
A Smile Can Reveal Your Age: Enabling Facial Dynamics
in Age Estimation
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ABSTRACT
Estimation of a person’s age from the facial image has many appli-
cations, ranging from biometrics and access control to cosmetics
and entertainment. Many image-based methods have been pro-
posed for this problem. In this paper, we propose a method for
the use of dynamic features in age estimation, and show that 1) the
temporal dynamics of facial features can be used to improve image-
based age estimation; 2) considered alone, static image-based fea-
tures are more accurate than dynamic features. We have collected
and annotated an extensive database of face videos from 400 sub-
jects with an age range between 8 and 76, which allows us to exten-
sively analyze the relevant aspects of the problem. The proposed
system, which fuses facial appearance and expression dynamics,
performs with a mean absolute error of 4.81 (±4.87) years. This
represents a significant improvement of accuracy in comparison to
the sole use of appearance-based features.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Video analysis; H.1.2
[User/Machine Systems]: Human factors, Human information pro-
cessing

General Terms
Human Factors, Algorithms, Experimentation

Keywords
Age estimation, Facial dynamics

1. INTRODUCTION
The human face offers a rich and heterogeneous amount of data

which have an important role in the communication process be-
tween individuals. By analyzing faces, humans can derive different
useful attributes such as identity, gender, age, emotion, etc. Nowa-
days, with the pervasive presence of cameras and processing de-
vices, intelligent systems dedicated to human-computer interaction
tasks are also expected to be able to analyze and process the same
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information. A lot of effort has already been made in the literature
on the estimation of each of these human-specific attributes.

In particular, age estimation is a very active topic today due to
the growing necessity of including this information in real-world
systems. This necessity comes from the fact that age is important
to understand requirements or preferences in different aspects of
daily life of a person. Systems implementing age specific human
computer interaction (ASHCI) can cope with these aspects. Some
examples are vending machines capable of denying some products
such as alcohol or cigarettes to an underage customer, or advertise-
ments in different automated environments (web pages, displays in
stores, etc.) that can be personalized according to the age of the
individual interacting with the system.

Age estimation from human faces is a challenging problem with
a host of applications in forensics, security, biometrics, electronic
customer relationship management, entertainment and cosmetol-
ogy [1, 8, 22]. The main challenge is the huge heterogeneity in
facial feature changes due to aging for different humans. Being
able to determine the facial changes associated with age is a hard
problem, because they are related not only to gender and to genetic
properties, but to a number of external factors such as health, liv-
ing conditions and weather exposure. Furthermore, gender can also
play a role in the aging process, as there are differences in the aging
patterns and features in males and females.

Facial expressions might negatively affect the accuracy of auto-
mated systems: When a person smiles, for instance, wrinkles are
formed and these can be misleading if only the appearance cues
are taken into account. Similarly, sagging of the face in a sad ex-
pression can resemble the effects of aging. Previous work in the
literature tried to cope with this problem, generally by dividing the
problem into different sub classes (i.e. one per facial expression),
yielding mixed results.

The most important cues that are used in age classification are
appearance-based, most notably the wrinkles formed on the face
due to deformations in the skin tissue. For this reason, current state
of the art systems in the literature mainly focus on static appear-
ance features of the face, as it is the easiest way to obtain accurate
results. Hence, the dynamics of facial expressions are largely ig-
nored.

Instead of only considering static appearance features for age
estimation, we explore a novel set of features for age estimation in
this paper, namely facial feature dynamics. As movement features
can be observed during facial expressions, the aim is to use these
facial expressions for estimating the age. Since the smile is one of
the most frequently used facial expressions, as well as the easiest
emotional facial expression to pose voluntarily [5], we focus on
smiles and analyze the discrimination power of smile dynamics for
age estimation. Our hypothesis is that aging effects the speed with
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which facial expressions are formed on the face. It is well known
that the elastic fibres on the face show fraying and fragmentation at
advancing age [23]. By leveraging the movement features of points
of interest on the face, we show that we can improve age estimation
over systems that use solely appearance-based cues.

2. RELATED WORK
Several works have proposed methods to determine facial pat-

tern changes and evolution associated with the aging process, both
from psychological and biological points of view. These studies
are mostly aimed at age synthesis, i.e. changing the appearance
of a rendered face to show proper effects of aging. Some of these
works have been useful in the determination of appropriate facial
features for age estimation. For instance, O’Toole et al. [19] used
3D models of faces to apply caricaturing processes in order to de-
scribe age variations between samples. Wu et al. [30] developed a
system for simulation of wrinkles and skin aging for facial anima-
tion. Suo et al. [26] presented a model for face aging processing
by analyzing it as a Markov process in a graph, representing dif-
ferent age groups. Tiddeman et al. [28] also developed prototype
models for aging face images using texture information. In [18], a
quantitative approach to face evolution due to aging is presented.

The results of these studies determined that cranio-facial devel-
opment and skin texture are the most important features for age
estimation. In fact, one of the first approaches for age estimation
was proposed by Kwon and Lobo [13], where individual faces were
classified into three age groups (baby, young and senior). This
classification was performed using the theory of cranio-facial de-
velopment [2] and facial skin wrinkle analysis. Lanitis et al. [14]
proposed an age estimation method based on regression analysis
of the aging function. During the training procedure, a quadratic
function of facial features is fitted for each individual in the train-
ing set as his/her aging function. As for age estimation, they pro-
posed four approaches to determine the suitable aging function for
the unseen face image, among which the Weighted Person Specific
(WPS) approach achieved the best performance in the experiments.
This function, however, relied on profiles of the individual contain-
ing external information such as gender, health, living style, etc.
In [11] a method for age estimation is presented, where faces are
projected into manifolds by using subspace learning and then a re-
gression model is applied to estimate the age. The aging pattern
subspace (AGES) method [10] models a sequence of individually
aging face images by learning a subspace representation. The age
of a test face is determined by the projection in the subspace that
can reconstruct the face image the best. This model was later ex-
tended by the authors to model the nonlinear nature of human aging
by considering learning of nonlinear subspaces, using the model
called KAGES (Kernel AGing pattErn Subspace) [9].

Recently, Zhan et al. has proposed an extended non-negative ma-
trix factorization method to learn a subspace representation, which
could recovers age information while eliminating variations caused
by identity, expression, pose, etc. [31]. In [12], Hadid has proposed
using volume LBP (VLBP) features to describe spatiotemporal in-
formation in videos of talking faces and classify the ages of the
subjects into five groups (child, youth, adult, middle-age, and el-
derly). This is the only study in the literature that uses temporal
information for age estimation. However, VLBP features alone are
not powerful enoughi and the proposed system could not even reach
the accuracy of static image-based age estimation.

Recent work on static image-based age estimation has consid-
ered large-scale evaluations, with 175k images [15]. Obviously,
there is still room for improvement, and the area is actively re-
searched. Nonetheless, there is a shortcoming in the literature on

the evaluated features for age estimation: Facial expression dynam-
ics are not used at all. This may be due to the lack of proper
databases to explore the contribution of dynamic features for age
estimation. In this paper, we seek to remedy this shortcoming, and
focus on the inclusion of expression dynamics to improve age es-
timation. To the best of our knowledge, this is the first attempt to
investigate and integrate the dynamics of facial features (such as
speed, acceleration, amplitude, etc.) for the task of age estimation.

3. METHOD
In this section, details of the proposed age estimation system will

be given. The proposed system combines the appearance features
with the facial expression dynamics. Our method assumes that the
input video starts with a moderately frontal face, and has the entire
duration of a smile expression. The flow of the system can be sum-
marized as follows. Initially, 11 facial fiducial points are located in
the first frame, and tracked during the rest of the video. Then, the
tracked points are used to calculate displacement signals of eyelids,
cheeks, and lip corners. Temporal phases (onset, apex, and offset)
of the smile are estimated using the mean displacement signal of
the lip corners. Afterwards, dynamic features for the eyelid, cheek,
and lip corner movements are extracted from each phase. Local
Binary Patterns (LBP) features are extracted using the first frame
of onset phase, where the face is neutral. After a feature selection
procedure, the most informative dynamic features are selected and
fused with LBP features to train Support Vector Machine (SVM)
classifiers/regressors.

3.1 Facial Feature Tracking
To analyze the facial dynamics, 11 facial feature points (eye cor-

ners, center of upper eyelids, cheek centers, nose tip, lip corners)
are tracked in the videos (see Fig. 1(a)). Each point is initialized in
the first frame of the videos for precise tracking and analysis. To
track the facial features and pose, we use a piecewise Bézier vol-
ume deformation (PBVD) tracker, originally proposed by Tao and
Huang [27].

(a) (b)

Figure 1: (a) Used facial feature points with their indices and
(b) the 3D mesh model

The PBVD tracker employs a model-based approach. A 3D
mesh model of the face (see Fig. 1(b)) is constructed by warping the
generic model to fit the facial features in the first frame of the im-
age sequence. For comparison reasons, we report results for man-
ual and automatic initialization of these features. The generic face
model consists of 16 surface patches. To form a continuous and
smooth model, these patches are embedded in Bézier volumes. If
x(u, v, w) is a facial mesh point, then the Bézier volumeis defined
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as:

x(u, v, w) =
n∑

i=0

m∑
j=0

l∑
k=0

bi,j,kB
n
i (u)B

m
j (v)Bl

k(w), (1)

where points bi,j,k and variables 0 < {u, v, w} < 1 control the
shape of the volume. Bn

i (u) denotes a Bernstein polynomial:

Bn
i (u) =

(
n
i

)
ui(1− u)n−i. (2)

After fitting the face model, facial feature points (as well as head
motion) can be tracked in 3D according to the movement and the
deformations of the mesh. To measure 2D motion, template match-
ing is used between frames at different resolutions. For more robust
tracking, image templates of both the previous frame and the first
frame of the sequence are used for matching. The estimated 2D im-
age motion is modeled as a projection of the 3D movement onto the
image plane. Then, the 3D movement is calculated using projective
motion of several points.

3.2 Features
In the proposed system we extract appearance-based and dy-

namic features from smile videos. In general, a smile can be iden-
tified as the upward movement of the mouth corners, which corre-
sponds to Action Unit 12 (AU12) in the facial action coding system
(FACS) [6]. In terms of anatomy, the zygomatic major muscle con-
tracts and raises the corners of the lips during a smile [7]. In terms
of dynamics, smiles are composed of three non-overlapping phases;
the onset, apex, and offset, respectively. Onset is the initial phase
of a facial expression and it defines the duration from neutral to ex-
pressive state. Apex phase is the stable peak period (may also be
very short) of the expression between onset and offset. Likewise,
offset is the final phase from expressive to neutral state. According
to Ekman there are dozens of smiles which are different in terms of
their appearance and meaning. Ekman also identified 18 of them
(such as enjoyment, fear, miserable, embarrassment, listener re-
sponse smiles) by describing the specific visual differences on the
face and indicating the accompanying action units [5].

3.2.1 Extraction of Dynamic Features
To analyze and describe the dynamics of a smile, we extract a set

of dynamic features from three different face regions such as eyes,
cheeks, and mouth [3]. First of all, the tracked 3D coordinates
of the facial feature points �i (see Fig. 1(a)) are used to align the
faces in each frame. We estimate the 3D pose of the face, and
normalize the face with respect to roll, yaw, and pitch rotations.
Since three non-colinear points are enough to construct a plane, we
use three stable landmarks (eye centers and nose tip) to define a
plane P . Eye centers are defined as middle points between inner
and outer eye corners as c1 = �1+�3

2
and c2 = �4+�6

2
. Angles

between the positive normal vector NP of P and unit vectors U on
X (horizontal), Y (vertical), and Z (perpendicular) axes give the
relative head pose as follows:

θ = arccos
U.NP

‖U‖ ‖NP‖ , where N =
−−→
�9c2 ×−−→

�9c1. (3)

In Equation 3,
−−→
�9c2 and

−−→
�9c1 denote the vectors from point �9 to

points c2 and c1, respectively. ‖U‖ and ‖NP‖ are the magnitudes
of U and NP vectors. According to the face geometry, Equation 3
can estimate the exact roll (θz) and yaw (θy) angles of the face with
respect to the camera. However, the estimated pitch (θx) angle is a
subject-dependent measure, since it is relative to the constellation
of the eye corners and the nose tip. If we assume that the face is

approximately frontal in the first frame, then the actual pitch angles
(θ′x) can be calculated by subtracting the initial value. Once the
pose of the head is estimated, tracked points are normalized with
respect to rotation, scale, and translation as follows:

�′i =
[
�i − c1 + c2

2

]
Rx(−θ′x)Ry(−θy)Rz(−θz)

100

ρ(c1, c2)
, (4)

where �′i is the aligned point and Rx, Ry , and Rz denote the 3D
rotation matrices for the given angles. ρ() denotes the Euclidean
distance between the given points. On the normalized face, the
middle point between eye centers is located at the origin and the
inter-ocular distance (distance between eye centers) is set to 100
pixels. Since the normalized face is approximately frontal with
respect to the camera, we ignore the depth (Z) values of the nor-
malized feature points �′i, and denote them as li.

After the normalization, onset, apex, and offset phases of the
smile are detected using the approach proposed by Schmidt et al.
[24], by calculating the amplitude of the smile as the distance of the
right lip corner to the lip center during the smile. Since the faces
are normalized, lip center is calculated only once in the first frame.
As indicated in [24], the detected smile phases may not necessarily
represent the exact definition of smile phases which are defined
in [6]. Differently from [24], we estimate the smile amplitude as
the mean amplitude of right and left lip corners, normalized by the
length of the lip. Let Dlip(t) be the value of the mean amplitude
signal of the lip corners in the frame t. It is estimated as:

Dlip(t) =
ρ(

l110+l111
2

, lt10) + ρ(
l110+l111

2
, lt11)

2ρ(l110, l
1
11)

, (5)

where lti denotes the 2D location of the ith point in frame t. This es-
timate is smoothed by 4253H-twice method [29]. Then, the longest
continuous increase in Dlip is defined as the onset phase. Similarly,
the offset phase is detected as the longest continuous decrease in
Dlip. The phase between the last frame of the onset and the first
frame of the offset defines the apex.

To extract dynamic features from the eyelids and the cheeks, ad-
ditional amplitude signals are computed. We estimate the (normal-
ized) eyelid aperture Deyelid and cheek displacement Dcheek as fol-
lows:

Deyelid(t) =
κ(

lt1+lt3
2

, lt2)ρ(
lt1+lt3

2
, lt2) + κ(

lt4+lt6
2

, lt5)ρ(
lt4+lt6

2
, lt5)

2ρ(lt1, l
t
3)

,

(6)

Dcheek(t) =
ρ(

l17+l18
2

, lt7) + ρ(
l17+l18

2
, lt8)

2ρ(l17, l
1
8)

, (7)

where κ(li, lj) denotes the relative vertical location function, which
equals to −1 if lj is located (vertically) below li on the face, and
1 otherwise. The distance between the eye center and the point on
upper eyelid is calculated for both left and right eyes and the es-
timated values are divided by the length of the eyes. Afterwards,
Deyelid is calculated as the mean aperture signal of left and right
eyes. Dcheek is defined as the sequence of the mean distances of
left and right cheek points to the middle point between two cheeks.
Middle point between cheek landmarks is estimated for once in the
first frame (neutral face). Dlip, Deyelid, and Dcheek are hereafter re-
ferred to as amplitude signals. In addition to the amplitudes, speed
V and acceleration A signals are extracted by computing the first
and the second derivatives of the amplitudes, respectively:

V(t) = dD
dt

, (8)
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A(t) =
d2D
dt2

=
dV
dt

. (9)

All the calculated amplitude signals are smoothed by 4253H-twice
method [29], and then split into three phases as onset, apex, and off-
set, which have been previously defined using the amplitude signal
Dlip of the lip corners.

A summary of the proposed dynamic features is given in Ta-
ble 1. Note that the defined features are extracted separately from
each phase of the smile. As a result, we obtain three feature sets
for each of the eye, mouth and cheek regions. Each phase is further
divided into increasing (+) and decreasing (−) segments, for each
feature set. This allows a more detailed analysis of the feature dy-
namics. In Table 1, signals symbolized with superindex (+) and (−)

Table 1: Definitions of the extracted features

Feature Definition

Duration:
[

η(D+)
ω

, η(D−)
ω

, η(D)
ω

]

Duration Ratio:
[

η(D+)
η(D)

, η(D−)
η(D)

]

Maximum Amplitude: max(D)

Mean Amplitude:
[ ∑D

η(D)
,
∑D+

η(D+)
,
∑ |D−|
η(D−)

]

STD of Amplitude: std(D)

Total Amplitude:
[ ∑D+ ,

∑∣∣D−∣∣ ]

Net Amplitude:
∑D+ −∑∣∣D−∣∣

Amplitude Ratio:
[ ∑D+

∑D++
∑ |D−| ,

∑ |D−|
∑D++

∑ |D−|
]

Maximum Speed:
[
max(V+) , max(|V−|) ]

Mean Speed:
[ ∑V+

η(V+)
,
∑ |V−|
η(V−)

]

Maximum Acceleration:
[
max(A+) , max(|A−|) ]

Mean Acceleration:
[ ∑A+

η(A+)
,
∑ |A−|
η(A−)

]

Net Ampl., Duration Ratio:
(
∑D+−∑ |D−|)ω

η(D)

denote the segments of the related signal with continuous increase
and continuous decrease, respectively. For example, D+ pools the
increasing segments in D. η defines the length (number of frames)
of a given signal, and ω is the frame rate of the video. DL and DR

define the amplitudes for the left and right sides of the face, respec-
tively. For each face region, three 24-dimensional feature vectors
are generated by concatenating these features.

In some cases, features cannot be calculated. For example, if we
extract features from the amplitude signal of the lip corners Dlip us-
ing the onset phase, the decreasing segments will be an empty set
(η

(D−) = 0). For such exceptions, all the features describing the
related segments are set to zero. This is done to have a generic fea-
ture vector format which has the same features for different phases
of each face region.

3.2.2 Extraction of Appearance Features
To describe the appearance of faces, we use uniform Local Bi-

nary Patterns (LBP ) on gray scale images. The original LBP
operator, which is proposed by Ojala et al. [16], takes the intensity
value of the center pixel as threshold to convert the neighborhood
pixels to a binary code. Computed binary codes describe the or-
dered pattern of the center pixel. This procedure is repeated for

(a) (b)

Figure 2: (a) Scaling/cropping of a face image, and (b) the de-
fined 7× 5 blocks to extract appearance features

each pixel on the image and the histogram of the resultant 256 la-
bels can then be used as a texture descriptor. In [17], Ojala et al.
show that the vast majority of the Local Binary Patterns in a local
neighborhood contain at most two bitwise transitions from 0 to 1
or 1 to 0, which is called a uniform pattern. Therefore, during the
computation of the histograms, the size of the feature vector can be
significantly reduced by assigning different bins for each of the 58
uniform patterns and one bin for the rest.

Since the onset of a facial expression starts with a neutral face,
the first frame of the previously detected onset phase is selected to
extract appearance features. On the selected frame, the roll rotation
of the face is estimated and normalized using the eye centers c1 and
c2. Then, the face is resized and cropped as shown in Fig. 2(a). The
inter-ocular distance dio is set to 50 pixels to normalize the scale
and cropping. As a result, each normalized face image has a resolu-
tion of 125× 100 pixels. After the preprocessing step, each face is
divided into 7× 5 non-overlapping (equally-sized) blocks and uni-
form LBP descriptors are computed on each block (see Fig. 2(b)).
8 neighborhood pixels (on a circle with a radius of 1 pixel) are used
to extract the uniform LBP features. All these features are concate-
nated to form the appearance feature vector. Resultant appearance
feature vector is 7 × 5 × 59 = 2065 dimensional. The dimen-
sionality of the appearance feature vectors is reduced by Principal
Component Analysis (PCA) so as to retain 99.99% of the variance.

3.3 Feature Selection and Classification
In our system, we use a two-level classification scheme for age

estimation, as shown in Fig. 3. In the first level, one-vs-all Support
Vector Machine (SVM) classifiers are used to classify the age of a
subject into 7 age groups of 10 years (8−17, 18−27, . . . , 68−77).
Then, the age of the subject is fine-tuned using an SVM regressor
which is specifically trained for the related age group. For a better
estimation, the regressor of each age group is trained with an age
interval of −10 to +10 years of group boundaries. Then the results
are limited with the age range (if the estimated age is less/more
than the group boundaries, it is set to minimum/maximum age of
the group). The resulting estimation of the age is given as an integer
with 1 year resolution.

As described in Section 3.2.1, we extract three 24-dimensional
dynamic feature vectors for each face region. To deal with feature
redundancy, we use the Min-Redundancy Max-Relevance (mRMR)
algorithm to select the discriminative dynamic features [20]. mRMR
is an incremental method for minimizing the redundancy while se-
lecting the most relevant information as follows:

max
fj∈F−Sm−1

⎡
⎣I (fj , c)− 1

m− 1

∑
fi∈Sm−1

I (fj , fi)

⎤
⎦ , (10)
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Dimensionality 
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2nd Level: SVM Regressors 
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Estimated Age 

Feature
Selection
(mRMR)

Combined
Features

Dynamic 
Features

Appearance
Features

Figure 3: Two-level age estimation architecture using both ap-
pearance and dynamic features

where I shows the mutual information function and c indicates the
target class. F and Sm−1 denote the feature set, and the set of
m − 1 features, respectively. Then, all the selected dynamic fea-
tures are concatenated with the appearance features (which are ex-
tracted from the first frame of the smile onset and reduced by PCA)
to train the system (see Fig. 3). Minimum classification error on
a separate validation set is used to determine the most discrimi-
native dynamic features. Similarly, in order to optimize the SVM
configuration, different kernels (linear, polynomial, and radial basis
function (RBF)) with different parameters (size of RBF kernel, de-
gree of polynomial kernel) are tested on the validation set and the
configuration with the minimum validation error is selected. The
test partition of the dataset is not used for parameter optimization.

4. EXPERIMENTAL SETTINGS

4.1 UvA-NEMO Smile Database
The UvA-NEMO Smile Database1 has been recently collected

to analyze the change in dynamics of smiles for different ages [3].
Data collection was carried out in science center NEMO (Amster-
dam) as a part of Science Live, the innovative research programme
of science center NEMO [25]. NEMO visitors were the volunteers
for the data collection. The database and its evaluation protocols
are made available to the research community.

This database is composed of videos (in RGB color) recorded
with a Panasonic HDC-HS700 3MOS camcorder, placed on a mon-
itor, at approximately 1.5 meters away from the recorded subjects.
Videos were recorded with a resolution of 1920 × 1080 pixels at
a rate of 50 frames per second under controlled illumination con-
ditions. Additionally, a color chart is present on the background of
the videos for further illumination and color normalization. Sample
frames from the database are shown in Fig. 4.

The database has 1240 smile videos (597 spontaneous, 643 posed)
from 400 subjects (185 female, 215 male). Ages of subjects vary

1http://www.uva-nemo.org

from 8 to 76 years. 43 subjects do not have spontaneous smiles and
32 subjects have no posed smile samples. Age and gender distribu-
tions of the subjects in the database are given in Fig. 5.

For posed smiles, each subject was asked to pose a smile as
realistically as possible, sometimes after being shown the proper
way in a sample video. Short, funny video segments were used to
elicit spontaneous smiles. Approximately five minutes of record-
ings were made per subject, and genuine smiles were segmented.

For each subject, a balanced number of spontaneous and posed
smiles were selected and annotated by seeking consensus of two
trained annotators. Each segment starts and ends with neutral or
near-neutral expressions.

4.2 Settings
To evaluate our system and assess the reliability of facial ex-

pression dynamics and facial appearance information for age esti-
mation problem, we use the above described smile database of 400
subjects. In our experiments, the two-level classification/regression
system is used, and described in section 3.3. The optimum number
of selected dynamic features, kernel and parameters of SVM clas-
sifiers/regressors are determined on a separate validation partition.
To this end, a two level 10-fold cross-validation scheme is used.
Each time a test fold is separated, a 9-fold cross-validation is used
to train the system, and parameters are optimized without using the
test partition. There is no subject overlap between folds. In our
experiments, polynomial SVM is found to perform better than lin-
ear and RBF alternatives. We initialize the tracking by manually
annotated facial landmarks to assess the discrimination power and
reliability of individual appearance and dynamic features, and their
combination. Additionally, results with automatic initialization are
also given for the comparison with other systems, as well as further
analysis on different aspects of the age estimation problem.

For automatic facial landmark detection, we use the state-of-the-
art system proposed by Dibeklioğlu et al. [4]. This method models
Gabor wavelet features of a neighborhood of the landmarks using
incremental mixtures of factor analyzers and enables a shape prior
to ensure the integrity of the landmark constellation. It follows a
coarse-to-fine strategy; landmarks are initially detected on a coarse
level and then fine-tuned for higher resolution. The mean local-
ization error for the related landmarks (eye corners, center of up-
per eyelids, cheek centers, nose tip, lip corners; see Fig. 1(a)) is
3.96% (±3.14) of the inter-ocular distance to the actual location
of the landmarks. Correlation coefficients between the extracted
amplitude signals with manual and automatic initializations ranged
between 0.93 and 1.

5. RESULTS
In this section, we discuss the results of our experiments. First,

we will discuss the accuracy of the system when only face dynam-
ics are used, either individually or taken together. Then, we com-
pare these results with the combined use of appearance and dynam-
ics. Finally, we check the effect of gender and expression spontane-
ity on the accuracy of the system using the combined features.

5.1 Dynamics
Since the proposed dynamic features are extracted from the move-

ments of lip corners, cheeks, and eyelids, we analyze the individ-
ual discrimination power of these movements and their combina-
tion for age estimation. Furthermore, to assess the reliability of
the feature selection step, performance of using automatically se-
lected (most) informative dynamic features and the use of all fea-
tures without any selection are compared. For the reliability of
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(a) (b) (c)

Figure 4: Sample frames from the UvA-NEMO Smile Database: Showing (a) neutral face, (b) posed enjoyment smile, (c) spontaneous
enjoyment smile
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Figure 5: Age and gender distributions of the subjects in the database

results, we use manually initialized tracking in these tests. The re-
sulting mean absolute error (MAE) is given in Fig. 6.
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Figure 6: Effect of feature selection on age estimation errors
for different facial regions

Our results show that the feature selection increases the accu-
racy approximately 15% (relative) on average, while reducing the
dimensionality of the feature space. Since the efficacy of the fea-
ture selection step is confirmed by these results, it is used in the

remainder of our experiments. By analyzing the regional results
with feature selection, it can be shown that the dynamics of eyelid
movements are the most reliable features, with an MAE of 12.98
(±11.71) years. Lip corner and cheek movement dynamics follow
with an MAE of 13.72 (±13.49) and 16.94 (±15.30) years, re-
spectively. By combining the dynamic features of different facial
regions, the MAE of the age estimation system can be decreased to
11.69 (±12.02) years.

5.2 Dynamics versus Appearance
In this paper, the aim is to combine facial appearance with ex-

pression dynamics for age estimation. However, it is also important
to show the discriminative power of facial expression dynamics and
appearance, individually. For this purpose, we evaluate the individ-
ual and combined use of these features. To assess the effect of
tracking initialization on accuracy, we use both manually and auto-
matically annotated facial landmarks to initialize facial tracking in
our experiments.

As shown in Table 2, using automatic initialization for tracking
increases the MAE by 4.28% and 1.26% for dynamic and appear-
ance features, respectively. Since the reliability of dynamic fea-
tures is directly related to the accuracy of tracking, automatic ini-
tialization affects it more than appearance features. The MAE for
combined features is also increased by 2.34% by automatic initial-
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Table 2: Mean Absolute Errors for dynamic, appearance, and
combined features

Features
Mean Absolute Error

Manual Initialization Automatic Initialization

Dynamics 11.21 (±11.34) 11.69 (±12.02)

Appearance 5.57 (±5.86) 5.64 (±5.90)

Combination 4.71 (±4.75) 4.82 (±4.87)

ization of tracking. However, the use of combined features signifi-
cantly (p < 0.001, Cohen’s d > 0.15) improve the age estimation
accuracy in comparison to the individual use of dynamic and ap-
pearance features. Therefore, automatically initialized tracking is
used in the remainder of our experiments.

When we analyze the results, it is clear that using only facial dy-
namics is not enough for an accurate age estimation system. The
MAE of using dynamic features is 11.69 (±12.02) years, where
the MAE for facial appearance is only 5.64 (±5.90) years. Nev-
ertheless, by combining the dynamic and appearance features, the
proposed system is able to achieve the best result with an MAE
of 4.82 (±4.87), which is significantly (p < 0.001, Cohen’s d >
0.15) more accurate than using dynamic and appearance features
individually.

5.3 Effect of Gender
To assess the effect of gender on the accuracy of the system us-

ing the combined features (with automatic initialization of track-
ing), a gender-specific age estimation system is implemented and
compared with the general method. In the gender-specific system,
different classifiers/regressors are trained and tested for both males
and females, separately. For this method, we assume that the gen-
der labels of all samples are correctly given. The MAEs for both
gender-specific and general training are given in Table 3.

Table 3: Comparison of the gender-specific method with the
general method for age estimation

Method
Mean Absolute Error

Male Female Mean

Specific 4.26 (±3.36) 5.01 (±5.73) 4.63 (±4.70)

General 4.59 (±4.80) 5.03 (±4.95) 4.81 (±4.87)

Our results show that the gender-specific training decreases the
overall MAE of the system from 4.81 (±4.87) years to 4.63 (±4.70)
years. In particular, the gender-specific training decreases the MAE
by 7.19% for males, and 0.40% for females, with respect to train-
ing on the whole data. These results show the difference of the
proposed combined features between males and females. Fig. 7
shows the estimated ages using the general and the gender-specific
methods.

5.4 Effect of Expression Spontaneity
In order to assess the effect of expression spontaneity on the ac-

curacy of using combined features, a spontaneity-specific age esti-
mation system is also constructed. Here we compare its accuracy
with the general approach (using automatic initialization of track-
ing). For this purpose, separate classifiers/regressors are trained for
spontaneous and posed smiles. It is assumed that the spontaneity of

all smiles are correctly classified and the same training procedure
is separately applied to each subset.
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Figure 7: Estimated ages using the general and the gender-
specific methods

Table 4: Comparison of the spontaneity-specific method with
the general method for age estimation

Method
Mean Absolute Error

Spontaneous Posed Mean

Specific 4.51 (±5.61) 4.02 (±3.67) 4.26 (±4.71)

General 4.92 (±5.09) 4.70 (±4.66) 4.81 (±4.87)
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Figure 8: Estimated ages using the general and the spontaneity-
specific methods

As shown in Table 4, spontaneity-specific approach performs
with an MAE of 4.26 (±4.71), therefore improving the accuracy
by 11.43% with respect to the general approach. Spontaneity-
specific training decreases the MAE for both posed and sponta-
neous smiles. Since the automatically detected neutral faces are
used to extract the appearance features for both approaches, ac-
curacy improvements by performing spontaneity-specific training
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indicates the differences between spontaneous and posed smiles in
terms of expression dynamics. Plot of the estimated ages using the
general and the spontaneity-specific methods are shown in Fig. 8.

5.5 Comparison with other methods
To the best of our knowledge, this is the first study which uses the

facial expression dynamics (such as speed, acceleration, amplitude,
etc.) for age estimation problem. Except a recent work [12], none
of the previous studies in the literature focus on using temporal
information for age estimation.

In [12], Hadid proposes to use spatiotemporal information to
classify the ages of the subjects into five groups (child: 0 to 9 years
old; youth: 10 to 19; adult: 20 to 39; middle-age: 40 to 59 and
elderly: above 60). [12] uses volume LBP (VLBP) features with a
tree of four SVM classifiers. VLBP features are extracted from dif-
ferent overlapping face blocks. Then the AdaBoost learning algo-
rithm is used to determine the optimal size and locations of the local
rectangular prisms, and select the most discriminative VLBP fea-
tures for classification, automatically. To evaluate the system, 2000
videos of about 300 frames each are randomly segmented from a set
of video sequences mainly showing talking faces (collected from
the Internet). Additionally an appearance-based (static) system is
implemented for comparison. This baseline method classifies each
frame in a video, individually, using LBP features with SVM clas-
sifiers. Majority voting is used to fuse the classification results of
each frame. Hadid reports that the static image (appearance) based
approach provides 77.4% correct classification, where the perfor-
mance of the spatiotemporal approach reaches only 69.2%.

VLBP is a straightforward extension of original LBP operator to
describe dynamic textures (image sequences) [32]. VLBP enables
the use of temporal space (T), looks the face sequence as a volume,
and the neighborhood of each pixel is defined in three dimensional
space, where LBP uses only X and Y dimensions of a single im-
age. Then, the histograms of VLBP are used as features. In [32],
Zhao et al. have proposed to extract LBP histograms from Three
Orthogonal Planes (LBP-TOP) XY, XT, and YT, individually, and
concatenate them as a single feature vector.

To compare our system with the related approaches, we imple-
ment three baseline methods: (1) VBLP-based spatiotemporal ap-
proach, (2) spatiotemporal approach using VBLP-TOP features,
and (3) appearance-based approach which classifies each frame in
a video using LBP features with SVM classifiers, individually, and
fuses the classification results by majority voting. Both LBP-TOP-
and VBLP-based methods use the same classification/regression ar-
chitecture with our method. For a fair comparison, all of the com-
pared methods use automatically annotated facial landmarks to ini-
tialize the tracking (for face alignment and feature extraction), and
7×5 non-overlapping blocks on the face to compute histograms. To
generate histograms, uniform patterns are used for LBP-TOP and
LBP. The neighborhood size is set to eight for LBP and LBP-TOP,
and two for VBLP. Time interval for volumetric approaches is set to
three frames. Zhao et al. [32] have shown that these neighborhood
and time interval parameters perform well on facial expression clas-
sification. The dimensionality of LBP, VLBP, and LBP-TOP fea-
tures is reduced by Principal Component Analysis (PCA) so as to
retain 99.99% of the variance.

The cumulative error distributions of the mean absolute error
for different methods are given in Fig. 9 (a). Given error distri-
butions show that the proposed system, which uses both dynamic
and appearance features, significantly outperforms all other meth-
ods (p < 0.001, Cohen’s d > 0.15). Additionally, Figs. 9 (b-
f) show the comparison of the estimated ages using the combined
features and the other methods.

As shown in Table 5, the combination of dynamic and appear-
ance features achieves the minimum MAE of 4.81 (±4.87) years.
It is important to indicate that using LBP features extracted on a
single, automatically detected neutral image provides more accu-
rate age estimation than using all frames in a video and voting on
the results. Spatiotemporal methods can only reach a mean accu-
racy of 17.03 (±13.56) and 14.95 (±11.41) years with VLBP and
LBP-TOP features, respectively. By using the proposed dynamic
features only, the system is significantly more accurate than when
it uses the spatiotemporal features (p < 0.001, Cohen’s d > 0.25).
Note that we assume that an age estimate is correct if the error from
the ground truth is less than 10 years. In this case, the proposed sys-
tem which combines appearance and dynamics features improves
the correct classification rate by 4.36% (absolute) with respect to
the appearance features only.

6. DISCUSSION
In our experiments, we show that dynamics of the eyelid move-

ments perform best for individual regions. Additionally, fusion of
eyelid, lip corner, and cheek movement dynamics (with a feature
selection step) improves the accuracy of the eyelid dynamics by
9.94%. For dynamic features, using feature selection increases the
accuracy approximately by 15% on average, as well as reducing
feature dimensionality. This finding indicates that there is a signifi-
cant amount of noise or confusing information in dynamic features.

Our results show that the individual use of the facial expres-
sion dynamics is not enough for an accurate age estimation system.
However, accuracy of using solely appearance features of a neutral
face (automatically detected as the first frame of the onset phase)
is significantly improved (p < 0.001, Cohen’s d > 0.15) by en-
abling the dynamics of smile expression. Moreover, the proposed
combined features outperform all the baseline methods tested in
this study. These results confirm the importance of the information
hidden in facial expression dynamics.

When we analyze the effect of initialization on facial tracking,
it is seen that automatic initialization decreases the reliability of
dynamic features approximately three times more than the appear-
ance features, since the reliability of dynamic features are directly
related to the accuracy of tracking. However, under both automatic
and manual initialization conditions, the use of the combined fea-
tures significantly (p < 0.001, Cohen’s d > 0.15) improves the
age estimation accuracy in comparison to the individual use of dy-
namic and appearance features.

Using multivariate analysis of variance (MANOVA), we find the
most selected dynamic features and significant (p < 0.001, η2 >
0.10) feature differences between different ages. Our findings indi-
cate that the dynamics of smile onsets are more discriminative than
other smile phases for age estimation. During the onset phase of
smiles, the maximum speed and the maximum acceleration of both
eye closure and lip corner movements significantly change among
different ages. Then, we analyzed the significant (p < 0.001) dif-
ferences of these features between spontaneous and posed smiles
using the t-test. Our results show that the maximum speed and the
acceleration of the lip corner movements are significantly higher
for posed smiles during smile onsets (p < 0.001, Cohen’s d >
0.40). Also, the maximum speed and the acceleration of eye clo-
sure are significantly higher for spontaneous smiles in smile onsets
(p < 0.001, Cohen’s d > 0.20). These findings can explain the
higher accuracy of the spontaneity-specific system. Similarly, t-
test analysis is repeated for male and female differences. However,
no significant difference (in the related dynamic features) is found
between male and female subjects. This finding indicates that the
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Table 5: Mean Absolute Error for different methods

Method | Age Range 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 Total

Proposed: Dynamics 6.20 8.18 13.55 15.22 10.82 20.62 24.07 29.06 11.69 (±12.02)

Proposed: Appearance 2.57 3.77 6.53 7.71 5.37 9.91 12.47 13.76 5.64 (±5.90)

Proposed: Combined 2.73 2.99 5.45 6.83 4.35 8.45 10.87 13.18 4.81 (±4.87)

Appearance: LBP, Voting 3.27 4.39 7.24 8.10 5.75 11.00 12.83 15.65 6.24 (±6.44)

Spatiotemporal: VLBP 16.99 15.09 13.28 13.51 16.71 29.83 39.97 53.00 17.03 (±13.56)

Spatiotemporal: LBP-TOP 15.59 13.48 11.04 11.76 15.16 25.11 33.10 44.94 14.95 (±11.41)

Number of Samples 158 333 215 171 250 66 30 17 1240
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Figure 9: (a) Cumulative error distribution of the mean absolute error for different methods. (b-f) Comparison of the estimated ages
using different methods

higher accuracy of gender-specific system is mostly based on LBP-
based appearance features.

Experimental results show that spatiotemporal approaches based
on VLBP and LBP-TOP are not efficient for age estimation. Even
the individual use of our dynamic features outperforms these meth-
ods, significantly. Spatiotemporal features describe the change of
facial appearance in time, but our proposed method models the ap-
pearance on a single neutral image (which is automatically selected
as the first frame of the onset phase) and adds the dynamics of the
facial expression (such as amplitude, speed, acceleration, etc ) on
it. As a result, the proposed system (using combined features) is
significantly (p < 0.001, Cohen’s d > 0.15) more accurate than
all the competitor methods in our experiments.

7. CONCLUSIONS
In this study, we have introduced the usage of dynamic features

to improve age estimation. Previously considered methods in the
literature evaluate the appearance of the face, as the appearance is

the most revealing aspect of aging. However, we have shown that
the speed and movement features of facial muscles during smiling
can improve the estimation of a person’s age. While such dynamic
features by themselves are not as accurate as appearance features,
their contribution is significant when combined.

We assessed a range of dynamical features in an exploratory
fashion, as geriatrics literature on facial aging also mostly focuses
on appearance features. Therefore, we were not able to find suf-
ficiently detailed descriptions of age effects on muscle dynamics
(except for a study that reports intact muscle dynamics for orbic-
ularis oculi, which contradicts some earlier studies [21]). Among
individual regions of the face, our results show that eyelid dynam-
ics are the most revealing in terms of age estimation, followed by
lip corners and cheeks. We did not find a significant effect of the
proposed features over different genders.

Our results are derived from a recently collected database with
400 subjects aged between 8 to 76 years. This is the most extensive
dynamic age evaluation study to this date in the literature. We con-
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trast dynamic information obtained from spontaneous and posed
smiles. Posed expressions are somewhat better for age estimation,
but not significantly so. We also compare our method to an appear-
ance based baseline, as well as to a recently proposed spatiotempo-
ral approach.
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