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ABSTRACT 

 

 

 
 The current trend on the use of touch-screens has introduced the need for keyboard-less 

solutions to graphical user interfaces. Gesture-based interfaces as a piece of pie, receive the 

scientific interest because of its theoretical diversity. Even näive approaches require a 

common knowledge about linear algebra, artificial intelligence, sketch and handwriting 

recognition within the context. The main emphasis of this project is to develop an intelligent 

pen-based human-computer interface and propose a new online hand-drawn digit recognition 

algorithm which runs with linear time complexity, where one of the most recognized 

algorithms, ICP (Iterative Closest Point) halts with quadratic time complexity. In return, we 

show how the proposed algorithm, together with ICP, can be applied to increase the success 

ratio of digit recognition significantly without the inclusion of a neural network. Moreover, the 

derived information is represented by an adjacency matrix to supply an abstract view of any 

kind of input graph. As sample applications, Kruskal and Dijkstra algorithms are fed using the 

output generated by the implemented sketch recognizer system. In conclusion, this work 

outlines a new solution to the graph creation problem with hand-drawn sketch and digit 

recognition. 
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ÖZET 

 

 

 
 Günümüzde dokunmatik ekran teknolojisine olan talep, grafik kullanıcı arayüzlerini 

klavyesiz kullanabilme ihtiyacını doğurmuştur. Pastanın bir parçası olan, çizim tabanlı 

arayüzler, teorik çeşitliliği sebebiyle bilimsel ilgiyi üstüne çekmektedir. Bu konudaki basit 

uygulamalar bile genel olarak, lineer cebir, yapay zeka, çizim ve el yazısı tanımlama bilgisi 

gerektirmektedir. Bu araştırma projesinin temel amacı, çizim tabanlı zeki bir insan-bilgisayar 

arayüzü geliştirmek ve lineer zamanda çalışan bir  çizim tanımlama algoritması önermektir. 

En ünlü çizim tanımlama algoritmalarından ICP yönteminin karesel zaman karmaşıklığında 

çalıştığı unutulmamalıdır. Bununla beraber, bu çalışmada, ICP yöntemi ile birlikte önerilen 

algoritmanın da kullanılmasıyla, sisteme herhangi bir yapay sinir ağı eklemeden, sayı 

çizimlerinin tanımlanmasının başarı oranındaki ciddi artış da gösterilmektedir. Ek olarak, 

geliştirilen uygulamada, girilen herhangi bir çizgenin sanal gösterimi bir komşuluk matrisi ile 

sağlanmaktadır. Geliştirilen çizim tabanlı kullanıcı arayüzünün oluşturduğu veriler ile örnek 

olarak eklenen Kruskal ve Dijkstra çözümleme uygulamaları da kullanılabilmektedir. Sonuç 

olarak, bu çalışma, bilgisayar ortamında elle çizilmiş şekiller ve sayılar ile çizge oluşturma ve 

tanımlamaya yeni bir çözüm getirmektedir.             
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1.  INTRODUCTION 

 

 

 Think of a graph drawing on a notebook sheet which is so simple to prepare and 

understand. Also, it can be changed by erasing some parts of the graph and drawing then 

again. But actually applying an algorithm to a graph on a paper is very hard and time 

consuming. At each step, the graph figure should be redrawn or changed partially. If this graph 

can be drawn on a computer screen using a digital pen, it would become very simple to 

visualize and modify it. Also, it can be used as an input to an application or an implemented 

graph algorithm.  

 

 As computational manner, visualizing a drawing on a computer monitor by using 

human-machine interaction tools, i.e. a touch-screen or a pen mouse, is so simple. But the 

visualized figure is only raw data which consists of 2-dimensional points and has no extra 

meaning for a machine. At this point, gesture-based information generation gains importance. 

Gesture means ―hand movements‖ as a word but it has a meaning of recognizable physical 

movements which forms a meaning for a system as a technical definition. A gesture-based 

application is a piece of software which gets physical data by a digital pen, a mouse or a 

touch-screen as input and understands what it means as information. 

 

 In this work, a gesture-based interface is developed. Implemented system is an online 

sketch recognizer for graphs which could understand hand-drawn circles, lines and hand-

written digits simultaneously. After recognition of drawings, this application generates an 

adjacency matrix which specifies the hand-drawn graph figure. Another capability of the 

application is to provide flexible usage properties like removing or moving selected graph 

components and changing weight of a particular link at any time.  

 

 Developed system is not only a gesture-based interface, but it is also a graph 

visualization tool. As a good example it could be used efficiently in ―Analyses of Algorithms‖ 

classes instead of using traditional white-board sketching. By this way, the lecturer could 
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easily draw and modify a graph, assign weights to the edges. Additionally, user can 

demonstrate a graph algorithm on the drawn figure as an animation. The generated adjacency 

matrix can be fed as an input into another application. As an example, animated solvers for 

Dijkstra and Kruskal algorithms have been embedded in the system. An alternative usage 

environment of developed application should be tablet pc’s. They are new technology 

computers with sensitive hybrid screens and there are not special applications for them 

enough. Developed recognizer system should be easily used with a tablet pc as drawing on 

paper.   

 

 This work is also a project. In general, several handwriting recognition systems use ICP 

(Iterative Closest Point) method as a core algorithm with a neural network. In this research a 

new method is developed by using ICP and also new core algorithm. This new method 

increases the digit recognition success ratio incredibly without using a neural network. 

Another important thing is about the time complexity of the new core recognition algorithm, 

which has O (n) despite the ICP method has a time complexity of O ( 2n ).  

 

 In Section 2, a general knowledge about graphs and sketch recognition is given. In 

Section 3, the implemented system is described in detail. Finally, in Section 4, the conclusions 

on this work are provided. 
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2.  PRELIMINARIES 

 

 

2.1.  Graphs 

 

 A graph G=<V, E> consists of a set of vertices (also known as nodes) V and a set of 

edges (also known as arcs) E. An edge connects two vertices u and v; v is said to be adjacent 

to u. In a directed graph, each edge has a sense of direction from u to v and is written as an 

ordered pair <u,v> or u->v. In an undirected graph, an edge has no sense of direction and is 

written as an unordered pair {u,v} or u<->v. An undirected graph can be represented by a 

directed graph if every undirected edge {u,v} is represented by two directed edges <u,v> and 

<v,u> [5, 6].  

 

 A path in G is a sequence of vertices <v0, v1, v2, ..., vn> such that <vi,vi+1> (or {vi,vi+1}), 

for each i from 0 to n-1, is an edge in G. The path is simple if no two vertices are identical. 

The path is a cycle if v0=vn. The path is a simple cycle if v0=vn and no other two vertices are 

identical.  

 

2.1.1.  Graphs by Adjacency Matrices 

 

 A graph G can be represented by a |V|*|V| adjacency matrix A. If G is directed, Aij=true 

if and only if <vi,vj> is in E. There are at most |V|
2
 edges in E.  

 

 

 

Figure 2.1. Adjacency Matrix of a Directed Graph 
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 If G is undirected, Aij=Aji=true if {vi,vj} is in E and Aij=Aji=false otherwise. In this case 

there are at most |V|*(|V|+1)/2 edges in E, A is symmetric and space can be saved by storing 

only the upper triangular part Aij for i>=j.  

 

 

Figure 2.2. Adjacency Matrix of an Undirected Graph 

 

 

 An adjacency matrix is easily implemented as an array. Both directed and undirected 

graphs may be weighted. A weight is attached to each edge. This may be used to represent the 

distance between two cities, the flight time, the cost of the fare, the electrical capacity of a 

cable or some other quantity associated with the edge. The weight is sometimes called the 

length of the edge, particularly when the graph represents a map of some kind. The weight or 

length of a path or a cycle is the sum of the weights or lengths of its component edges. 

  

 

 

Figure 2.3. Adjacency Matrix of a Weighted Directed Graph 
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 The adjacency matrix of a weighted graph can be used to store the weights of the edges. 

If an edge is missing a special value, perhaps a negative value, zero or a large value to 

represent "infinity", indicates this fact.  

 

 
 

 

Figure 2.4. Adjacency Matrix of a Weighted Undirected Graph 

 

 

 It is often the case that if the weights represent distances then the natural distance from 

vi to itself is zero and the diagonal elements of the matrix are given this value. A weighted 

adjacency matrix is easily defined in any imperative programming language.  

 

 A graph is complete if all possible edges are present. It is dense if most of the possible 

edges are present. It is sparse if most of them are absent, |E|<<|V|2. Adjacency matrices are 

space efficient for dense graphs but inefficient for sparse graphs when most of the entries 

represent missing edges. Adjacency lists use less space for sparse graphs.  

 

2.1.2.  Graphs by Adjacency Lists 

 

 In a sparse directed graph, |E|<<|V|2. In a sparse undirected graph |E|<<|V|*(|V|-1)/2. 

Most of the possible edges are missing and space can be saved by storing only those edges that 

are present, using linked lists.  
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Figure 2.5. Adjacency Lists for Weighted Directed Graph 

 

 

 An edge <vi,vj> is placed in a list associated with vi. The edge is represented by the 

destination vj and the weight.  

 

 
 

Figure 2.6. Adjacency Lists for Weighted Undirected Graph 

 

 

 Adjacency lists can be defined using records (structs) and pointers. Note that some 

questions, such as "are vi and vj adjacent in G", take more time to answer using adjacency lists 

than using an adjacency matrix as the latter gives random access to all possible edges.  
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2.2.  Sketch Recognition 

 

 This work is settled on stroke based sketches. Stroke based sketches are drawings made 

by mouse pressed from beginning to end. Sketches are started with mouse press and finished if 

mouse released. Mainly there are two types of sketches for this system. First one is shape 

sketch and other is sketched digits as handwriting. 

 

2.2.1.  Sketched Shape Recognition 

 

 In sketched shape recognition, collected data -especially in terms of points(x,y)- is 

processed by using several classification techniques. In many recognition systems, special 

moment descriptors are also used to represent symbols such as Zernike moment descriptors 

[7]. The most common tree classification methods are Support Vector Machines (SVM), 

Minimum Mean Distance (MMD), and Nearest Neighbor (NN). 

 

2.2.1.1. Support Vector Machines (SVM). Support Vector Machines are learning machines 

that can perform binary classification (pattern recognition) and real valued function 

approximation (regression estimation) tasks. Support Vector Machines non-linearly map their 

n-dimensional input space into a high dimensional feature space. In this high dimensional 

feature space a linear classifier is constructed [8]. 

 

 Support Vector Machines are based on the concept of decision planes that define 

decision boundaries [9]. A decision plane is one that separates between a set of objects having 

different class memberships. A schematic example is shown in the illustration below. In this 

example, the objects belong either to class GREEN or RED. The separating line defines a 

boundary on the right side of which all objects are GREEN and to the left of which all objects 

are RED. Any new object (white circle) falling to the right is labeled, i.e., classified, as 

GREEN (or classified as RED should it fall to the left of the separating line).  
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Figure 2.7. Different colored points which can be separated by a line 

 

 The above is a classic example of a linear classifier, i.e., a classifier that separates a set 

of objects into their respective groups (GREEN and RED in this case) with a line. Most 

classification tasks, however, are not that simple, and often more complex structures are 

needed in order to make an optimal separation, i.e., correctly classify new objects (test cases) 

on the basis of the examples that are available (train cases). This situation is depicted in the 

illustration below. Compared to the previous schematic, it is clear that a full separation of the 

GREEN and RED objects would require a curve (which is more complex than a line). 

Classification tasks based on drawing separating lines to distinguish between objects of 

different class memberships are known as hyper-plane classifiers. Support Vector Machines 

are particularly suited to handle such tasks.  

 

 

Figure 2.8. Different colored points which can be separated by a curve 

 

 The illustration below shows the basic idea behind Support Vector Machines. Here it is 

seen that the original objects (left side of the schematic) mapped, i.e., rearranged, using a set 

of mathematical functions, known as kernels. The process of rearranging the objects is known 

as mapping (transformation). Note that in this new setting, the mapped objects (right side of 
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the schematic) is linearly separable and, thus, instead of constructing the complex curve (left 

schematic), all we have to do is to find an optimal line that can separate the GREEN and the 

RED objects.  

 

 

 

Figure 2.9. Examples of input and feature spaces for a SVM 

 

2.2.1.2. Minimum Mean Distance (MMD). Despite Minimum Mean Distance is so basic; it is 

very important method to understand similarity of two multi-dimensional shapes. For sketch 

recognition, generally, drawn shape and all prototypes in the database are compared and a 

fitting value calculated for each comparison. After all tests the prototype or sample with the 

minimum fitting error is selected as recognized shape. In this procedure, MMD is used to find 

the minimum distance between each point of a sample and sketched figure. The average of 

minimum distances of all points in a comparison can be defined as fitting error.  

 

2.2.1.3. Nearest Neighbor (NN). The nearest neighbor algorithm in pattern recognition is a 

method for classifying phenomena based upon observable features. In the algorithm, each 

feature is assigned a dimension to form a multidimensional feature space. A training set of 

objects with a priori known class are processed by feature extraction and plotted within the 

multi-dimensional feature space. The offsets in each dimension are referred to as the feature 

vector. This is the training or learning stage. Because the engine can be retrained to classify 

various phenomena, pattern recognition is part of machine learning [10]. 
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 The testing phase begins with phenomena to be classified (the class not being known a 

priori) and extracts the same set of features. The geometric distance is computed between the 

new feature vector and each a priori feature vector from the training set. The shortest distance 

thus computed is to the nearest neighbor. The a priori class of the nearest neighbor is now 

assigned to the phenomena to be classified. 

 

 Obviously, this algorithm will be more computationally intensive as the size of the 

training set grows. Many optimizations have been given over the years; these generally seek to 

reduce the number of distances actually computed. Some optimizations involve partitioning 

the feature space, and only computing distances within specific nearby volumes. 

 

 Other variations of the algorithm include the k-nearest neighbor algorithm where several 

of the nearest feature vectors are computed, and the classification is made with the highest 

confidence only if all of the nearest neighbors are of the same class. 

 

 Nearest neighbor has some strong consistency results. As the amount of data approaches 

infinity, nearest neighbor is guaranteed to yield an error rate no worse than twice the Bayes 

error rate (the minimum achievable error rate given the distribution of the data). K-nearest 

neighbor is guaranteed to approach the Bayes error rate, for some value of k (where k 

increases as a function of the number of data points). 

 

2.2.2.  Handwritten Digit Recognition 

 

2.2.2.1. On-Line Digit Recognition Using Hidden Markov Model. As one of the major 

research directions for on-line handwriting recognition, Hidden Markov Model (HMM) is 

widely used because of the time sequential nature of online scripts as well as its capability of 

modeling shape variability in probabilistic terms [11]. A Hidden Markov Model (HMM) is a 

statistical model where the system being modeled is assumed to be a Markov process with 

unknown parameters, and the challenge is to determine the hidden parameters from the 

observable parameters. The extracted model parameters can then be used to perform further 

analysis [4, 12]. 
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x — hidden states 

y — observable outputs 

a — transition probabilities 

b — output probabilities 

 

Figure 2.10. State transitions in a hidden Markov model (example) 

 

 The preceding diagram emphasizes the state transitions of a HMM. It is also useful to 

explicitly represent the evolution of the model over time, with the states at different times t1 

and t2 represented by different variables, x(t1) and x(t2). 

 

 

 

Figure 2.11. Evolution of a Markov model 

 

 

 In this diagram, it is understood that the time slices (x(t), y(t)) extend to previous and 

following times as needed. Typically the earliest slice is at time t=0 or time t=1. 
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2.2.2.2. On-Line Digit Recognition using Off-Line Features. One of the fundamental aspects 

of handwritten character recognition methodologies is the manner in which data is collected. 

The data acquisition process can be on-line or off-line. On-line handwritten data is collected 

using a digitizer or an instrumented pen to capture the pen-tip position ( ,t tx y ) as a function of 

time. Contrary to on-line, off-line handwritten data is collected using a scanner resulting in the 

generation of the signal as an image I(x, y). Both areas of handwritten character recognition 

have been in existence for more than three decades. This technique is based on using off-line 

features extracted from the on-line data. By this manner also Genetic Programming (GP) 

classifiers can provide good recognition results [13].   

 

 There are two main considerations for the use of offline features in online recognition:  

a) Hierarchical feature space has proved to be very effective for digit classification and pair 

wise discrimination of confusing allograph. b) Genetic Programming based classification has 

helped identify the important features for classifier development. Specifically, GP has several 

advantages over classical feature selection techniques when used for off-line handwritten digit 

classification using hierarchical features. 

 

 

2.2.2.3. Online Digit Recognition using Alignment to Prototypes. Nearest neighbor classifiers 

are simple to implement, yet they can model complex non-parametric distributions, and 

provide state-of-the-art recognition accuracy in OCR databases. 

At the same time, they may be too slow for practical character recognition, especially when 

they rely on similarity measures that require computationally expensive pair wise alignments 

between characters. But there are several efficient methods for computing an approximate 

similarity score between two characters based on their exact alignment to a small number of 

prototypes. [14] 
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2.2.2.4. Iterative Closest Point Method (ICP). The ICP (Iterative Closest Point) algorithm is 

widely used for geometric alignment of two-dimensional and three-dimensional models and 

also used for matching and recognition of 2D shapes. There are many variants of ICP, 

affecting all phases of the algorithm from the selection and matching of points to the 

minimization strategy [2]. But the general form of ICP can be defined easily with the 

following pseudo-code. 

 

ICP_algo (shape1, shape2) 

Set initial value of total_minimum_distance to zero 

From initial point to last point of shape1 

 From initial point to last point of shape2 

  Calculate distance between current points of shape1 and shape2 

 End 

 Find and save the minimum distance as minimum_distance 

 Add the minimum_distance to total_minimum_distance variable  

End 

average_min_distance  = the total_minimum_distance / the number of points in shape1 

 

 

Figure 2.12. Pseudo-code of ICP 

 

 

 By using this algorithm, average minimum distance of drawn digit for every digit 

sample is calculated and the minimum of all digit samples is selected as recognized digit.  
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2.3. Related Work 

 

 In this section, related work in gesture-based interfaces, which use sketch editing and 

sketch recognition, is briefly reviewed. Previous research in sketch understanding has 

generally chosen one of two paths: online interfaces that require an instrumented drawing 

surface that captures stroke information; or off-line interfaces that allow the user to sketch 

using pen-and-paper. Among all these systems, we will focus on online recognition systems 

because developed gesture-based interface is also an online system [1]. 

 

 SILK (Landay & Myers 1995) is one of the earliest tools in this category. It recognizes 

sketches of user interfaces [3]. The sketch could then be converted into an interactive demo of 

the sketched GUI. 

 

 

 

Figure 2.13. Screenshots of SILK 

 

 Jorge and Fonseca presented a novel approach to recognizing geometric shapes 

interactively (Jorge & Fonseca 1999), using fuzzy logic and decision trees to recognize multi-

stroke sketches of geometric shapes [15]. 
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 ASSIST (Alvarado 2000) is an online tool which allows a user to sketch simple 

mechanical systems and see simulations of her drawings in a two-dimensional kinematic 

simulator [16]. 

 

   

 

Figure 2.14. Screenshots of ASSIST 

 

 Denim (Lin et al. 2000) is an online system for informal sketching of web site designs, 

in which the user can sketch boxes to represent web pages and lines to indicate links between 

the pages. Different kinds of links are recognized based on their context, rather than on their 

shape. Denim uses a unistroke recognizer (Rubine 1991), so each symbol must be sketched 

with a single stroke [17]. 

 

 

 

Figure 2.15. A screenshot of Denim 
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 Sezgin et al. (Sezgin & Davis 2001) have created an online system that recognizes 

geometric primitives. The system uses a three-phase technique (approximation, beautification, 

basic recognition) to transform sketches into sharpened diagrams. Its recognition process uses 

shape and curvature of strokes, among other information [18]. 

 

   

 

Figure 2.16. Screenshots from ―Early Processing in Support of Sketch Understanding‖ 

 

 Tahuti (Hammond & Davis 2002) is another online system for UML diagram 

recognition, which uses both geometric and contextual constraints to recognize UML symbols. 

Tahuti is non-modal: users can interleave editing and drawing with no mode switching, which 

requires editing gestures to be distinguishable from sketched symbols [19]. 

 

   

 

Figure 2.17. Screenshots of Tahuti 
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 Lank et al. (Lank, Thorley, & Chen 2000) used online stroke information to recognize 

UML diagrams. UML symbols were recognized by heuristics such as stroke count and the 

ratio of stroke length to bounding-box perimeter. The Lank system tries to distinguish between 

UML symbols and character data. Its user interface allows the user to correct the system at 

each stage of understanding: acquisition, segmentation, and recognition [20].  

 The Natural Log (Nicholas, Matsakis 1999) is a tool recognizes many common 

mathematical forms such as digits, lowercase Latin letters, certain Greek letters, relational and 

binary operators, fractions, summations, square roots, and many accents. By using this tool 

Latex and MathML Expressions are generated [21].  

 

 

Figure 2.18. A screenshot of Natural Log 

 

 The Natural Log has some fundamental limitations. The primary limitation is that the 

character models have been created from examples of Nicholas' handwriting, collected on a 

digitizing tablet. This means that other users' handwriting will often be misinterpreted. In 

addition, the system currently does not support integral or subscript notation at all.  
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 As it is seen by all these work, sketch based interface is a common research area but 

there is not any sketch based interface for graphs. The developed application ―ASKER‖ is a 

natural sketch recognition environment for graphs (directed, undirected, weighted, 

unweighted). In this system, the user can sketch graphs on a tablet or whiteboard in the same 

way they would on paper, but the graphs would then be recognized by the computer and the 

related adjacency matrices be generated. 
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3.  A SKETCH RECOGNIZER FOR GRAPHS 

 

 

 This work combines sketch recognition, hand-written digit recognition and graph theory 

knowledge and forms an intelligent interface. Implemented application is developed in Java 

SDK 1.5.06 environment, using Eclipse as an IDE. This project also called as ASKER which 

means ―A Sketch Recognizer‖.  

 

 

Figure 3.1. Skeleton Flowchart of ASKER 
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 The preceding figure shows the main skeleton of ASKER. As it is seen, it consists of 4 

main parts, which are User Interface (Main Options), Hand-Written Digit Trainer, Recognition 

System and Output Generator. In this section all these four sub-systems will be described in 

detail. 

 

3.1.  User Interface 

 

 The user interface of ASKER provides to control the main options of the system. It is the 

starting step of the whole application. Before starting to sketch a graph, main menu is needed 

to be adjusted for required usage details. 

 

 

 

Figure 3.2. User Interface: ASKER - MENU 
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 Application Mode option provides to select required output type. There are 3 options can 

be adjusted such as Adjacency Matrix, Dijkstra Demo and Kruskal Demo. Adjacency matrix 

option generates an Adjacency matrix of the sketched graph, in addition Dijkstra and Kruskal 

Demo options provide animated solutions of related algorithm.    

 

 Graph Type option is only used for Adjacency Matrix mode, if any demo mode is 

selected this options will be disabled. By using this option, required graph type can be 

adjusted such as Weighted Directed, Unweighted Directed, Weighted Undirected and 

Unweighted Undirected. Properties of the selected graph type are adjusted automatically by 

the system.  

 

 Weight Input Type option controls the weight input method you want to use for weighted 

graphs such as digit recognition and numerator. When an unweighted graph type is selected, 

this option will be disabled.  

 

 Digit Training Option can be used to enable or disable the initial handwritten digit 

training for a new user. Because of the recognizer system doesn’t have a neural network; 

initial digit training is an essential function for ASKER to learn user’s handwritten digits. If a 

new user doesn’t train the digit recognizer, recognition success ratio may be decreased. This 

option is automatically disabled if weight input by digit recognition won’t be used in graph 

sketching.   

 

 Node Fill Option provides to fill inside of nodes with default color or to visualize nodes 

as basic circles. 

 

 Node Radius Option can be used to adjust graph nodes radius such as recognized size 

and fixed size. Recognized size will be calculated by user’s node sketch, but fixed size 

automatically sets the radius of all nodes to 40 pixels.  

 

 Window Size option controls the application window size. It can be adjusted manually 

such as 640*800, 800*600, 1024*768 and 1280*1024 or directly as Full Screen.    
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 Default button sets all options to initial values. And last of all Start button starts 

application by configuring the selected options. 

  

3.2. Handwritten Digit Trainer  

 

 Handwritten Digit Trainer provides ASKER to learn user’s handwritten digits. This 

module shows which digit user would sketch such as 0, 1, 2, ..., 9 on the screen. 

 

 

 

Figure 3.3. Digit Training Screen of ASKER 

 

 After user sketched each of the cited digits digit trainer calculates bounding box and 

normalize all points’ coordinates of that sketched digit sample. Whole calculated prototype 

details are saved on a file; user_digits.txt. This text file would be used as user digit samples 

database in the process of Recognition System. Following figure shows the main format of the 

―user_digits.txt‖ file for a sample digit. 
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19 
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~ 

 

 

Figure 3.4. Format of user_digits.txt for one sample digit. 

 

 ―user_digit.txt‖ file consists of digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 by the figured format. 

At the end of the file an extra tilde ―~‖ is added which means that all sample digits are 

finished. 

 

 

 

 

 

 

 

 

 

Horizontal size of bounding box 

Vertical size of bounding box 

Normalized X coordinate of that point 

Normalized Y coordinate of that point 

 

 

 

 

 

End of bounding details 

 

 

 

 

 

 

End of point details 

Point 

Details 
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3.2.1. Normalization 

 

 In training module all sketched digit samples are processed and normalized. In 

normalization, the point with minimum x coordinate of that sample is found and its x value 

subtracted from all points’ x values. By the same manner y normalization is also done. The 

following figure shows the pseudo-code of the normalization process. 

 

 

Normalization_algo(sample_digit[points]) 

Find the point with minimum x value and save it as x_min.  

Find the point with minimum y value and save it as y_min.  

From initial point to end point of sketched digit sample 

 Current point’s x = Current point’s x – x_min 

 Current point’s y = Current point’s y – y_min 

End loop 

Return normalized sample_digits 

 

Figure 3.5. Normalization Pseudo-code 

 

 

 User can clear and change his/her last sketch or all sketched digits can be cleared, each 

can be drawn again, in digit training. ClearLast button clears the last sketch of the user and 

Clear button clear of sketched digits as stated above.  

 

 

 

Figure 3.6. Confirmation box which asks if a new training is required 
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 Also at the end of the training, a confirmation box appears and asks if a new training is 

required for further recognition success ratio. After user finished training step, ASKER starts 

recognition system automatically.  

 

3.3.  Recognition System 

 

 Recognition System of ASKER combines all of the recognition and editing functions. It 

provides user a natural environment to sketch and edit all details of any graph. This sub-

system of ASKER will be described in three parts, which are graph recognition, handwritten 

digit recognition and graph editing functions. 
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Figure 3.7. An example usage of recognition and editing properties of ASKER 
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3.3.1. Graph Recognition Functions 

 

 These functions initially test and decide if the drawn figure is a edge or a node. For this 

decision drawn points are collected in a linked-list and by using these points’ coordinates; one 

line, one circle equation are formed.  

 

3.3.1.1. Determination of Line Equations. First and last point coordinates of the stroke are 

used to determine a line equation. It is determined by using the equation of a line with two 

known points.  

 

 There are three different situations according to the coordinates of points A= ( 1x , 1y ) and 

B=( 2x , 2y ). 

 

 In the first case, 1 2x x  and 
1 2y y . 

 

 

 

Figure 3.8. Line for first situation 

 

 As it is seen in Figure 3.8; by using the similarity of triangles ABB' and AKK’, 

' '

' '

| | | |

| | | |

KK BB

K A B A
    so,  1 2 1

1 2 1

y y y y

x x x x

 


 
 is derived. 
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 In the second case, 
1 2x x  and

1 2y y . 

 

 

Figure 3.9. Line for second situation 

 

 As it is seen in Figure 3.9, the line intersects these two points is parallel to Y-axis. 

Apsises of all points on this line is equal to 1x . So the equation of this line is x= 1x . 

 

 In the third case, 1 2x x  and
1 2y y . The equation which is derived in the first situation 

is substituted by
1 2y y . By this way; y= 1y  is derived. 

 
 

Figure 3.10. Line for third situation 
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3.3.1.2.  Determination of Circle Equations. Equation of a circle is (x - h)
2
 + (y - k)

2
 = r

2 
where 

h and k are the x and y coordinates of the center of the circle and r is the radius.  

 

 

 

Figure 3.11. A circle 

 

 Collected points of the sketched shape are searched for finding minimum x, minimum y, 

maximum x and maximum y coordinates of all points. They are saved as x_min, x_max, 

y_min and y_max respectively. k, h and r values which are required for circle equation 

determination are derived by the following equations. 

 

 
y_min + y_max 

2
k   

 
_ min _ max

2

x x
h


  

 
( _ max _ min) ( _ max min)

2

x x y y
r

  
  

 

 After the determination of the line and circle equations, collected points are tested by 

using these equations. 

 

 

h 

k 
r 
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3.3.1.3. Line Test. Line test returns the average_fitting_error of the test. In this step, points 

which are collected from sketch of user are tested by the determined line equation with the 

LineTest algorithm which is shown in following pseudo-code.    

 

 

LineTest_algo (sketched_points, line_equation) 

Set initial value of total_fitting_error to zero 

line_equation => ax + by + c = 0 

From initial point to last point of sketched_points 

 px = x-coordinate value of current point 

 py = y-coordinate value of current point 

 
2 2

( ) ( )
distance = 

a px b py c

a b

   


 

 total_fitting_error = total_fitting_error + distance 

End loop 

average_fitting_error = 
total_fitting_error

total_number_of_points
 

return average_fitting_error 

 

 

Figure 3.12. Pseudo-code of LineTest 

 

 

3.3.1.4. Circle Test. Circle test returns the average_fitting_error of the test. In this step, 

collected points are tested by the determined circle equation with the CircleTest algorithm 

which is shown in following pseudo-code. 
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CircleTest_algo (sketched_points, circle_equation) 

Set initial value of total_fitting_error to zero 

circle_equation => (x - h)
2
 + (y - k)

2
 = r

2 
 

From initial point to last point of sketched_points 

 px = x-coordinate value of current point 

 py = y-coordinate value of current point 

 2 2distance = ( ) ( )h px k py r     

 total_fitting_error = total_fitting_error + distance 

End loop 

average_fitting_error =  

return average_fitting_error 

 

 

Figure 3.13. Pseudo-code of CircleTest 

 

 

 Recognition system compares the results of CircleTest and LineTest operations and the 

shape with the minimum fitting error is selected as recognized shape. If the recognized shape 

is a circle, it is controlled by several methods to learn what it means as a shape. By analytic 

tests, ASKER determines if it is a node or it means an area selection on the previous sketched 

part of the graph. Also these tests controls if the sketched shape is fully inside of the drawing 

area, or not. If the recognized shape is a line, by the similar controls, sketch meaning is 

determined. It can be either a new edge or a deletion command. All these processes can be 

summarized by the following flowchart. 
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Figure 3.14. Flowchart for Graph Recognition Processes  
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3.3.1.5. Link Test. It is a complex control mechanism which determines the meaning of the 

sketched line. There are several controls inside Link Test. The general procedure of this step is 

described by the following pseudo-code. 

 

LinkTest_algo (line_equation, first_point_of_the_line, last_point_of_the_line) 

If this line’s start and end points are in different nodes 

 If the graph is directed 

  If there is no edge between these two nodes in the same direction 

   Add new edge 

  Else warn user 

 Else if the graph is undirected 

  If there is no edge between these two nodes 

   Add new edge 

  Else warn user 

Else if this line’s start and end points are outside of all nodes 

 If this line intersects any edges 

  Delete those edges 

 If this line intersects any nodes 

  Delete those nodes 

Else do nothing   

 

 

Figure 3.15 Pseudo-code of LinkTest 
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Figure 3.16. Edge deletion using a line 

 

3.3.1.6. Node Test. In this step sketched circle’ meaning is determined. The main flow of this 

mechanism is shown in the following pseudo-code of the NodeTest. 

 

NodeTest_algo (circle_equation, sketched_shape_points) 

Determine circle_bounding_box  

Determine sketched_shape_bounding_box 

If sketched_shape_bounding_box covers at least one node’s bounding box 

 Sketched area is selected 

 Graph editing move function is called 

Else if circle_bounding_box doesn’t intersect any node’s bounding box 

 If circle_bounding_box isn’t inside of any node’s bounding box 

  Add new node 

 Else warn user 

Else if circle_bounding_box intersects at least one node’s bounding box 

 Warn user 

Else do nothing 

 

 

Figure 3.17. Pseudo-code of NodeTest 
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Figure 3.18. Node deletion using a line 

 

 In addition if the recognized shape is a node or edge which is added to the related list, 

else related editing functions are called. In ASKER, nodes and edges are stored in different 

linked-lists.  

 

3.3.2.  Handwritten Digit Recognition Functions 

 

 Handwritten digit recognition is a complex process. ASKER recognizes the sketched 

digits by using a new method which is proposed in this research project. In this step, check 

sign and deletion sign [Figure 3.21. and Figure 3.22.] are also recognized by the same way. 

The main flow of this method is shown by the following flowchart. 
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Figure 3.19. Flowchart of the proposed handwritten digit and sign recognition method  
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 As it is seen in the preceding flowchart, proposed method uses two types of prototypes 

such as user digit samples and default prototypes. All these information is firstly normalized 

[Figure 3.5.] and scaled then processed by the proposed Parallel Sampling Algorithm (PSA) 

and ICP Algorithm which is described before [Figure 2.12.]. In this section, Parallel Sampling 

Algorithm and Voting Algorithm will be described in detail. 

 

 For digit and sign recognition, required prototypes are loaded from digits.txt, control.txt 

and user_digits.txt. user_digits.txt’s structure details are explained before. Files; digits.txt and 

control.txt are formed by the same manner with the user_digits.txt  [Figure 3.4.]. 

  

 

 

 

Figure 3.20. Examples of sketches; 0,1,2,3,4,5,6,7,8,9 and period respectively 

 

 

 

Figure 3.21. Deletion sign is used clear the last recognized digit 

 

 

 

Figure 3.22. Check sign is used to complete the weight related digit recognition 
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3.3.2.1.  Scaling. Scaling is a prerequisite step for PSA and ICP algorithm as normalization is. 

After normalization is done to sketch points, it is time for scaling which is described by the 

following pseudo-code.  

 

Scaling_algo (prototype_digit_points, normalized_sketched_points) 

Determine prototype_bounding_box  

Determine sketch_bounding_box 

x-axis size of prototype_bounding_box
x_scale =     

x-axis size of sketch_bounding_box
 

y-axis size of prototype_bounding_box
y_scale =     

y-axis size of sketch_bounding_box
 

From first point to last point of normalized_sketched_points 

 scaled_current_point_x = x_scale   current_normalized_sketched_point_x 

 scaled_current_point_y = y_scale   current_normalized_sketched_point_y 

End loop 

Return scaled_points 

 

 

Figure 3.23. Pseudo-code of Scaling Algorithm 

 

 

3.3.2.2.  Parallel Sampling Algorithm (PSA). Proposed algorithm, PSA, gets the prototype 

digit and sketch as inputs. After that PSA calculates average fitting error of these inputs with a 

parallel sampling method by using their points’ sequence. It is described in detail by the 

following pseudo-code. 

 

 

 

 

 

 



 39 

 

PS_algo(prototype_digit[points], scaled&normalized_sketch[points]) 

Set total_distance to 0 

s_num = number of sketched points 

p_num = number of prototype’s points 

If  s_num   p_num  

 counter = s_num 

 s_sampling_factor = 1 

 p_sampling_factor = 
s_num

p_num

 
 
 

 

Else  

 counter = p_num 

 s_sampling_factor = 
p_num

s_num

 
 
 

 

 p_sampling_factor = 1 

For i = 0 to counter 

 current_ip = i  p_sampling_factor 

 current_is = i  s_sampling_factor 

 Find the distance between prototype_digit[ip] and scaled&normalized_sketch[is] 

 Save it as current_distance 

 total_distance = total_distance + current_distance 

End loop 

total_distance
average_fitting_error = 

counter
 

 

 

Figure 3.24. Pseudo-code of PSA 

 

 

 



 40 

 PSA is executed for all of the digit prototypes. At the end the prototype with the 

minimum average fitting error is selected as recognized digit.  

 

3.3.2.3.  Voting Algorithm. After all recognition tests are finished, there are three results by 

using ICP with user digit samples, ICP and PSA with default prototypes. With a simple 

mechanism all these 3 recognition results are voted and the sketched digit is recognized. 

Voting algorithm can be summarized by the following pseudo-code. 

 

 

Voting_algo (recognition_1, recognition_2, recognition_3) 

If all recognition results are same 

 Recognized digit is that result 

Else if two of the results are same 

 Recognized digit is that result 

Else all results are different 

 Recognized digit is the input recognition which has the minimum average_fitting_error 

Return recognized digit 

 

 

Figure 3.25. Pseudo-code of Voting Algorithm 

 

3.3.3.  Graph Editing Functions 

 

 There are two types of graph editing function in ASKER. First one is the ―moving the 

selected area functions‖ and the second is the ―changing the entered weight functions‖. 

 

3.3.3.1.  Moving the selected area functions. By these functions, the selected area on the graph 

can be moved dynamically. Changes on the edges related to the move process is automatically 

done. Moving the selected area functions provide keeping the selected moving nodes from 

intersecting with other nodes. All these processes can be described by the following pseudo-

code. 
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Moving_algo (selected_area, current_stroke) 

Determine the covered nodes by selection 

If the current_stroke’s first point is inside the selected_area 

 From the first point to last point of the curren_stroke 

  Mode selected nodes 

  Reformulate the lines which are related with selected nodes 

  Repaint the screen 

 End loop 

Else cancel the selection 

  

 

Figure 3.26. Pseudo-code of the Moving Algorithm 

 

 

3.3.3.2.  Weight editing functions. These functions are used to change the weight of an edge in 

any time. These procedures can be described by the following pseudo-code. 

 

 

WeightEdit_algo (current_stroke) 

If the current_stroke is a point 

 If this point is inside of the bounding box of any string which represents a weight 

  Weight enterance box is opened and if necessary,  

  handwritten digit recognition functions are called 

 Else do nothing  

  

 

Figure 3.27. Pseudo-code of the Weight Editing Algorithm 
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Figure 3.28. Weight Editing 

 

 

3.4.  Output Generator 

 

 ASKER stores all recognized nodes and edges in Node and Edge linked-lists 

respectively. Also the coordinates and the sizes of the recognized graph elements are stored as 

well. When the graph design is completed and the run button which is on the right bottom of 

the canvas, is pressed and adjacency matrix is formed by using stored weights in the Edge 

linked-list. For weighted graphs adjacency matrix represents the weights of the edges in 

addition zeros shows that there is no edge for that nodes. If the system is adjusted as 

unweighted, generated adjacency matrix consists of zeros and ones. Ones show that there is a 

link between those nodes; in addition zero shows that there is no related edge. 

 

 If application mode of ASKER is adjusted as Dijkstra or Kruskal Demo, the related 

demo application starts after the generation of the adjacency matrix. All these output types of 

ASKER can be seen by the following figures.  
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Figure 3.29. Generated Adjacency Matrix 

 

     

 

Figure 3.30. Dijkstra Demo of sketched graph 
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Figure 3.31. Kruskal Demo of sketched graph 

 

 

3.5.  Warnings 

 

 ASKER provides several warnings for an efficient usage of the system. In this section all 

these warnings are described and shown by figures. 

 

 Warning 1 shows that the sketched circle intersects at least one of the nodes. 

 

 

 

Figure 3.32. Warning 1 

 

 

 

 

 



 45 

 

 Warning 2 shows that the sketched line starts inside of a node but it is finished in free 

area.    

 

 

 

Figure 3.33. Warning 2 

 

 

 Warning 3 shows that the sketched circle is fully inside of a node. 

 

 

 

Figure 3.34. Warning 3 

 

 

 Warning 4 shows that the sketched line links two nodes which are also have a common 

edge, and also this is a undirected graph.    
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Figure 3.35. Warning 4 

 

 

 Warning 5 shows that the sketched line links two nodes which are also have a common 

edge in this direction, and also this is a directed graph.    

 

 

 

Figure 3.36. Warning 5 

 

 

 Warning 6 shows that the sketched circle is too small to visualize efficiently. 

 

 

 

Figure 3.37. Warning 6 
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 Warning 7 shows that the handwritten digit recognizer is active for weight entrance and 

also user tries to draw digits outside the recognition box or tries to sketch another shapes.  

 

 

 

Figure 3.38. Warning 7 

 

 

 Warning 8 shows that the sketched circle is intersects with the borders of the drawing 

window.  

 

 

 

Figure 3.39. Warning 8 
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3.6.  Test Results of PSA and Voting Algorithm 

 

 Parallel Sampling Algorithm (PSA), is a new approach to calculate average fitting error 

of a sketch with respect to a prototype. PSA is a core method, which can be used in several 

sketch recognition systems. Sequence of points obtained during a sketch determines the 

performance of PSA. Modified versions of PSA can be generated by sorting the points with 

increasing y-coordinate or increasing x-coordinate order. Modified version can be used for 

sequence-independent pattern or sketch recognition. 

 

 Digit and sign recognition tests for determination of the proposed PSA and Voting 

Algorithm were done. Totally 15 people sketched 2 samples for every digit and every sign.  

 

 Digit domain = {0,1,2,3,4,5,6,7,8,9}.  

  

 Sign domain = {deletion sign, check sign}. 

 

 In these tests, Wacom Pen Partner which is shown by the following picture, is used as a 

sketched point collector. 

 

 

 

Figure 3.40. Wacom Pen Partner 
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Figure 3.41. Recognition Success ratio of sketched samples by indicated four methods 
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Figure 3.42. Recognition success ratio of digits and signs by indicated four methods 

 

 

 As the charts show, indicated ICP methods and PSA have dissimilar success ratios for 

different digits and signs. Generally ICP is better for digits, and PSA is better for signs. It is 

because ICP is sequence independent but PSA is a sequence dependent method.  
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Figure 3.43. Average recognition success ratio of all samples by indicated four methods 

 

 

 In addition, the method with the best success ratio can be different for different sketches. 

But the main thing is that PSA gives good results for the situations in which ICP fails. By this 

manner Voting Algorithm can be used to increase success ratio of the recognition.  

 

 As a result, in sequence dependent systems, PSA is better than ICP and Voting 

Algorithms. But the best solution for digit recognition systems and hybrid recognition systems 

which consist of digit and sign samples as ASKER, is the proposed Voting Algorithm.   
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4.  CONCLUSION 

 

 

 Graphs are indispensable for representing networks, maps of roads, railways, airline 

routes, pipe systems, telephone lines, electrical connections, prerequisites amongst courses, 

dependencies amongst tasks in a manufacturing system and a host of other data. There are a 

large number of important results and structures that are computed from graphs. Generally, 

initial graph designs are sketched on paper, because of the simplicity of drawing and editing. 

Designed graphs are later transferred to computers to test or to solve the related problems.  To 

be useful in early design, computers must allow the designer to sketch as he does on paper and 

provide him with benefits, such as the ability to simulate his design that he does not have on 

paper. 

 

 Our goal is to develop an intelligent system which provides designers to sketch their 

graph design as if they were drawing on a paper. Furthermore, we expect that the system will 

represent the drawn graph in terms of edges, vertices and weight matrix, internally. 

Consequently, designed graph would also be converted into an input for any graph based 

application. By this manner, we created an intelligent system for graph designing and 

representing. Its all functions are designed and implemented suitable for natural drawing and 

writing. In this application, the user can easily draw and edit his sketch; moreover, the 

adjacency matrix representing the sketched graph is generated. Another feature of the tool is to 

provide animated solutions to well-known shortest path and minimum spanning tree 

algorithms such as Dijkstra and Kruskal. Any graph related simulator can be also embedded 

into the code of the developed tool. 

 

 As a future work, the digit recognition method will be optimized and its success ratio 

will be improved based on the test result statistics. In addition, a neural network can be added 

to this core recognition method. To sum up, the implemented online graph recognizer would 

be preferred by designers, instead of sketching on a paper, since it is a very basic, functional 

and a natural tool. 
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