CAP Theorem

CAP Theorem

14 February 2012



CAP Theorem
L_CAP Theorem

CAP Theorem



CAP Theorem
L_CAP Theorem

Content

The content here is derived from “CAP 12 years later: How the
rules have changed”, by E. Brewer
http://www.computer.org/portal /web/csdl/doi/10.1109/MC.2012.37


http://www.computer.org/portal/web/csdl/doi/10.1109/MC.2012.37

CAP Theorem
L_CAP Theorem

CAP Theorem

The CAP theorem states that any networked shared-data system
can have at most two of three desirable properties:

m consistency (C) equivalent to having a single up-to-date copy
of the data;
m high availability (A) of that data (for updates); and

m tolerance to network partitions (P).



CAP Theorem
L_CAP Theorem

CAP simplified

The easiest way to understand CAP is to think of two nodes on
opposite sides of a partition. Allowing at least one node to update
state will cause the nodes to become inconsistent, thus forfeiting C.

Likewise, if the choice is to preserve consistency, one side of the
partition must act as if it is unavailable, thus forfeiting A.

Only when nodes communicate is it possible to preserve both
consistency and availability, thereby forfeiting P.



CAP Theorem
L_CAP Theorem

Insight

CAP prohibits only a tiny part of the design space: perfect
availability and consistency in the presence of partitions, which are
rare.

By explicitly handling partitions, designers can optimize consistency
and availability, thereby achieving some tradeoff of all three.



CAP Theorem
L_CAP Theorem

Insight. ..

Although designers still need to choose between consistency and
availability when partitions are present, there is an incredible range
of flexibility for handling partitions and recovering from them.

The modern CAP goal should be to maximize combinations of
consistency and availability that make sense for the specific
application. Such an approach incorporates plans for operation
during a partition and for recovery afterward.



CAP Theorem
L_CAP Theorem

CAP space

m No reason to forfeit C or A when the system is not partitioned

m Choice between C and A at subsystem-, operation-, data-,
user-level

m All 3 properties are more continuous than binary



CAP Theorem
L_CAP Theorem

CAP-Latency connection

In practice, partition is a time bound on communication.
Failing to achieve consistency within the time bound implies a
partition and thus a choice between C and A for this operation.

These concepts capture the core design issue with regard to latency:
Are two sides moving forward without communication?

There is no global notion of a partition, since some nodes might
detect a partition, and others might not.



CAP Theorem
L_CAP Theorem

Managing partitions

When partitions are present or perceived, a strategy that detects
partitions and explicitly accounts for them is in order:
detect partitions,

enter an explicit partition mode that can limit some
operations, and

recover to restore consistency & compensate for mistakes
during a partition.



CAP Theorem
L_CAP Theorem

Managing partitions. . .

Once the system enters partition mode, two strategies are possible.

Limit some operations, thereby reducing availability

Record extra info about the operations to help during partition
recovery



CAP Theorem
L_CAP Theorem

Availability during partitions

The designer must decide whether to maintain a particular invariant
during partition mode or risk violating it with the intent of restoring
it during recovery. E.g., duplicate keys —easy to restore.

The best way to track the history of operations on both sides is to
use version vectors (vector clocks), which capture the causal
dependencies among operations.



CAP Theorem
L_CAP Theorem

Partition recovery

Recovery goals:
m the state on both sides must become consistent, and

m compensate the mistakes made during partition mode

Using commutative operations is the closest approach to a general
framework for automatic state convergence.

Commutativity implies the ability to rearrange operations into a
preferred consistent global order. Unfortunately, using only
commutative operations is harder than it appears.



Commutative Replicated Data Types (CRDTs)

CRDTs converge after a partition by

m ensuring that all operations during a partition are
commutative, or

m representing values on a lattice and ensuring that all
operations during a

partition are monotonically increasing with respect to that lattice.

The latter approach converges state by moving to the maximum of
each side's values. It is a formalization and improvement of what
Amazon does with its shopping cart: after a partition, the
converged value is the union of the two carts, with union being a
monotonic set operation. The consequence of this choice is that
deleted items may reappear.



CAP Theorem
L_CAP Theorem

Develop new CRDTs

Technically, CRDTs allow only locally verifiable invariants -a
limitation that makes compensation unnecessary but that
somewhat decreases the approach’s power. However, a solution
that uses CRDTs for state convergence could allow the temporary
violation of a global invariant, converge the state after the
partition, and then execute any needed compensations.

Self-stabilization approach



	CAP Theorem

