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Abstract— With respect to the necessity of more autonomous 

capabilities for mobile robotics in ubiquitous terrains, capable 

methods on localization and mapping have been developed for 

the last decade. One of these methods is the Fast SLAM 

approach which is an extension of the original SLAM problem 

suggested.  

In this report we are expressing our methodology for applying a 

Fast SLAM method based on particle filters applied on the 

generating map. Differing from its continuous space relatives, in 

particle filter based Fast SLAM we are considering discrete 

samples in the robot world covering map poses, sensor and 

motion models. 

In our experiments we have used a simulation platform 

consisting of 3 different map types for a mobile robot existing in 

a 2D world.   
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I. INTRODUCTION 

The problem for autonomous localization and mapping for 

mobile robots is one of the most fundamental topics 

researches are interested in. The main problem in this topic is 

that the robot’s pose and the map is unknown at the same time, 

therefore probabilistic approaches upon this problem depends 

on the information coming from the user commands and the 

sensor readings from the range devices on the robot.  

The general name given for this kind of approach is 

simultaneous localization and mapping or SLAM in short.[1] 

In this approach the main aim is to estimate the posterior pose 

of the robot and the map surrounding it with respect to the 

user controls and sensor readings. This aim can be defined as: 

 

  (1) 

 

Where x denotes the pose of the robot (pose of the robot 

changes with respect to the problem space; it consists of 6 

variables if the space is 3D and 3 variables as x, y and θ for 

2D environments), m denotes the map. The given probabilities 

z is the sensor reading and u is the control command. In the 

Equation 1 the posterior pose of the robot is estimated for the 

time stance t, which is one of SLAM’s different applications. 

In this case only the current pose of the robot and the map 

around it is estimated with given inputs which is called online 

SLAM.[1]-[4] For the Full SLAM case, this posterior is 

estimated for the total of time stances, in other words, starting 

from time 1 to t.  

A naive implementation of Fast SLAM algorithm is 

doomed to fail because of the dimensionality problem. Here if 

we are going to use this formula as it is, meaning if we see the 

map and the position is dependent to each other, our state 

dimension becomes very large and hence the problem 

becomes infeasible. 

 

 

Fig. 1  Bayes network for the Fast SLAM problem 

 

If we knew the history of robot poses, then map features 

will become independent. This greatly simplifies equation 1 

into: 

 *  (2) 

 

Equation 2 can be simplified even further if we use the 

main property of the grid maps. In grid maps every individual 

cell is independent from each other. Thus equation 2 further 

simplifies into: 

 

 *  (3) 

  

All this assumptions and simplifications make the Fast 

SLAM algorithm feasible. Still there are many issues that 

must be solved in Fast SLAM and surely one must do some 

clever implementation to be able to have a real time Fast 

SLAM. 

 

II. FAST SLAM ALGORITHM 

We have simplified the Fast SLAM problem and get the 

equation 3 with some clever assumptions. After stating the 

independence of the pose of the robot and landmarks in the 

environment, the problem becomes more implementable. 



We can use a Particle Filter to estimate the robot pose at 

any time, then we will use separate Gaussian Filters to 

estimate different landmarks. 

 

 

Fig. 2  Rao-Blackwellized particle filtering based on landmarks [2] 

 

As in the Figure 2, As Rao-Blackwellized suggest we can 

have an implementable particle based Fast SLAM algorithm. 

Here every landmark represented by a 2D EKF and we have 

M different particles for robot pose. 

 

 

Fig. 3  A simple pseudo code for Fast SLAM 

Figure 3 shows a simple pseudo code for Fast SLAM 

algorithm, using EKF for a landmark based mapping. First 

question that arise in this implementation is how to find 

correspondences between measurements and the landmarks in 

the environment. If we do not have unique landmarks we 

might have different combination of correspondences. If we 

have used an EKF Filter for robot pose, then wrong data 

associations might cause filter to diverge. But luckily in 

Particle Filter implementation since we have different 

particles meaning different robot poses, we have different data 

associations for different particles. Hence even if we have 

wrong data association for a particle only that particle will 

become less probable in succeeding data measurements and 

the main algorithm will not fall apart easily. 

In our implementation of Fast SLAM, we do not assume we 

have predefined landmarks. We tried to use Occupancy Grid 

Maps instead of 2D EKF’s for different landmarks. If the 

poses are known the Occupancy Grid Mapping is easy. Each 

particle has its own map. Hence the problem with Occupancy 

Grid Mapping is since we have 2D grids for the environment 

space and computational requirement for the algorithm is 

enormous. Therefore we must keep the particle number small 

in order to have a feasible implementation. 

Pseudo code in Figure 3 does not change much for 

Occupancy Grid Mapping. The only change is at measurement 

update part, now we have 2D grid map instead of landmarks. 

For prediction part we need to implement a motion model, for 

importance weight we have to implement a sensor model and 

as for measurement update we need to have the inverse of the 

sensor model we have implemented. Resampling and retrieval 

part is simple and hence does not require any detailed 

explanation. 

 

III. MOTION MODEL 

 

The motion model in the Fast SLAM approach basically 

forms the particles estimated in each movement of the robot. 

This movement is dependent on the noisy motion commands 

which are assumed to be given in the whole posterior 

probability model.  

As Fast SLAM is applied on particle based filters, the 

motion model in the approach is a discrete sampling method 

which creates distinct pose estimates given the motion 

commands and its resulting actions. With respect to our 

experiments in the simulations, our motion model is compliant 

with the 2D world motion rules and variables. The general 

motion in this world can be explained with the figure below. 

 

Fig. 4  The motion model in 2D world  

The figure above shows a single motion built up with 3 

consequent action sub-forms, δrot1, δtrans and δrot2.  These 

sub-forms are calculated by using the state variables of the 

initial and final robot poses. One important fact here is that 

these poses are found by using the encoders of the robot 

which generally produces noisy data. The motion model of the 

whole approach includes this sensor noise which is called also 

as the command noise. These sub-forms are calculated as 

below: 

 (4) 

 (5) 

–  (6) 

 



In order to model the sensor noise in the motion model, a 

sample function of the Gaussian is applied on these sub-forms. 

The noise model applied is as follows: 

 

 (7) 

 (8) 

 (9) 

 

These noise models include the Gaussian distribution 

samples from the noisy encoder data on each iteration of robot 

motion. By using these forms the general motion model is 

derived. This derivation can be seen in a pseudo format in the 

following figure. 

 

 

Fig. 5 Algorithm for motion model 

It can be seen that the result of the motion model is a pose 

estimate based on the calculations done on the noisy odometry 

data coming from encoders. In order to generate a particular 

number of particles, in other words pose estimates, the 

algorithm above is executed several times on the same 

odometry data.  

 

 

IV. SENSOR MODEL 

Sensor model gets the known robot pose from a particle 

and gets reading data from Sick Laser of the robot, using the 

interface of the Aria. From Sick Laser we get 180 different 

laser readings each representing a different degree. For sensor 

model we find probability of a given measurement and pose 

according to these readings. These values are used as 

importance weight in our algorithm. Here we assume the map 

is known, at least the part of it which is mapped so far. We are 

using a simple threshold for finding obstacles in our map. 

Equation 4 and 5 shows derivation of sensor model. 

 

   (10) 

 

Using the assumption that different rays are independent of 

each other: 

 

  (11) 

 

 

 

Fig. 6 Gaussian model for ray casting method 

We actually simplified sensor model a bit. We ignore the 

max readings and some readings that are too short. This 

improves our algorithms performance. Apart from that we are 

using Gaussian model in the above figure. More generic 

algorithm is below: 

 

Fig. 7 Algorithm for sensor model 

 

 

Inverse sensor model is quite different than this. Actually 

we have used the cone model, but since we have a Sick Laser 

and 180 different measurements, our cone model become a 

ray model, but underlying assumptions is just same. 

 

 



 

Fig. 8 Algorithm for adding new measurements into map 

 

 

 
 

Fig. 9 Illustration of Cone model for implementing inverse sensor model  

 

Fig. 10 Algorithm of Cone model for implementing inverse sensor model  

 

 

 

Fig. 11 A sample pose and map from MobileSim  

 

 

 
 

Fig. 12 Inverse sensor model for of the above figure  

 

V. IMPORTANCE WEIGHT 

For every particle, given the latest range sensor data, we 

find probabilities to use in resampling process. Using 

probabilities directly is not a good way to start since generally 

probabilities differ in orders of ten. So we take logarithm of 

the probabilities. Then we normalize them by making the 

minimum non-infinity probability zero. From that point the 

probability of a particle to be chosen for resampling is 

proportional with its weight. This is the main point of the 

algorithm which makes it robust to the noises.  

 

VI. EXPERIMENTS 

 

In order to see the result of the Fast SLAM algorithm 

based on particle filters, we have used the simulation 

environment of Aria which is provided by MobileSim.[5] 

This simulator enabled us to control a p3dx robot with 2 

wheel encoders, range sonars and a SICK laser.  

We have created 3 different maps using the Mapper3 

software. Each of these maps consists of different level of 

paths for the robot. We have tried to create narrow corridors 

and broad halls in order to harden the Fast SLAM problem. 

What is more, beyond using particles in the map we have 

adopted the grid base map scheduling with grid sizes 50 

pixels in a 1000x1000 pixel maps. In order to visualize the 

simultaneously generated map we have used an open source 

library OpenCV[6].  

In order to implement a full autonomous Fast SLAM 

algorithm, we have also applied an exploration method for our 

robot. In this method, the robot wanders the unexplored areas 

in the map and generates the maps via the approach of Fast 

SLAM. Through this exploration, our motion model generates 

15 particles in each iteration of robot motion. These particles 

are then re-sampled with respect to the weights computed in 

order to correct the noisy maps and ignore falsely estimated 

poses. 



We have run our models in a Dual-Core Pentium 2.0 GHz 

machines to improve the computation capability. 

  

 

VII. RESULTS 

Below are the results depending on the experiment run on 

the first map: 

 
Fig. 13 Our first map in MobileSim environment 
 

The images below show the SLAM results generated every 

20 steps covered in the algorithm. The result images start with 

a map of grids having 0.5 probabilities. While algorithm 

evolves the grid map converges to the real map shown above.  

 

 
 

Fig. 14 Map generated at the beginning of the algorithm 
 

 

 
 

 

 

 
 

Fig. 15 Map generated at the later steps of the algorithm 

 

 
 

Fig. 16 Map generated at the later steps of the algorithm 

 



 
 

Fig. 17 Map generated at the later steps of the algorithm 

 

 
 

Fig. 18 Map generated at the later steps of the algorithm 

 
 

Fig. 19 Map generated at the later steps of the algorithm. It should be 

noted that the Fast SLAM algorithm corrects the map. The correction could 

be seen by comparing this map with the map in Figure 18. 
 

 
 

Fig. 20 Nearly completed grid map 
 

 

 
 

 

 



 
Fig. 21 Half complete Grid Map of our second map which is 

generated by our algorithm. 

. 

 
Fig. 22 Half complete Grid Map of our third map which is 

generated by our algorithm. 

 

 

In all of our experiments we have observed that, the time 

complexity of the Fast SLAM algorithm is the main problem 

for real time applications. Although the time interval for the 

SLAM is 0.5 seconds for each motion performed, our 

simulator was in front of our algorithm.  

We have also noticed that decreasing the cruising speed of 

the robot increases the SLAM efficiency in the map as the 

difference between sensor readings is less that a faster action 

performed. However, benefiting from a slow motion and 

increasing the particle count in the motion model does not 

yield a faster computation. Although more particles existing in 

the algorithm would increase the correctness of the whole 

system, it also increases the time complexity.  

 

We also included the resulting map created by our Fast 

SLAM algorithm when only the raw encoder data from the 

Mobile Sim. Robot is used without any additional Gaussian 

noise. 

 
Fig. 23 Grid map created depending only on the raw encoder data 

of Mobile Sim robot 

 

VIII. CONCLUSION 

Fast SLAM with Occupancy Grid Mapping is a powerful 

technique when we do not have predefined landmarks. 

Resulting map is a complete map and have more information 

when compared to Fast SLAM using 2D EKF landmarks. 

The main drawback of our algorithm is resources required. 

Since we have to store a 2D grid for every particle and since 

for an update sequence we need to update quite large portion 

of the grid it takes too much time and consumes too much 

space. With a naive implementation it becomes infeasible to 

use and it will not even be near real time. 

Time requirements of this algorithm, limits the number of 

particle we can use, causing algorithm to lose its robustness. 

Some clever resampling techniques must be implemented to 

use in robotics given the technology we have today. 
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