
A SKETCH RECOGNIZER FOR GRAPHS

by

Hamdi DĠBEKLĠOĞLU

Engineering Project Report

Yeditepe University

Faculty of Engineering an Architecture

Department of Computer Engineering

2006

 ii

A SKETCH RECOGNIZER FOR GRAPHS

APPROVED BY:

 Assist. Prof. Dr. Ender Özcan …………….…………………………………

 (Supervisor)

 Assoc. Prof. Dr. Raşit Eskicioğlu ………….…………………………………....

 Assist. Prof. Dr. Cem Ünsalan .…………….………………………………..

DATE OF APPROVAL: 24/05/2006

 iii

ACKNOWLEDGEMENTS

 I would like to thank to my advisor, Ender Özcan, my cousin Hüseyin Hışıl, Cem

Ünsalan and Tevfik Metin Sezgin for their advice and support all through my project.

 Additionally, I want to thank my family; Mehmet Dibeklioğlu, Sevim Dibeklioğlu and

Sami Dibeklioğlu for their unconditional love and support during my education.

 iv

ABSTRACT

 The current trend on the use of touch-screens has introduced the need for keyboard-less

solutions to graphical user interfaces. Gesture-based interfaces as a piece of pie, receive the

scientific interest because of its theoretical diversity. Even näive approaches require a

common knowledge about linear algebra, artificial intelligence, sketch and handwriting

recognition within the context. The main emphasis of this project is to develop an intelligent

pen-based human-computer interface and propose a new online hand-drawn digit recognition

algorithm which runs with linear time complexity, where one of the most recognized

algorithms, ICP (Iterative Closest Point) halts with quadratic time complexity. In return, we

show how the proposed algorithm, together with ICP, can be applied to increase the success

ratio of digit recognition significantly without the inclusion of a neural network. Moreover, the

derived information is represented by an adjacency matrix to supply an abstract view of any

kind of input graph. As sample applications, Kruskal and Dijkstra algorithms are fed using the

output generated by the implemented sketch recognizer system. In conclusion, this work

outlines a new solution to the graph creation problem with hand-drawn sketch and digit

recognition.

 v

ÖZET

 Günümüzde dokunmatik ekran teknolojisine olan talep, grafik kullanıcı arayüzlerini

klavyesiz kullanabilme ihtiyacını doğurmuştur. Pastanın bir parçası olan, çizim tabanlı

arayüzler, teorik çeşitliliği sebebiyle bilimsel ilgiyi üstüne çekmektedir. Bu konudaki basit

uygulamalar bile genel olarak, lineer cebir, yapay zeka, çizim ve el yazısı tanımlama bilgisi

gerektirmektedir. Bu araştırma projesinin temel amacı, çizim tabanlı zeki bir insan-bilgisayar

arayüzü geliştirmek ve lineer zamanda çalışan bir çizim tanımlama algoritması önermektir.

En ünlü çizim tanımlama algoritmalarından ICP yönteminin karesel zaman karmaşıklığında

çalıştığı unutulmamalıdır. Bununla beraber, bu çalışmada, ICP yöntemi ile birlikte önerilen

algoritmanın da kullanılmasıyla, sisteme herhangi bir yapay sinir ağı eklemeden, sayı

çizimlerinin tanımlanmasının başarı oranındaki ciddi artış da gösterilmektedir. Ek olarak,

geliştirilen uygulamada, girilen herhangi bir çizgenin sanal gösterimi bir komşuluk matrisi ile

sağlanmaktadır. Geliştirilen çizim tabanlı kullanıcı arayüzünün oluşturduğu veriler ile örnek

olarak eklenen Kruskal ve Dijkstra çözümleme uygulamaları da kullanılabilmektedir. Sonuç

olarak, bu çalışma, bilgisayar ortamında elle çizilmiş şekiller ve sayılar ile çizge oluşturma ve

tanımlamaya yeni bir çözüm getirmektedir.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ……………………….……………………………………….. iii

ABSTRACT ………………………….……………………………………………………. iv

ÖZET ………………………….…………………………………………………………… v

TABLE OF CONTENTS ………………………….………………………………………. vi

LIST OF FIGURES ……………….…………….…………………………………………. viii

LIST OF ALGORITHMS ……….…………….……………………………………………. xi

LIST OF SYMBOLS / ABBREVIATIONS …….……………………………………........ xii

1. INTRODUCTION ……………….………….…………………………………………... 1

2. PRELIMINARIES ……………….………….…………………………………………... 3

2.1. Graphs ………………….……….……………………………………………... 3

2.1.1. Graphs by Adjacency Matrices ………………………………………. 3

2.1.2. Graphs by Adjacency Lists …………………………………………... 5

2.2. Sketch Recognition ………………………….…………………………………. 7

2.2.1. Sketched Shape Recognition …………………………………………. 7

2.2.1.1. Support Vector Machines (SVM) …………………………... 7

2.2.1.2. Minimum Mean Distance (MMD) …………………………. 9

2.2.1.3. Nearest Neighbor (NN) …………………………………….. 9

2.2.2. Handwritten Digit Recognition ………………………………………. 10

2.2.2.1. On-Line Digit Recognition using Hidden Markov model….. 10

2.2.2.2. On-Line Digit Recognition using Off-Line Features……….. 12

2.2.2.3. Online Digit Recognition using Alignment to Prototypes….. 12

2.2.2.4. Iterative Closest Point Method (ICP)……………………….. 13

2.3. Related Work ………………………….……………………………………….. 14

3. A SKETCH RECOGNIZER FOR GRAPHS …………………………...……………….. 19

3.1. User Interface ………………………….……………………………………….. 20

3.2. Handwritten Digit Trainer ………………………….…………………………... 22

3.2.1. Normalization ………………………….……………………………... 24

 vii

3.3. Recognition System ………………………….……………………………….. 25

3.3.1. Graph Recognition Functions ………………………………………. 27

3.3.1.1. Determination of Line Equations …………………………. 27

3.3.1.2. Determination of Circle Equations ……………………….. 29

3.3.1.3. Line Test ……………….………………………………….. 30

3.3.1.4. Circle Test ……………..………………..…………………. 30

3.3.1.5. Link Test ……………….……………..…………………… 33

3.3.1.6. Node Test ……………………………..…………………… 34

3.3.2. Handwritten Digit Recognition Functions…………………………… 35

3.3.2.1. Scaling ………………………….………………………….. 38

3.3.2.2. Parallel Sampling Algorithm (PSA) ………………………. 38

3.3.2.3. Voting Algorithm ………………………………………….. 40

3.3.3. Graph Editing Functions …………………………………………….. 40

3.3.3.1. Moving the selected area functions ………………………... 40

3.3.3.2. Weight editing functions …………………………………... 41

3.4 Output Generator ………………………….……………………………………. 42

3.5 Warnings ………………………….…………………………………………….. 44

3.6. Test Results of PSA and Voting Algorithm …………………………………… 48

4. CONCLUSION ………………………….………………………………………………. 51

REFERENCES ………………………….……………………………………………….…. 52

REFERENCES NOT CITED ………….…………………………………………………… 54

 viii

LIST OF FIGURES

Figure 2.1. Adjacency Matrix of Directed Graph….. 3

Figure 2.2. Adjacency Matrix of Undirected Graph.. 4

Figure 2.3 Adjacency Matrix of Weighted Directed Graph.. 4

Figure 2.4. Adjacency Matrix of Weighted Undirected Graph.. 5

Figure 2.5. Adjacency Lists for Weighted Directed Graph….. 6

Figure 2.6. Adjacency Lists for Weighted Undirected Graph.. 6

Figure 2.7. Different colored points which can be separated by a line................................. 8

Figure 2.8. Different colored points which can be separated by a curve.............................. 8

Figure 2.9. Examples of input and feature spaces for a SVM.. 9

Figure 2.10. State transitions in a hidden Markov model (example)..................................... 11

Figure 2.11. Evolution of a Markov model... 11

Figure 2.12. Pseudo-code of ICP... 13

Figure 2.13. Screenshots of SILK.. 14

Figure 2.14. Screenshots of ASSIST... 15

Figure 2.15. A screenshot of Denim.. 15

Figure 2.16. Screenshots from “Early Processing in Support of Sketch Understanding”..... 16

Figure 2.17. Screenshots of Tahuti.. 16

Figure 2.18. A screenshot of Natural Log... 17

Figure 3.1. Skeleton Flowchart of ASKER... 19

Figure 3.2. User Interface: ASKER - MENU.. 20

Figure 3.3. Digit Training Screen of ASKER.. 22

Figure 3.4. Format of user_digits.txt for one sample digit.. 23

Figure 3.5. Normalization Pseudo-code.. 24

Figure 3.6. Confirmation box which asks if a new training is required.............................. 24

Figure 3.7. An example usage of recognition and editing properties of ASKER............... 26

Figure 3.8. Line for first case... 27

Figure 3.9. Line for second case.. 28

 ix

Figure 3.10. Line for third case.. 28

Figure 3.11. A circle... 29

Figure 3.12. Pseudo-code of LineTest.. 30

Figure 3.13. Pseudo-code of CircleTest... 31

Figure 3.14. Flowchart for Graph Recognition Processes.. 32

Figure 3.15 Pseudo-code of LinkTest.. 33

Figure 3.16. Vertex deletion using a line.. 34

Figure 3.17. Pseudo-code of NodeTest... 34

Figure 3.18. Node deletion using a line.. 35

Figure 3.19. Flowchart of the proposed handwritten digit and sign recognition method 36

Figure 3.20. Examples of sketches; 0,1,2,3,4,5,6,7,8,9 and period respectively.................. 37

Figure 3.21. Deletion sign is used clear the last recognized digit.. 37

Figure 3.22. Check sign is used to complete the weight related digit recognition............... 37

Figure 3.23. Pseudo-code of Scaling Algorithm.. 38

Figure 3.24. Pseudo-code of PSA... 39

Figure 3.25. Pseudo-code of Voting Algorithm... 40

Figure 3.26. Pseudo-code of the Moving Algorithm.. 41

Figure 3.27. Pseudo-code of the Weight Editing Algorithm.. 41

Figure 3.28. Weight Editing... 42

Figure 3.29. Generated Adjacency Matrix... 43

Figure 3.30. Dijkstra Demo of sketched graph... 43

Figure 3.31. Kruskal Demo of sketched graph... 44

Figure 3.32. Warning 1... 44

Figure 3.33. Warning 2... 45

Figure 3.34. Warning 3... 45

Figure 3.35. Warning 4... 46

Figure 3.36. Warning 5... 46

Figure 3.37. Warning 6... 46

Figure 3.38. Warning 7... 47

Figure 3.39. Warning 8... 47

Figure 3.40. Wacom Pen Partner.. 48

 x

Figure 3.41. Recognition Success ratio of sketched samples by indicated four methods.... 49

Figure 3.42. Recognition success ratio of digits and signs by indicated four methods........ 49

Figure 3.43. Average recognition success ratio of all samples by indicated four methods.. 50

 xi

LIST OF ALGORITHMS

Circle Test Algorithm ... 31

ICP Algorithm .…….. 13

Line Test Algorithm ... 30

Link Test Algorithm ... 33

MMD Algorithm .. 9

Moving Algorithm .. 41

NN Algorithm ... 9

Node Test Algorithm .. 34

Normalization Algorithm ... 24

PSA ... 38

Scaling Algorithm .. 38

Voting Algorithm ... 40

Weight Editing Algorithm ... 41

 xii

LIST OF SYMBOLS / ABBREVIATIONS

E Edge

G Sequence of Nodes

V Vertex

ASKER A Sketch Recognizer

ASSIST A Shrewd Sketch Interpretation and Simulation Tool

DENIM serge de Nimes

SILK Sketching Interfaces Like Krazy

GP Genetic Programming

HMM Hidden Markov Model

ICP Iterative Closest Point

MMD Minimum Mean Distance

NN Nearest Neighbor

OCR Optical Character Recognition

PSA Parallel Sampling Algorithm

SVM Support Vector Machines

 1

1. INTRODUCTION

 Think of a graph drawing on a notebook sheet which is so simple to prepare and

understand. Also, it can be changed by erasing some parts of the graph and drawing then

again. But actually applying an algorithm to a graph on a paper is very hard and time

consuming. At each step, the graph figure should be redrawn or changed partially. If this graph

can be drawn on a computer screen using a digital pen, it would become very simple to

visualize and modify it. Also, it can be used as an input to an application or an implemented

graph algorithm.

 As computational manner, visualizing a drawing on a computer monitor by using

human-machine interaction tools, i.e. a touch-screen or a pen mouse, is so simple. But the

visualized figure is only raw data which consists of 2-dimensional points and has no extra

meaning for a machine. At this point, gesture-based information generation gains importance.

Gesture means ―hand movements‖ as a word but it has a meaning of recognizable physical

movements which forms a meaning for a system as a technical definition. A gesture-based

application is a piece of software which gets physical data by a digital pen, a mouse or a

touch-screen as input and understands what it means as information.

 In this work, a gesture-based interface is developed. Implemented system is an online

sketch recognizer for graphs which could understand hand-drawn circles, lines and hand-

written digits simultaneously. After recognition of drawings, this application generates an

adjacency matrix which specifies the hand-drawn graph figure. Another capability of the

application is to provide flexible usage properties like removing or moving selected graph

components and changing weight of a particular link at any time.

 Developed system is not only a gesture-based interface, but it is also a graph

visualization tool. As a good example it could be used efficiently in ―Analyses of Algorithms‖

classes instead of using traditional white-board sketching. By this way, the lecturer could

 2

easily draw and modify a graph, assign weights to the edges. Additionally, user can

demonstrate a graph algorithm on the drawn figure as an animation. The generated adjacency

matrix can be fed as an input into another application. As an example, animated solvers for

Dijkstra and Kruskal algorithms have been embedded in the system. An alternative usage

environment of developed application should be tablet pc’s. They are new technology

computers with sensitive hybrid screens and there are not special applications for them

enough. Developed recognizer system should be easily used with a tablet pc as drawing on

paper.

 This work is also a project. In general, several handwriting recognition systems use ICP

(Iterative Closest Point) method as a core algorithm with a neural network. In this research a

new method is developed by using ICP and also new core algorithm. This new method

increases the digit recognition success ratio incredibly without using a neural network.

Another important thing is about the time complexity of the new core recognition algorithm,

which has O (n) despite the ICP method has a time complexity of O (2n).

 In Section 2, a general knowledge about graphs and sketch recognition is given. In

Section 3, the implemented system is described in detail. Finally, in Section 4, the conclusions

on this work are provided.

 3

2. PRELIMINARIES

2.1. Graphs

 A graph G=<V, E> consists of a set of vertices (also known as nodes) V and a set of

edges (also known as arcs) E. An edge connects two vertices u and v; v is said to be adjacent

to u. In a directed graph, each edge has a sense of direction from u to v and is written as an

ordered pair <u,v> or u->v. In an undirected graph, an edge has no sense of direction and is

written as an unordered pair {u,v} or u<->v. An undirected graph can be represented by a

directed graph if every undirected edge {u,v} is represented by two directed edges <u,v> and

<v,u> [5, 6].

 A path in G is a sequence of vertices <v0, v1, v2, ..., vn> such that <vi,vi+1> (or {vi,vi+1}),

for each i from 0 to n-1, is an edge in G. The path is simple if no two vertices are identical.

The path is a cycle if v0=vn. The path is a simple cycle if v0=vn and no other two vertices are

identical.

2.1.1. Graphs by Adjacency Matrices

 A graph G can be represented by a |V|*|V| adjacency matrix A. If G is directed, Aij=true

if and only if <vi,vj> is in E. There are at most |V|
2
 edges in E.

Figure 2.1. Adjacency Matrix of a Directed Graph

 4

 If G is undirected, Aij=Aji=true if {vi,vj} is in E and Aij=Aji=false otherwise. In this case

there are at most |V|*(|V|+1)/2 edges in E, A is symmetric and space can be saved by storing

only the upper triangular part Aij for i>=j.

Figure 2.2. Adjacency Matrix of an Undirected Graph

 An adjacency matrix is easily implemented as an array. Both directed and undirected

graphs may be weighted. A weight is attached to each edge. This may be used to represent the

distance between two cities, the flight time, the cost of the fare, the electrical capacity of a

cable or some other quantity associated with the edge. The weight is sometimes called the

length of the edge, particularly when the graph represents a map of some kind. The weight or

length of a path or a cycle is the sum of the weights or lengths of its component edges.

Figure 2.3. Adjacency Matrix of a Weighted Directed Graph

 5

 The adjacency matrix of a weighted graph can be used to store the weights of the edges.

If an edge is missing a special value, perhaps a negative value, zero or a large value to

represent "infinity", indicates this fact.

Figure 2.4. Adjacency Matrix of a Weighted Undirected Graph

 It is often the case that if the weights represent distances then the natural distance from

vi to itself is zero and the diagonal elements of the matrix are given this value. A weighted

adjacency matrix is easily defined in any imperative programming language.

 A graph is complete if all possible edges are present. It is dense if most of the possible

edges are present. It is sparse if most of them are absent, |E|<<|V|2. Adjacency matrices are

space efficient for dense graphs but inefficient for sparse graphs when most of the entries

represent missing edges. Adjacency lists use less space for sparse graphs.

2.1.2. Graphs by Adjacency Lists

 In a sparse directed graph, |E|<<|V|2. In a sparse undirected graph |E|<<|V|*(|V|-1)/2.

Most of the possible edges are missing and space can be saved by storing only those edges that

are present, using linked lists.

 6

Figure 2.5. Adjacency Lists for Weighted Directed Graph

 An edge <vi,vj> is placed in a list associated with vi. The edge is represented by the

destination vj and the weight.

Figure 2.6. Adjacency Lists for Weighted Undirected Graph

 Adjacency lists can be defined using records (structs) and pointers. Note that some

questions, such as "are vi and vj adjacent in G", take more time to answer using adjacency lists

than using an adjacency matrix as the latter gives random access to all possible edges.

 7

2.2. Sketch Recognition

 This work is settled on stroke based sketches. Stroke based sketches are drawings made

by mouse pressed from beginning to end. Sketches are started with mouse press and finished if

mouse released. Mainly there are two types of sketches for this system. First one is shape

sketch and other is sketched digits as handwriting.

2.2.1. Sketched Shape Recognition

 In sketched shape recognition, collected data -especially in terms of points(x,y)- is

processed by using several classification techniques. In many recognition systems, special

moment descriptors are also used to represent symbols such as Zernike moment descriptors

[7]. The most common tree classification methods are Support Vector Machines (SVM),

Minimum Mean Distance (MMD), and Nearest Neighbor (NN).

2.2.1.1. Support Vector Machines (SVM). Support Vector Machines are learning machines

that can perform binary classification (pattern recognition) and real valued function

approximation (regression estimation) tasks. Support Vector Machines non-linearly map their

n-dimensional input space into a high dimensional feature space. In this high dimensional

feature space a linear classifier is constructed [8].

 Support Vector Machines are based on the concept of decision planes that define

decision boundaries [9]. A decision plane is one that separates between a set of objects having

different class memberships. A schematic example is shown in the illustration below. In this

example, the objects belong either to class GREEN or RED. The separating line defines a

boundary on the right side of which all objects are GREEN and to the left of which all objects

are RED. Any new object (white circle) falling to the right is labeled, i.e., classified, as

GREEN (or classified as RED should it fall to the left of the separating line).

 8

Figure 2.7. Different colored points which can be separated by a line

 The above is a classic example of a linear classifier, i.e., a classifier that separates a set

of objects into their respective groups (GREEN and RED in this case) with a line. Most

classification tasks, however, are not that simple, and often more complex structures are

needed in order to make an optimal separation, i.e., correctly classify new objects (test cases)

on the basis of the examples that are available (train cases). This situation is depicted in the

illustration below. Compared to the previous schematic, it is clear that a full separation of the

GREEN and RED objects would require a curve (which is more complex than a line).

Classification tasks based on drawing separating lines to distinguish between objects of

different class memberships are known as hyper-plane classifiers. Support Vector Machines

are particularly suited to handle such tasks.

Figure 2.8. Different colored points which can be separated by a curve

 The illustration below shows the basic idea behind Support Vector Machines. Here it is

seen that the original objects (left side of the schematic) mapped, i.e., rearranged, using a set

of mathematical functions, known as kernels. The process of rearranging the objects is known

as mapping (transformation). Note that in this new setting, the mapped objects (right side of

 9

the schematic) is linearly separable and, thus, instead of constructing the complex curve (left

schematic), all we have to do is to find an optimal line that can separate the GREEN and the

RED objects.

Figure 2.9. Examples of input and feature spaces for a SVM

2.2.1.2. Minimum Mean Distance (MMD). Despite Minimum Mean Distance is so basic; it is

very important method to understand similarity of two multi-dimensional shapes. For sketch

recognition, generally, drawn shape and all prototypes in the database are compared and a

fitting value calculated for each comparison. After all tests the prototype or sample with the

minimum fitting error is selected as recognized shape. In this procedure, MMD is used to find

the minimum distance between each point of a sample and sketched figure. The average of

minimum distances of all points in a comparison can be defined as fitting error.

2.2.1.3. Nearest Neighbor (NN). The nearest neighbor algorithm in pattern recognition is a

method for classifying phenomena based upon observable features. In the algorithm, each

feature is assigned a dimension to form a multidimensional feature space. A training set of

objects with a priori known class are processed by feature extraction and plotted within the

multi-dimensional feature space. The offsets in each dimension are referred to as the feature

vector. This is the training or learning stage. Because the engine can be retrained to classify

various phenomena, pattern recognition is part of machine learning [10].

 10

 The testing phase begins with phenomena to be classified (the class not being known a

priori) and extracts the same set of features. The geometric distance is computed between the

new feature vector and each a priori feature vector from the training set. The shortest distance

thus computed is to the nearest neighbor. The a priori class of the nearest neighbor is now

assigned to the phenomena to be classified.

 Obviously, this algorithm will be more computationally intensive as the size of the

training set grows. Many optimizations have been given over the years; these generally seek to

reduce the number of distances actually computed. Some optimizations involve partitioning

the feature space, and only computing distances within specific nearby volumes.

 Other variations of the algorithm include the k-nearest neighbor algorithm where several

of the nearest feature vectors are computed, and the classification is made with the highest

confidence only if all of the nearest neighbors are of the same class.

 Nearest neighbor has some strong consistency results. As the amount of data approaches

infinity, nearest neighbor is guaranteed to yield an error rate no worse than twice the Bayes

error rate (the minimum achievable error rate given the distribution of the data). K-nearest

neighbor is guaranteed to approach the Bayes error rate, for some value of k (where k

increases as a function of the number of data points).

2.2.2. Handwritten Digit Recognition

2.2.2.1. On-Line Digit Recognition Using Hidden Markov Model. As one of the major

research directions for on-line handwriting recognition, Hidden Markov Model (HMM) is

widely used because of the time sequential nature of online scripts as well as its capability of

modeling shape variability in probabilistic terms [11]. A Hidden Markov Model (HMM) is a

statistical model where the system being modeled is assumed to be a Markov process with

unknown parameters, and the challenge is to determine the hidden parameters from the

observable parameters. The extracted model parameters can then be used to perform further

analysis [4, 12].

 11

x — hidden states

y — observable outputs

a — transition probabilities

b — output probabilities

Figure 2.10. State transitions in a hidden Markov model (example)

 The preceding diagram emphasizes the state transitions of a HMM. It is also useful to

explicitly represent the evolution of the model over time, with the states at different times t1

and t2 represented by different variables, x(t1) and x(t2).

Figure 2.11. Evolution of a Markov model

 In this diagram, it is understood that the time slices (x(t), y(t)) extend to previous and

following times as needed. Typically the earliest slice is at time t=0 or time t=1.

 12

2.2.2.2. On-Line Digit Recognition using Off-Line Features. One of the fundamental aspects

of handwritten character recognition methodologies is the manner in which data is collected.

The data acquisition process can be on-line or off-line. On-line handwritten data is collected

using a digitizer or an instrumented pen to capture the pen-tip position (,t tx y) as a function of

time. Contrary to on-line, off-line handwritten data is collected using a scanner resulting in the

generation of the signal as an image I(x, y). Both areas of handwritten character recognition

have been in existence for more than three decades. This technique is based on using off-line

features extracted from the on-line data. By this manner also Genetic Programming (GP)

classifiers can provide good recognition results [13].

 There are two main considerations for the use of offline features in online recognition:

a) Hierarchical feature space has proved to be very effective for digit classification and pair

wise discrimination of confusing allograph. b) Genetic Programming based classification has

helped identify the important features for classifier development. Specifically, GP has several

advantages over classical feature selection techniques when used for off-line handwritten digit

classification using hierarchical features.

2.2.2.3. Online Digit Recognition using Alignment to Prototypes. Nearest neighbor classifiers

are simple to implement, yet they can model complex non-parametric distributions, and

provide state-of-the-art recognition accuracy in OCR databases.

At the same time, they may be too slow for practical character recognition, especially when

they rely on similarity measures that require computationally expensive pair wise alignments

between characters. But there are several efficient methods for computing an approximate

similarity score between two characters based on their exact alignment to a small number of

prototypes. [14]

 13

2.2.2.4. Iterative Closest Point Method (ICP). The ICP (Iterative Closest Point) algorithm is

widely used for geometric alignment of two-dimensional and three-dimensional models and

also used for matching and recognition of 2D shapes. There are many variants of ICP,

affecting all phases of the algorithm from the selection and matching of points to the

minimization strategy [2]. But the general form of ICP can be defined easily with the

following pseudo-code.

ICP_algo (shape1, shape2)

Set initial value of total_minimum_distance to zero

From initial point to last point of shape1

 From initial point to last point of shape2

 Calculate distance between current points of shape1 and shape2

 End

 Find and save the minimum distance as minimum_distance

 Add the minimum_distance to total_minimum_distance variable

End

average_min_distance = the total_minimum_distance / the number of points in shape1

Figure 2.12. Pseudo-code of ICP

 By using this algorithm, average minimum distance of drawn digit for every digit

sample is calculated and the minimum of all digit samples is selected as recognized digit.

 14

2.3. Related Work

 In this section, related work in gesture-based interfaces, which use sketch editing and

sketch recognition, is briefly reviewed. Previous research in sketch understanding has

generally chosen one of two paths: online interfaces that require an instrumented drawing

surface that captures stroke information; or off-line interfaces that allow the user to sketch

using pen-and-paper. Among all these systems, we will focus on online recognition systems

because developed gesture-based interface is also an online system [1].

 SILK (Landay & Myers 1995) is one of the earliest tools in this category. It recognizes

sketches of user interfaces [3]. The sketch could then be converted into an interactive demo of

the sketched GUI.

Figure 2.13. Screenshots of SILK

 Jorge and Fonseca presented a novel approach to recognizing geometric shapes

interactively (Jorge & Fonseca 1999), using fuzzy logic and decision trees to recognize multi-

stroke sketches of geometric shapes [15].

 15

 ASSIST (Alvarado 2000) is an online tool which allows a user to sketch simple

mechanical systems and see simulations of her drawings in a two-dimensional kinematic

simulator [16].

Figure 2.14. Screenshots of ASSIST

 Denim (Lin et al. 2000) is an online system for informal sketching of web site designs,

in which the user can sketch boxes to represent web pages and lines to indicate links between

the pages. Different kinds of links are recognized based on their context, rather than on their

shape. Denim uses a unistroke recognizer (Rubine 1991), so each symbol must be sketched

with a single stroke [17].

Figure 2.15. A screenshot of Denim

 16

 Sezgin et al. (Sezgin & Davis 2001) have created an online system that recognizes

geometric primitives. The system uses a three-phase technique (approximation, beautification,

basic recognition) to transform sketches into sharpened diagrams. Its recognition process uses

shape and curvature of strokes, among other information [18].

Figure 2.16. Screenshots from ―Early Processing in Support of Sketch Understanding‖

 Tahuti (Hammond & Davis 2002) is another online system for UML diagram

recognition, which uses both geometric and contextual constraints to recognize UML symbols.

Tahuti is non-modal: users can interleave editing and drawing with no mode switching, which

requires editing gestures to be distinguishable from sketched symbols [19].

Figure 2.17. Screenshots of Tahuti

 17

 Lank et al. (Lank, Thorley, & Chen 2000) used online stroke information to recognize

UML diagrams. UML symbols were recognized by heuristics such as stroke count and the

ratio of stroke length to bounding-box perimeter. The Lank system tries to distinguish between

UML symbols and character data. Its user interface allows the user to correct the system at

each stage of understanding: acquisition, segmentation, and recognition [20].

 The Natural Log (Nicholas, Matsakis 1999) is a tool recognizes many common

mathematical forms such as digits, lowercase Latin letters, certain Greek letters, relational and

binary operators, fractions, summations, square roots, and many accents. By using this tool

Latex and MathML Expressions are generated [21].

Figure 2.18. A screenshot of Natural Log

 The Natural Log has some fundamental limitations. The primary limitation is that the

character models have been created from examples of Nicholas' handwriting, collected on a

digitizing tablet. This means that other users' handwriting will often be misinterpreted. In

addition, the system currently does not support integral or subscript notation at all.

 18

 As it is seen by all these work, sketch based interface is a common research area but

there is not any sketch based interface for graphs. The developed application ―ASKER‖ is a

natural sketch recognition environment for graphs (directed, undirected, weighted,

unweighted). In this system, the user can sketch graphs on a tablet or whiteboard in the same

way they would on paper, but the graphs would then be recognized by the computer and the

related adjacency matrices be generated.

 19

3. A SKETCH RECOGNIZER FOR GRAPHS

 This work combines sketch recognition, hand-written digit recognition and graph theory

knowledge and forms an intelligent interface. Implemented application is developed in Java

SDK 1.5.06 environment, using Eclipse as an IDE. This project also called as ASKER which

means ―A Sketch Recognizer‖.

Figure 3.1. Skeleton Flowchart of ASKER

Graph Recognition Functions

Digit Recognition Functions

Graph Editing Functions

Animated

Dijkstra Solution

Animated

Kruskal Solution

Adjacency

Matrix

Recognition

System

User Interface

(Main Options)

Hand-Written

Digit Trainer

(optional*)

Output

Generator

 20

 The preceding figure shows the main skeleton of ASKER. As it is seen, it consists of 4

main parts, which are User Interface (Main Options), Hand-Written Digit Trainer, Recognition

System and Output Generator. In this section all these four sub-systems will be described in

detail.

3.1. User Interface

 The user interface of ASKER provides to control the main options of the system. It is the

starting step of the whole application. Before starting to sketch a graph, main menu is needed

to be adjusted for required usage details.

Figure 3.2. User Interface: ASKER - MENU

 21

 Application Mode option provides to select required output type. There are 3 options can

be adjusted such as Adjacency Matrix, Dijkstra Demo and Kruskal Demo. Adjacency matrix

option generates an Adjacency matrix of the sketched graph, in addition Dijkstra and Kruskal

Demo options provide animated solutions of related algorithm.

 Graph Type option is only used for Adjacency Matrix mode, if any demo mode is

selected this options will be disabled. By using this option, required graph type can be

adjusted such as Weighted Directed, Unweighted Directed, Weighted Undirected and

Unweighted Undirected. Properties of the selected graph type are adjusted automatically by

the system.

 Weight Input Type option controls the weight input method you want to use for weighted

graphs such as digit recognition and numerator. When an unweighted graph type is selected,

this option will be disabled.

 Digit Training Option can be used to enable or disable the initial handwritten digit

training for a new user. Because of the recognizer system doesn’t have a neural network;

initial digit training is an essential function for ASKER to learn user’s handwritten digits. If a

new user doesn’t train the digit recognizer, recognition success ratio may be decreased. This

option is automatically disabled if weight input by digit recognition won’t be used in graph

sketching.

 Node Fill Option provides to fill inside of nodes with default color or to visualize nodes

as basic circles.

 Node Radius Option can be used to adjust graph nodes radius such as recognized size

and fixed size. Recognized size will be calculated by user’s node sketch, but fixed size

automatically sets the radius of all nodes to 40 pixels.

 Window Size option controls the application window size. It can be adjusted manually

such as 640*800, 800*600, 1024*768 and 1280*1024 or directly as Full Screen.

 22

 Default button sets all options to initial values. And last of all Start button starts

application by configuring the selected options.

3.2. Handwritten Digit Trainer

 Handwritten Digit Trainer provides ASKER to learn user’s handwritten digits. This

module shows which digit user would sketch such as 0, 1, 2, ..., 9 on the screen.

Figure 3.3. Digit Training Screen of ASKER

 After user sketched each of the cited digits digit trainer calculates bounding box and

normalize all points’ coordinates of that sketched digit sample. Whole calculated prototype

details are saved on a file; user_digits.txt. This text file would be used as user digit samples

database in the process of Recognition System. Following figure shows the main format of the

―user_digits.txt‖ file for a sample digit.

 23

19

37

~

19

19

7

7

19

19

~

Figure 3.4. Format of user_digits.txt for one sample digit.

 ―user_digit.txt‖ file consists of digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 by the figured format.

At the end of the file an extra tilde ―~‖ is added which means that all sample digits are

finished.

Horizontal size of bounding box

Vertical size of bounding box

Normalized X coordinate of that point

Normalized Y coordinate of that point

End of bounding details

End of point details

Point

Details

 24

3.2.1. Normalization

 In training module all sketched digit samples are processed and normalized. In

normalization, the point with minimum x coordinate of that sample is found and its x value

subtracted from all points’ x values. By the same manner y normalization is also done. The

following figure shows the pseudo-code of the normalization process.

Normalization_algo(sample_digit[points])

Find the point with minimum x value and save it as x_min.

Find the point with minimum y value and save it as y_min.

From initial point to end point of sketched digit sample

 Current point’s x = Current point’s x – x_min

 Current point’s y = Current point’s y – y_min

End loop

Return normalized sample_digits

Figure 3.5. Normalization Pseudo-code

 User can clear and change his/her last sketch or all sketched digits can be cleared, each

can be drawn again, in digit training. ClearLast button clears the last sketch of the user and

Clear button clear of sketched digits as stated above.

Figure 3.6. Confirmation box which asks if a new training is required

 25

 Also at the end of the training, a confirmation box appears and asks if a new training is

required for further recognition success ratio. After user finished training step, ASKER starts

recognition system automatically.

3.3. Recognition System

 Recognition System of ASKER combines all of the recognition and editing functions. It

provides user a natural environment to sketch and edit all details of any graph. This sub-

system of ASKER will be described in three parts, which are graph recognition, handwritten

digit recognition and graph editing functions.

 26

Figure 3.7. An example usage of recognition and editing properties of ASKER

 27

3.3.1. Graph Recognition Functions

 These functions initially test and decide if the drawn figure is a edge or a node. For this

decision drawn points are collected in a linked-list and by using these points’ coordinates; one

line, one circle equation are formed.

3.3.1.1. Determination of Line Equations. First and last point coordinates of the stroke are

used to determine a line equation. It is determined by using the equation of a line with two

known points.

 There are three different situations according to the coordinates of points A= (1x , 1y) and

B=(2x , 2y).

 In the first case, 1 2x x and
1 2y y .

Figure 3.8. Line for first situation

 As it is seen in Figure 3.8; by using the similarity of triangles ABB' and AKK’,

' '

' '

| | | |

| | | |

KK BB

K A B A
 so, 1 2 1

1 2 1

y y y y

x x x x

 


 
 is derived.

 28

 In the second case,
1 2x x and

1 2y y .

Figure 3.9. Line for second situation

 As it is seen in Figure 3.9, the line intersects these two points is parallel to Y-axis.

Apsises of all points on this line is equal to 1x . So the equation of this line is x= 1x .

 In the third case, 1 2x x and
1 2y y . The equation which is derived in the first situation

is substituted by
1 2y y . By this way; y= 1y is derived.

Figure 3.10. Line for third situation

 29

3.3.1.2. Determination of Circle Equations. Equation of a circle is (x - h)
2
 + (y - k)

2
 = r

2
where

h and k are the x and y coordinates of the center of the circle and r is the radius.

Figure 3.11. A circle

 Collected points of the sketched shape are searched for finding minimum x, minimum y,

maximum x and maximum y coordinates of all points. They are saved as x_min, x_max,

y_min and y_max respectively. k, h and r values which are required for circle equation

determination are derived by the following equations.

y_min + y_max

2
k 

_ min _ max

2

x x
h




(_ max _ min) (_ max min)

2

x x y y
r

  


 After the determination of the line and circle equations, collected points are tested by

using these equations.

h

k
r

 30

3.3.1.3. Line Test. Line test returns the average_fitting_error of the test. In this step, points

which are collected from sketch of user are tested by the determined line equation with the

LineTest algorithm which is shown in following pseudo-code.

LineTest_algo (sketched_points, line_equation)

Set initial value of total_fitting_error to zero

line_equation => ax + by + c = 0

From initial point to last point of sketched_points

 px = x-coordinate value of current point

 py = y-coordinate value of current point

2 2

() ()
distance =

a px b py c

a b

   



 total_fitting_error = total_fitting_error + distance

End loop

average_fitting_error =
total_fitting_error

total_number_of_points

return average_fitting_error

Figure 3.12. Pseudo-code of LineTest

3.3.1.4. Circle Test. Circle test returns the average_fitting_error of the test. In this step,

collected points are tested by the determined circle equation with the CircleTest algorithm

which is shown in following pseudo-code.

 31

CircleTest_algo (sketched_points, circle_equation)

Set initial value of total_fitting_error to zero

circle_equation => (x - h)
2
 + (y - k)

2
 = r

2

From initial point to last point of sketched_points

 px = x-coordinate value of current point

 py = y-coordinate value of current point

 2 2distance = () ()h px k py r   

 total_fitting_error = total_fitting_error + distance

End loop

average_fitting_error =

return average_fitting_error

Figure 3.13. Pseudo-code of CircleTest

 Recognition system compares the results of CircleTest and LineTest operations and the

shape with the minimum fitting error is selected as recognized shape. If the recognized shape

is a circle, it is controlled by several methods to learn what it means as a shape. By analytic

tests, ASKER determines if it is a node or it means an area selection on the previous sketched

part of the graph. Also these tests controls if the sketched shape is fully inside of the drawing

area, or not. If the recognized shape is a line, by the similar controls, sketch meaning is

determined. It can be either a new edge or a deletion command. All these processes can be

summarized by the following flowchart.

 32

Figure 3.14. Flowchart for Graph Recognition Processes

Sketch of user

Initial

Recognition

Point Line Circle

Node Test

Add new node Area Selection

Add new vertex Delete Command

Delete Vertex Delete Node

Link Test

Graph

Editing Functions

If it is fully inside

the canvas

Graph Recognition Functions

Warn the

user

True

False

 33

3.3.1.5. Link Test. It is a complex control mechanism which determines the meaning of the

sketched line. There are several controls inside Link Test. The general procedure of this step is

described by the following pseudo-code.

LinkTest_algo (line_equation, first_point_of_the_line, last_point_of_the_line)

If this line’s start and end points are in different nodes

 If the graph is directed

 If there is no edge between these two nodes in the same direction

 Add new edge

 Else warn user

 Else if the graph is undirected

 If there is no edge between these two nodes

 Add new edge

 Else warn user

Else if this line’s start and end points are outside of all nodes

 If this line intersects any edges

 Delete those edges

 If this line intersects any nodes

 Delete those nodes

Else do nothing

Figure 3.15 Pseudo-code of LinkTest

 34

Figure 3.16. Edge deletion using a line

3.3.1.6. Node Test. In this step sketched circle’ meaning is determined. The main flow of this

mechanism is shown in the following pseudo-code of the NodeTest.

NodeTest_algo (circle_equation, sketched_shape_points)

Determine circle_bounding_box

Determine sketched_shape_bounding_box

If sketched_shape_bounding_box covers at least one node’s bounding box

 Sketched area is selected

 Graph editing move function is called

Else if circle_bounding_box doesn’t intersect any node’s bounding box

 If circle_bounding_box isn’t inside of any node’s bounding box

 Add new node

 Else warn user

Else if circle_bounding_box intersects at least one node’s bounding box

 Warn user

Else do nothing

Figure 3.17. Pseudo-code of NodeTest

 35

Figure 3.18. Node deletion using a line

 In addition if the recognized shape is a node or edge which is added to the related list,

else related editing functions are called. In ASKER, nodes and edges are stored in different

linked-lists.

3.3.2. Handwritten Digit Recognition Functions

 Handwritten digit recognition is a complex process. ASKER recognizes the sketched

digits by using a new method which is proposed in this research project. In this step, check

sign and deletion sign [Figure 3.21. and Figure 3.22.] are also recognized by the same way.

The main flow of this method is shown by the following flowchart.

 36

Figure 3.19. Flowchart of the proposed handwritten digit and sign recognition method

User sketch

If it is inside of

the drawing box
Warn

the user False

ICP Algorithm

by using the

default digit

prototypes

ICP Algorithm

by using the

digit samples

of the user

The proposed

―Parallel Sampling‖

Algorithm by using

the default digit

prototypes

Load the user digit

samples and the

default control and

digit prototypes

from files

True

Voting Algorithm

user_digits.txt digits.txt

control.txt

Recognized digit Recognized control

 37

 As it is seen in the preceding flowchart, proposed method uses two types of prototypes

such as user digit samples and default prototypes. All these information is firstly normalized

[Figure 3.5.] and scaled then processed by the proposed Parallel Sampling Algorithm (PSA)

and ICP Algorithm which is described before [Figure 2.12.]. In this section, Parallel Sampling

Algorithm and Voting Algorithm will be described in detail.

 For digit and sign recognition, required prototypes are loaded from digits.txt, control.txt

and user_digits.txt. user_digits.txt’s structure details are explained before. Files; digits.txt and

control.txt are formed by the same manner with the user_digits.txt [Figure 3.4.].

Figure 3.20. Examples of sketches; 0,1,2,3,4,5,6,7,8,9 and period respectively

Figure 3.21. Deletion sign is used clear the last recognized digit

Figure 3.22. Check sign is used to complete the weight related digit recognition

 38

3.3.2.1. Scaling. Scaling is a prerequisite step for PSA and ICP algorithm as normalization is.

After normalization is done to sketch points, it is time for scaling which is described by the

following pseudo-code.

Scaling_algo (prototype_digit_points, normalized_sketched_points)

Determine prototype_bounding_box

Determine sketch_bounding_box

x-axis size of prototype_bounding_box
x_scale =

x-axis size of sketch_bounding_box

y-axis size of prototype_bounding_box
y_scale =

y-axis size of sketch_bounding_box

From first point to last point of normalized_sketched_points

 scaled_current_point_x = x_scale  current_normalized_sketched_point_x

 scaled_current_point_y = y_scale  current_normalized_sketched_point_y

End loop

Return scaled_points

Figure 3.23. Pseudo-code of Scaling Algorithm

3.3.2.2. Parallel Sampling Algorithm (PSA). Proposed algorithm, PSA, gets the prototype

digit and sketch as inputs. After that PSA calculates average fitting error of these inputs with a

parallel sampling method by using their points’ sequence. It is described in detail by the

following pseudo-code.

 39

PS_algo(prototype_digit[points], scaled&normalized_sketch[points])

Set total_distance to 0

s_num = number of sketched points

p_num = number of prototype’s points

If s_num  p_num

 counter = s_num

 s_sampling_factor = 1

 p_sampling_factor =
s_num

p_num

 
 
 

Else

 counter = p_num

 s_sampling_factor =
p_num

s_num

 
 
 

 p_sampling_factor = 1

For i = 0 to counter

 current_ip = i p_sampling_factor

 current_is = i s_sampling_factor

 Find the distance between prototype_digit[ip] and scaled&normalized_sketch[is]

 Save it as current_distance

 total_distance = total_distance + current_distance

End loop

total_distance
average_fitting_error =

counter

Figure 3.24. Pseudo-code of PSA

 40

 PSA is executed for all of the digit prototypes. At the end the prototype with the

minimum average fitting error is selected as recognized digit.

3.3.2.3. Voting Algorithm. After all recognition tests are finished, there are three results by

using ICP with user digit samples, ICP and PSA with default prototypes. With a simple

mechanism all these 3 recognition results are voted and the sketched digit is recognized.

Voting algorithm can be summarized by the following pseudo-code.

Voting_algo (recognition_1, recognition_2, recognition_3)

If all recognition results are same

 Recognized digit is that result

Else if two of the results are same

 Recognized digit is that result

Else all results are different

 Recognized digit is the input recognition which has the minimum average_fitting_error

Return recognized digit

Figure 3.25. Pseudo-code of Voting Algorithm

3.3.3. Graph Editing Functions

 There are two types of graph editing function in ASKER. First one is the ―moving the

selected area functions‖ and the second is the ―changing the entered weight functions‖.

3.3.3.1. Moving the selected area functions. By these functions, the selected area on the graph

can be moved dynamically. Changes on the edges related to the move process is automatically

done. Moving the selected area functions provide keeping the selected moving nodes from

intersecting with other nodes. All these processes can be described by the following pseudo-

code.

 41

Moving_algo (selected_area, current_stroke)

Determine the covered nodes by selection

If the current_stroke’s first point is inside the selected_area

 From the first point to last point of the curren_stroke

 Mode selected nodes

 Reformulate the lines which are related with selected nodes

 Repaint the screen

 End loop

Else cancel the selection

Figure 3.26. Pseudo-code of the Moving Algorithm

3.3.3.2. Weight editing functions. These functions are used to change the weight of an edge in

any time. These procedures can be described by the following pseudo-code.

WeightEdit_algo (current_stroke)

If the current_stroke is a point

 If this point is inside of the bounding box of any string which represents a weight

 Weight enterance box is opened and if necessary,

 handwritten digit recognition functions are called

 Else do nothing

Figure 3.27. Pseudo-code of the Weight Editing Algorithm

 42

Figure 3.28. Weight Editing

3.4. Output Generator

 ASKER stores all recognized nodes and edges in Node and Edge linked-lists

respectively. Also the coordinates and the sizes of the recognized graph elements are stored as

well. When the graph design is completed and the run button which is on the right bottom of

the canvas, is pressed and adjacency matrix is formed by using stored weights in the Edge

linked-list. For weighted graphs adjacency matrix represents the weights of the edges in

addition zeros shows that there is no edge for that nodes. If the system is adjusted as

unweighted, generated adjacency matrix consists of zeros and ones. Ones show that there is a

link between those nodes; in addition zero shows that there is no related edge.

 If application mode of ASKER is adjusted as Dijkstra or Kruskal Demo, the related

demo application starts after the generation of the adjacency matrix. All these output types of

ASKER can be seen by the following figures.

 43

Figure 3.29. Generated Adjacency Matrix

Figure 3.30. Dijkstra Demo of sketched graph

 44

Figure 3.31. Kruskal Demo of sketched graph

3.5. Warnings

 ASKER provides several warnings for an efficient usage of the system. In this section all

these warnings are described and shown by figures.

 Warning 1 shows that the sketched circle intersects at least one of the nodes.

Figure 3.32. Warning 1

 45

 Warning 2 shows that the sketched line starts inside of a node but it is finished in free

area.

Figure 3.33. Warning 2

 Warning 3 shows that the sketched circle is fully inside of a node.

Figure 3.34. Warning 3

 Warning 4 shows that the sketched line links two nodes which are also have a common

edge, and also this is a undirected graph.

 46

Figure 3.35. Warning 4

 Warning 5 shows that the sketched line links two nodes which are also have a common

edge in this direction, and also this is a directed graph.

Figure 3.36. Warning 5

 Warning 6 shows that the sketched circle is too small to visualize efficiently.

Figure 3.37. Warning 6

 47

 Warning 7 shows that the handwritten digit recognizer is active for weight entrance and

also user tries to draw digits outside the recognition box or tries to sketch another shapes.

Figure 3.38. Warning 7

 Warning 8 shows that the sketched circle is intersects with the borders of the drawing

window.

Figure 3.39. Warning 8

 48

3.6. Test Results of PSA and Voting Algorithm

 Parallel Sampling Algorithm (PSA), is a new approach to calculate average fitting error

of a sketch with respect to a prototype. PSA is a core method, which can be used in several

sketch recognition systems. Sequence of points obtained during a sketch determines the

performance of PSA. Modified versions of PSA can be generated by sorting the points with

increasing y-coordinate or increasing x-coordinate order. Modified version can be used for

sequence-independent pattern or sketch recognition.

 Digit and sign recognition tests for determination of the proposed PSA and Voting

Algorithm were done. Totally 15 people sketched 2 samples for every digit and every sign.

 Digit domain = {0,1,2,3,4,5,6,7,8,9}.

 Sign domain = {deletion sign, check sign}.

 In these tests, Wacom Pen Partner which is shown by the following picture, is used as a

sketched point collector.

Figure 3.40. Wacom Pen Partner

 49

0

10

20

30

40

50

60

70

80

90

100

di
gi
t 0

di
gi
t 1

di
gi
t 2

di
gi
t 3

di
gi
t 4

di
gi
t 5

di
gi
t 6

di
gi
t 7

di
gi
t 8

di
gi
t 9

de
le

tio
n s

ig
n

ch
ec

k
si
gn

Sketches

S
u

c
c
e
s
s
 R

a
ti

o ICP for default prototypes

ICP for user digit samples

PSA for default prototypes

Voting of these 3 methods

Figure 3.41. Recognition Success ratio of sketched samples by indicated four methods

40,67

93,33

70

90

41,00

96,67

78
90

0

10

20

30

40

50

60

70

80

90

100

Digits Signs

Sketch Types

S
u

c
c
e
s
s
 R

a
ti

o

ICP for default prototypes

ICP for user digit samples

PSA for default prototypes

Voting of these 3 methods

Figure 3.42. Recognition success ratio of digits and signs by indicated four methods

 As the charts show, indicated ICP methods and PSA have dissimilar success ratios for

different digits and signs. Generally ICP is better for digits, and PSA is better for signs. It is

because ICP is sequence independent but PSA is a sequence dependent method.

 50

41,94

66,39

50,56

80,83

0

10

20

30

40

50

60

70

80

90

100

All Samples

Sketches

S
u

c
c
e
s
s
 R

a
ti

o

ICP for default prototypes

ICP for user digit samples

PSA for default prototypes

Voting of these 3 methods

Figure 3.43. Average recognition success ratio of all samples by indicated four methods

 In addition, the method with the best success ratio can be different for different sketches.

But the main thing is that PSA gives good results for the situations in which ICP fails. By this

manner Voting Algorithm can be used to increase success ratio of the recognition.

 As a result, in sequence dependent systems, PSA is better than ICP and Voting

Algorithms. But the best solution for digit recognition systems and hybrid recognition systems

which consist of digit and sign samples as ASKER, is the proposed Voting Algorithm.

 51

4. CONCLUSION

 Graphs are indispensable for representing networks, maps of roads, railways, airline

routes, pipe systems, telephone lines, electrical connections, prerequisites amongst courses,

dependencies amongst tasks in a manufacturing system and a host of other data. There are a

large number of important results and structures that are computed from graphs. Generally,

initial graph designs are sketched on paper, because of the simplicity of drawing and editing.

Designed graphs are later transferred to computers to test or to solve the related problems. To

be useful in early design, computers must allow the designer to sketch as he does on paper and

provide him with benefits, such as the ability to simulate his design that he does not have on

paper.

 Our goal is to develop an intelligent system which provides designers to sketch their

graph design as if they were drawing on a paper. Furthermore, we expect that the system will

represent the drawn graph in terms of edges, vertices and weight matrix, internally.

Consequently, designed graph would also be converted into an input for any graph based

application. By this manner, we created an intelligent system for graph designing and

representing. Its all functions are designed and implemented suitable for natural drawing and

writing. In this application, the user can easily draw and edit his sketch; moreover, the

adjacency matrix representing the sketched graph is generated. Another feature of the tool is to

provide animated solutions to well-known shortest path and minimum spanning tree

algorithms such as Dijkstra and Kruskal. Any graph related simulator can be also embedded

into the code of the developed tool.

 As a future work, the digit recognition method will be optimized and its success ratio

will be improved based on the test result statistics. In addition, a neural network can be added

to this core recognition method. To sum up, the implemented online graph recognizer would

be preferred by designers, instead of sketching on a paper, since it is a very basic, functional

and a natural tool.

 52

REFERENCES

1. Matt Notowidigdo and Robert C. Miller, ―Off-line Sketch Interpretation‖, American

 Association of Artificial Intelligence, 2004.

2. Szymon Rusinkiewicz and Marc Levoy, ―Efficient Variants of the ICP Algorithm‖,

 Third International Conference on 3D Digital Imaging and Modeling, 2001.

3. http://www.cs.berkeley.edu/~landay/research/publications/SILK_CHI/jal1bdy.html

4. J. Li, A. Najmi, R. M. Gray, Image classification by a two dimensional hidden Markov

 model, IEEE Transactions on Signal Processing, 48(2):517-33, February 2000.

5. Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, ―Introduction to

 Algorithms‖, pp. 465-467, 8
th

 Edition, 1992.

6. http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Graph/

7. Heloise Hse and A. Richard Newton, Sketched Symbol Recognition using Zernike

 Moments, Technical Memorandum UCB/ERL M03/49, Dec 2003.

8. http://svm.dcs.rhbnc.ac.uk/

9. Pawel Lewicki and Thomas Hill, Statistics Methods and Applications, Tulsa, 2006

 http://www.statsoft.com/textbook/stsvm.html

10. http://en.wikipedia.org/wiki/Nearest_neighbor_(pattern_recognition)

 53

11. Jay J. Lee, Jahwan Kim, And Jin H. Kim, ―Data Driven Design Of HMM Topology For

 On-Line Handwriting Recognition‖, Applications In Computer Vision, pp. 107–121, 2001.

12. http://en.wikipedia.org/wiki/Hidden_Markov_model

13. A.Teredesai, E. Ratzlaff, J. Subrahmonia and V. Govindaraju, ―On-Line Digit Recognition

 using Off-Line Features‖, International Conference on Computer Vision, Graphics

 and Image Processing, 2002.

14. Jonathan Alon, Vassilis Athitsos, and Stan Sclaroff, ―Online and Offline Character

 Recognition Using Alignment to Prototypes‖, 2005.

15. Jorge, J. A., and Fonseca, ―A simple approach to recognize geometric shapes‖, 1999.

16. Christine J. Alvarado, ―A Natural Sketching Environment: Bringing the Computer into

 Early Stages of Mechanical Design‖, Master Thesis, MIT, May 2000.

17. Lin, J., Newman, M. W., Hong, J. I. and Landay, ―Denim: Finnding a tighter fit

 between tools and practice for web site design‖, J. A. 2000.

18. Sezgin, T. M., and Davis, R., ―Early processing in sketch understanding‖, Proceedings

 of 2001 Perceptive User Interfaces Workshop, 2001.

19. Hammond, T., and Davis, R. 2002. ―Tahuti: A geometrical sketch recognition system

 for UML class diagrams. In Proceedings of AAAI Spring Symposium on Sketch

 Understanding‖, pp. 59-68.

20. Lank, E.; Thorley, J. S.; and Chen, S. J.-S. 2000. Interactive system for recognizing hand

 drawn UML diagrams. In Proceedings of CASCON 2000.

21. Nicholas Matsakis, ―The Natural Log‖, Master Thesis, MIT, 1999.

 54

REFERENCES NOT CITED

D. Chetverikov, D. Svirko, and D. Stepanov, ―The Trimmed Iterative Closest Point

Algorithm‖, 2002.

Xiaolei Huang, Dimitris N. Metaxas, ―Matching and Recognition of Shapes using Chord-

based Point Density Graphs‖, 2004.

James V. Mahoney and Markus P. J. Fromherz, ―Three main concerns in sketch recognition

and an approach to addressing them‖, 2002.

Dean Rubine, ―Specifying Gestures by Example‖, Proceedings of the 18th annual conference

on Computer graphics and interactive techniques pp. 329 – 337, 1991.

Tevfik Metin Sezgin and Randall Davis, ―Handling Overtraced Strokes in Hand-Drawn

Sketches‖, MIT, 2004.

Tevfik Metin Sezgin and Randall Davis, ―Scale-space Based Feature Point Detection for

Digital Ink‖, MIT, 2004.

	son_index_PAGES
	PAGES_n_duzelen

