Datasets

16

I	Authors	Domain	Annotation	Target(s)	Size		
			Classes				
/ [[Sobhani	Tweets	Favor, Against,	{Clinton-Sanders}, {Clinton-Trump},	4,455 tweets		
e	et al. 2017]	(English)	Neither	{Cruz-Trump}			
[[Küçük	Tweets	Favor, Against	Galatasaray, Fenerbahçe	700 tweets		
2	2017b]	(Turkish)					
/ [[Küçük and	Tweets	Favor, Against	Galatasaray, Fenerbahçe	1,065 tweets		
(Can 2018]	(Turkish)					
[Murakami Onlin		Online	Support, Oppose	Selected five ideas	481 comments		
a	and Ray- debates				about five ideas		
r	mond 2010]	(Japanese)					
	[Darwish	Tweets	Favor (Positive),	Transfer of two islands from Egypt	33,024 tweets		
	et al. 2017]	(Arabic)	Against (Negative)	to Saudi Arabia			
	[Lai et al.	Tweets	Favor, Against, None	2016 referendum on reform of the	993 triplets (2,889		
	2018] (Italian)			Italian Constitution	tweets)		
[[Hercig et al.	News	In Favor, Against,	Miloš Zeman, Smoking ban in	5,423 news com-		
2	2017]	comments	Neither	restaurants	ments		
		(Czech)					

Evaluation Metrics 17

F

$$= \frac{F_{Favor} + F_{Against}}{2} \qquad F_{Favor} = \frac{2 * P_{Favor} * R_{Favor}}{P_{Favor} + R_{Favor}} \qquad F_{Against} = \frac{2 * P_{Against} * R_{Against}}{P_{Against} + R_{Against}}$$

$$P_{Favor} = \frac{Correct_{Favor}}{Correct_{Favor} + Spurious_{Favor}} \qquad P_{Against} = \frac{Correct_{Against}}{Correct_{Against} + Spurious_{Against}}$$

$$R_{Favor} = \frac{Correct_{Favor}}{Correct_{Favor} + Missing_{Favor}} \qquad R_{Against} = \frac{Correct_{Against}}{Correct_{Against} + Missing_{Against}}$$

$$F = \frac{F_{Favor} + F_{Against} + F_{Neither}}{3}$$

Accuracy =	Correct classifications
	All classifications

18 Software and Tools

Few papers present visualization systems/tools for stance detection.

- Many papers use the following machine learning tools, libraries in their stance detection experiments:
 - Weka
 - Scikit-learn package
 - Keras
 - Theano
 - Gensim
 - SVM^{light}
 - FastText
 - Brainy

Stance Detection Experiments on Turkish Tweets

Table 1. A Summary of the Three Versions of the Stance-Annotated Tweet Data Set

		# of Tweets Annotated					
		For Target-1		For Target-2		TOTAL	
Stance Data Set	# of Annotators	Favor	Against	Favor	Against	IOIAL	
Version-1	1	175	175	175	175	700	
Version-2	2	173	173	173	167	686	
Version-3	2	269	268	269	259	1,065	

Target-1: Galatasaray Target-2: Fenerbahçe

19

https://github.com/dkucuk/Stance-Detection-Turkish-V1 https://github.com/dkucuk/Stance-Detection-Turkish-V2 https://github.com/dkucuk/Stance-Detection-Turkish-V3

Stance Detection Experiments on Turkish Tweets

20

Table 6. Evaluation Results of the SVM Classifiers Utilizing Unigrams+Hashtag Use+Named Entities as Features, with Named Entities Extracted by the NER Tool.

			Stance Data Set							
		Version-1			Version-2			Version-3		
Target	Class	P (%)	R (%)	F (%)	P (%)	R (%)	F (%)	P (%)	R (%)	F (%)
	Favor	75.6	90.3	82.3	74.5	87.9	80.6	77.5	93.3	84.7
Target-1	Against	87.9	70.9	78.5	85.2	69.9	76.8	91.5	72.8	81.1
	Average	81.8	80.6	80.4	79.9	78.9	78.7	84.5	83.1	82.9
	Favor	71.8	84.6	77.7	73.9	93.1	82.4	78.6	90.0	83.9
Target-2	Against	81.3	66.9	73.4	90.2	65.9	76.1	87.7	74.5	80.6
	Average	76.5	75.7	75.5	81.9	79.7	79.3	83.1	82.4	82.3

Küçük, D., & Can, F. (2018). Stance Detection on Tweets: An SVM-based Approach. arXiv preprint arXiv:1803.08910.

21 Application Areas

- Opinion surveys/polling
- Trend and market analysis/forecast
- Recommendation systems
- Public health surveillance
- Information retrieval
- Stance summarization
- Rumour classification
- Fake news detection
- Automatic fact checking

22 Outstanding Issues

Cross-lingual and multilingual stance detection


Stance detection in other media content and robots

Stance detection for decision making

Stance detection in data streams

23 Conclusions

- Stance detection is usually defined as the automatic determination of the position of a post owner (as in favor of or against) towards a specific target, based on the content of the post.
 - In general, stance detection is performed on the following text genres:
 - microblogs (tweets, mostly),
 - posts published in online debate forums,
 - news articles and comments.
- Along with a number of related problems such as sentiment analysis, controversy detection, and argument mining, it is a crucial process to elicit useful information from the underlying content, most of the time, regarding controversial issues or elections/ referendums.

