
Particle Filter Based

Fast Simultaneous Localization and Mapping
Utku Çulha

#1
, Bilal Turan

#2

#
Computer Engineering Department, Bilkent University

Bilkent, 06800, ANKARA, TURKEY
1
culha@cs.bilkent.edu.tr

2
bilal@cs.bilkent.edu.tr

Abstract— With respect to the necessity of more autonomous

capabilities for mobile robotics in ubiquitous terrains, capable

methods on localization and mapping have been developed for

the last decade. One of these methods is the Fast SLAM

approach which is an extension of the original SLAM problem

suggested.

In this report we are expressing our methodology for applying a

Fast SLAM method based on particle filters applied on the

generating map. Differing from its continuous space relatives, in

particle filter based Fast SLAM we are considering discrete

samples in the robot world covering map poses, sensor and

motion models.

In our experiments we have used a simulation platform

consisting of 3 different map types for a mobile robot existing in

a 2D world.

Keywords— Fast SLAM, Particle Filters, Sensor Model

I. INTRODUCTION

The problem for autonomous localization and mapping for

mobile robots is one of the most fundamental topics

researches are interested in. The main problem in this topic is

that the robot’s pose and the map is unknown at the same time,

therefore probabilistic approaches upon this problem depends

on the information coming from the user commands and the

sensor readings from the range devices on the robot.

The general name given for this kind of approach is

simultaneous localization and mapping or SLAM in short.[1]

In this approach the main aim is to estimate the posterior pose

of the robot and the map surrounding it with respect to the

user controls and sensor readings. This aim can be defined as:

 (1)

Where x denotes the pose of the robot (pose of the robot

changes with respect to the problem space; it consists of 6

variables if the space is 3D and 3 variables as x, y and θ for

2D environments), m denotes the map. The given probabilities

z is the sensor reading and u is the control command. In the

Equation 1 the posterior pose of the robot is estimated for the

time stance t, which is one of SLAM’s different applications.

In this case only the current pose of the robot and the map

around it is estimated with given inputs which is called online

SLAM.[1]-[4] For the Full SLAM case, this posterior is

estimated for the total of time stances, in other words, starting

from time 1 to t.

A naive implementation of Fast SLAM algorithm is

doomed to fail because of the dimensionality problem. Here if

we are going to use this formula as it is, meaning if we see the

map and the position is dependent to each other, our state

dimension becomes very large and hence the problem

becomes infeasible.

Fig. 1 Bayes network for the Fast SLAM problem

If we knew the history of robot poses, then map features

will become independent. This greatly simplifies equation 1

into:

 * (2)

Equation 2 can be simplified even further if we use the

main property of the grid maps. In grid maps every individual

cell is independent from each other. Thus equation 2 further

simplifies into:

 * (3)

All this assumptions and simplifications make the Fast

SLAM algorithm feasible. Still there are many issues that

must be solved in Fast SLAM and surely one must do some

clever implementation to be able to have a real time Fast

SLAM.

II. FAST SLAM ALGORITHM

We have simplified the Fast SLAM problem and get the

equation 3 with some clever assumptions. After stating the

independence of the pose of the robot and landmarks in the

environment, the problem becomes more implementable.

We can use a Particle Filter to estimate the robot pose at

any time, then we will use separate Gaussian Filters to

estimate different landmarks.

Fig. 2 Rao-Blackwellized particle filtering based on landmarks [2]

As in the Figure 2, As Rao-Blackwellized suggest we can

have an implementable particle based Fast SLAM algorithm.

Here every landmark represented by a 2D EKF and we have

M different particles for robot pose.

Fig. 3 A simple pseudo code for Fast SLAM

Figure 3 shows a simple pseudo code for Fast SLAM

algorithm, using EKF for a landmark based mapping. First

question that arise in this implementation is how to find

correspondences between measurements and the landmarks in

the environment. If we do not have unique landmarks we

might have different combination of correspondences. If we

have used an EKF Filter for robot pose, then wrong data

associations might cause filter to diverge. But luckily in

Particle Filter implementation since we have different

particles meaning different robot poses, we have different data

associations for different particles. Hence even if we have

wrong data association for a particle only that particle will

become less probable in succeeding data measurements and

the main algorithm will not fall apart easily.

In our implementation of Fast SLAM, we do not assume we

have predefined landmarks. We tried to use Occupancy Grid

Maps instead of 2D EKF’s for different landmarks. If the

poses are known the Occupancy Grid Mapping is easy. Each

particle has its own map. Hence the problem with Occupancy

Grid Mapping is since we have 2D grids for the environment

space and computational requirement for the algorithm is

enormous. Therefore we must keep the particle number small

in order to have a feasible implementation.

Pseudo code in Figure 3 does not change much for

Occupancy Grid Mapping. The only change is at measurement

update part, now we have 2D grid map instead of landmarks.

For prediction part we need to implement a motion model, for

importance weight we have to implement a sensor model and

as for measurement update we need to have the inverse of the

sensor model we have implemented. Resampling and retrieval

part is simple and hence does not require any detailed

explanation.

III. MOTION MODEL

The motion model in the Fast SLAM approach basically

forms the particles estimated in each movement of the robot.

This movement is dependent on the noisy motion commands

which are assumed to be given in the whole posterior

probability model.

As Fast SLAM is applied on particle based filters, the

motion model in the approach is a discrete sampling method

which creates distinct pose estimates given the motion

commands and its resulting actions. With respect to our

experiments in the simulations, our motion model is compliant

with the 2D world motion rules and variables. The general

motion in this world can be explained with the figure below.

Fig. 4 The motion model in 2D world

The figure above shows a single motion built up with 3

consequent action sub-forms, δrot1, δtrans and δrot2. These

sub-forms are calculated by using the state variables of the

initial and final robot poses. One important fact here is that

these poses are found by using the encoders of the robot

which generally produces noisy data. The motion model of the

whole approach includes this sensor noise which is called also

as the command noise. These sub-forms are calculated as

below:

 (4)

 (5)

– (6)

In order to model the sensor noise in the motion model, a

sample function of the Gaussian is applied on these sub-forms.

The noise model applied is as follows:

 (7)

 (8)

 (9)

These noise models include the Gaussian distribution

samples from the noisy encoder data on each iteration of robot

motion. By using these forms the general motion model is

derived. This derivation can be seen in a pseudo format in the

following figure.

Fig. 5 Algorithm for motion model

It can be seen that the result of the motion model is a pose

estimate based on the calculations done on the noisy odometry

data coming from encoders. In order to generate a particular

number of particles, in other words pose estimates, the

algorithm above is executed several times on the same

odometry data.

IV. SENSOR MODEL

Sensor model gets the known robot pose from a particle

and gets reading data from Sick Laser of the robot, using the

interface of the Aria. From Sick Laser we get 180 different

laser readings each representing a different degree. For sensor

model we find probability of a given measurement and pose

according to these readings. These values are used as

importance weight in our algorithm. Here we assume the map

is known, at least the part of it which is mapped so far. We are

using a simple threshold for finding obstacles in our map.

Equation 4 and 5 shows derivation of sensor model.

 (10)

Using the assumption that different rays are independent of

each other:

 (11)

Fig. 6 Gaussian model for ray casting method

We actually simplified sensor model a bit. We ignore the

max readings and some readings that are too short. This

improves our algorithms performance. Apart from that we are

using Gaussian model in the above figure. More generic

algorithm is below:

Fig. 7 Algorithm for sensor model

Inverse sensor model is quite different than this. Actually

we have used the cone model, but since we have a Sick Laser

and 180 different measurements, our cone model become a

ray model, but underlying assumptions is just same.

Fig. 8 Algorithm for adding new measurements into map

Fig. 9 Illustration of Cone model for implementing inverse sensor model

Fig. 10 Algorithm of Cone model for implementing inverse sensor model

Fig. 11 A sample pose and map from MobileSim

Fig. 12 Inverse sensor model for of the above figure

V. IMPORTANCE WEIGHT

For every particle, given the latest range sensor data, we

find probabilities to use in resampling process. Using

probabilities directly is not a good way to start since generally

probabilities differ in orders of ten. So we take logarithm of

the probabilities. Then we normalize them by making the

minimum non-infinity probability zero. From that point the

probability of a particle to be chosen for resampling is

proportional with its weight. This is the main point of the

algorithm which makes it robust to the noises.

VI. EXPERIMENTS

In order to see the result of the Fast SLAM algorithm

based on particle filters, we have used the simulation

environment of Aria which is provided by MobileSim.[5]

This simulator enabled us to control a p3dx robot with 2

wheel encoders, range sonars and a SICK laser.

We have created 3 different maps using the Mapper3

software. Each of these maps consists of different level of

paths for the robot. We have tried to create narrow corridors

and broad halls in order to harden the Fast SLAM problem.

What is more, beyond using particles in the map we have

adopted the grid base map scheduling with grid sizes 50

pixels in a 1000x1000 pixel maps. In order to visualize the

simultaneously generated map we have used an open source

library OpenCV[6].

In order to implement a full autonomous Fast SLAM

algorithm, we have also applied an exploration method for our

robot. In this method, the robot wanders the unexplored areas

in the map and generates the maps via the approach of Fast

SLAM. Through this exploration, our motion model generates

15 particles in each iteration of robot motion. These particles

are then re-sampled with respect to the weights computed in

order to correct the noisy maps and ignore falsely estimated

poses.

We have run our models in a Dual-Core Pentium 2.0 GHz

machines to improve the computation capability.

VII. RESULTS

Below are the results depending on the experiment run on

the first map:

Fig. 13 Our first map in MobileSim environment

The images below show the SLAM results generated every

20 steps covered in the algorithm. The result images start with

a map of grids having 0.5 probabilities. While algorithm

evolves the grid map converges to the real map shown above.

Fig. 14 Map generated at the beginning of the algorithm

Fig. 15 Map generated at the later steps of the algorithm

Fig. 16 Map generated at the later steps of the algorithm

Fig. 17 Map generated at the later steps of the algorithm

Fig. 18 Map generated at the later steps of the algorithm

Fig. 19 Map generated at the later steps of the algorithm. It should be

noted that the Fast SLAM algorithm corrects the map. The correction could

be seen by comparing this map with the map in Figure 18.

Fig. 20 Nearly completed grid map

Fig. 21 Half complete Grid Map of our second map which is

generated by our algorithm.

.

Fig. 22 Half complete Grid Map of our third map which is

generated by our algorithm.

In all of our experiments we have observed that, the time

complexity of the Fast SLAM algorithm is the main problem

for real time applications. Although the time interval for the

SLAM is 0.5 seconds for each motion performed, our

simulator was in front of our algorithm.

We have also noticed that decreasing the cruising speed of

the robot increases the SLAM efficiency in the map as the

difference between sensor readings is less that a faster action

performed. However, benefiting from a slow motion and

increasing the particle count in the motion model does not

yield a faster computation. Although more particles existing in

the algorithm would increase the correctness of the whole

system, it also increases the time complexity.

We also included the resulting map created by our Fast

SLAM algorithm when only the raw encoder data from the

Mobile Sim. Robot is used without any additional Gaussian

noise.

Fig. 23 Grid map created depending only on the raw encoder data

of Mobile Sim robot

VIII. CONCLUSION

Fast SLAM with Occupancy Grid Mapping is a powerful

technique when we do not have predefined landmarks.

Resulting map is a complete map and have more information

when compared to Fast SLAM using 2D EKF landmarks.

The main drawback of our algorithm is resources required.

Since we have to store a 2D grid for every particle and since

for an update sequence we need to update quite large portion

of the grid it takes too much time and consumes too much

space. With a naive implementation it becomes infeasible to

use and it will not even be near real time.

Time requirements of this algorithm, limits the number of

particle we can use, causing algorithm to lose its robustness.

Some clever resampling techniques must be implemented to

use in robotics given the technology we have today.

REFERENCES

[1] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox.

Probabilistic Robotics. Massachusetts Institude of Technology

Cambridge, MA, USA: The MIT Press, 2005.

[2] Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B.

"FastSLAM: A Factored Solution to the Simultaneous

Localization and Mapping Problem." AAAI, 2002.

[3] Xianzhong, Chen. “An Adaptive UKF-Based Particle Filter for

Mobile Robot SLAM”. International Joint Conference on

Artificial Intelligence, 2009

[4] Montemerlo, M., Thrun, S. Simultaneous Localization and

Mapping with Unknown Data Association using FastSLAM.

ICRA, 2003

[5] MobileSim. http://robots.mobilerobots.com/wiki/MobileSim

[6] OpenCV. http://opencv.willowgarage.com/wiki/

http://robots.mobilerobots.com/wiki/MobileSim
http://opencv.willowgarage.com/wiki/

