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Activity-related Biometric Authentication

G. Ananthakrishnan, H. Dibeklioglu, M. Lojka, A. Lopez, Berdikis, U. Saeed, A.A. Salah, D. Tzovaras, A. Vogiannou

Abstract—This project aims at developing a biometric authenticatio
system exploiting new features extracted by analysing theysthamic nature
of various modalities, including motion analysis during odinary tasks
performed in front of a computer, analysis of speech, contious face and
facial movement analysis, and even patterns for grasping gécts. We test
the potential and contribution of each of these modalities dr biometric
authentication in the face of natural, uncontrolled environments, as well
as their fusion.

Index Terms—Biometric authentication, activity recognition, face
recognition, motion analysis, speaker recognition, audiobased event
recognition

I. INTRODUCTION

HIS project attempts to address the limitations of unimodal bio-

metrics by deploying activity-related multimodal biometric systems
that integrate the evidence presented by multiple sourcesfanformation.
Therefore, the combination of a number of independent modadties is
explored to overcome the possible restrictions set by eachadality. With
a simple sensor setup, we aim at more robust biometric iderfication
through the fusion of physiological, behavioral and soft bdmetric
modalities, keeping also in mind the unobtrusiveness and odfort of
the subject.

The term behavioral biometrics refers to Person Recognitin using
shape based activity signals (gestures, gait, full body anlimb motion)
or face dynamics. Activity-specific signals [6], [23] prowle the potential
of continuous authentication, but state-of-the-art soluibns show inferior
performance compared to static biometrics (fingerprints, fis). This
drawback could hopefully be eliminated by the inferential integration
of different modalities.

Behavioral information from face videos for person recogniion may
also be investigated in order to exploit the underlying tempral in-
formation in comparison to image-based recognition [39]. Mthods for
person recognition from face dynamics can be classified intdolistic
methods (head displacements and pose evolution [30]), feae-based
methods (exploitation of individual facial features [12]) and hybrid
methods [14]. Various probabilistic frameworks have been mpposed in
recent works, usually employing a Bayesian Network (HiddenMarkov
Models, Coupled and Adaptive HMMs, etc.) as the mathematidamodel
for recognition [35].

Soft biometrics (gender, height, age, weight etc.) are beled to be
able to significantly improve the performance of a biometric system in
conjunction with conventional static biometrics [22], yettheir exploitation
remains an open issue. Microphones for voice recognition,osnd based
sensors for monitoring activities or other modalities coull also be
considered.

This report, as well as the source code for the software deeel
during the project, is available online from the eNTERFAGE'web site:
www.enterface08.limsi.fr.
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In this report, we look at some of these modalities in a specdi
fixed-seat pilot. Our experimental setup is described in Séion I,
including the details of the collected database. The indidual modalities
are investigated in separate sections, starting with modddased motion
analysis in Section Ill, which tracks the user via calibrated cameras
during ordinary activities. The sounds that ensue during these activities
are analysed for robust activity classification. This part 5 exposed
in Section IV. Once speech is detected among the sound evenis
can be further used for authentication. Section V deals withspeaker
authentication. Our model flexibly integrates data coming fom seemingly
unrelated modalities. Section VI exemplifies this by makinguse of an
advanced interface for recognizing activity, namely a Cybmglove, which
is used to collect and analyse grasping patterns. The more gonon face
modality is used to serve as a benchmark. Continuous autheigition
from captured static face images is explained in Section V|land the
optical-flow based analysis of facial motion for authenticéion is detailed
in Section VIII. Section IX builds on the motion analysis to recognize
types of activities, and evaluates the authentication poiial of each of
these activities.

The mathematical framework we establish here is employed tseam-
lessly integrate an arbitrary number of sources that provice partial
authentication information. Our experimental results are given in Sec-
tion XI. The report concludes with a discussion of these redts and on
possible future directions in Section XII.

Il. THE EXPERIMENTAL SETUP

The proposed biometric system is evaluated in a fixed - seat fafe
pilot, where the user is able to move his arms, head and torsond
manipulate objects on a desk while seated. This experimeritassetup
selection serves multiple aspects of the problem of activitrelated
biometric authentication:

o It is portable and easy to setup

e It can be part of a normal authentication system scenario (@.
secured indoor premises)

« It can easily incorporate all the equipment for selected modlities

« An office environment is involved in many work - related actities,
which makes the pilot ideal for testing the activity - related
authentication module

e It is fully unobtrusive to the user

The selected pilot consists of a desk upon which a number of @zts
is placed, in stable predefined positions. This constraintmplies a static
environment, which slightly affects the generality of the stup, but
significantly facilitates the activity recognition task. The objects are: a)
desk phone, b) glass (on a pad), c) keyboard, d) mouse, e) conter
screen, f) pencil (in a pencil case) g) a piece of paper for wimng. The
sensorial equipment is as inexpensive and unobtrusive as gmible. It
comprises of three Logitech QuickCam webcams (two for body mtion
tracking and one for continuous face authentication and faml motion
analysis) and a regular low - budget microphone. Two camerasare
mounted on the desktop screen facing the user (these are theoffital
moation tracking camera and the face camera, which is zoomedrothe
user’s head area), while the third camera (lateral motion tacking camera)
is placed on a tripod on the left side of the desk. The microphae is
mounted on the desk, next to the keyboard. Fig. 1 illustrategshe actual
pilot setup.

A. Recording Scenario and Data Gathering

Within the project a database of 15 persons performing a number of
actions has been recorded. Each person was asked to execuite actions
in a particular order, responding to the environmental stimuli (phone
ringing, instructions on the screen or on a writing form). A recording
scenario has been prepared so as to enhance the database’sgistency,
to meet the requirements and constraints of every modality ad to ensure
the user’s concentration and relaxation, so that he perforrs the required



ENTERFACE'08, AUGUST 4TH - AUGUST 29TH, ORSAY, FRANCE. FINAPROJECT REPORT 2

Fig. 1. The pilot setup, shown during one of the recordingse frontal
cameras are mounted on the display, and the side camera istedoon a
pod to the left of the subject.

actions in his natural (and therefore consistent) way. The i recorded
actions were:

Mouse manipulation (playing a computer game)

Phone Conversation (real dialogue with a team member)
Typing in the keyboard (filling in a given questionnaire)
Writing (filling in a questionnaire in a writing form)
Drinking (taking the cup, and leaving it back to its place)
Reading (specific texts provided in the screen).

Every session consisted of one repetition of the six actiormsd 10 sessions
were recorded for each user in order to provide enough trainng and
testing data for all the modalities. The database size wasntited to 15
persons due to limited time available for recordings.

During the data gathering users were asked to act in their natral way,
without any further instructions or constraints. The seleded activities are
common work - related activities involving usual office objets, there was
no previous knowledge about their suitability for authentication. The
evaluation of their discriminative power is among the objetives of this
project.

I11. M ODEL-BASEDMOTION ANALYSIS

Markerless human motion capture is a challenging problem that
involves the estimation of a high-dimensional configuratin of a three-
dimensional non-rigid and self-occluding object. Since a wle range of
applications are derived from the unobtrusive characteriation of human
activity, this research area has recently undergone severadvances due
to the yielded interest.

A common approach is to consider an articulated body model wh
several degrees of freedom per joint, depending on the comgtity of the
possible poses and the quality of the available data. This pgesentation
implies the use of kinematic constraints on the motion. Addional
assumptions and motion constraints can be adopted at the coof

TABLE |
ARTICULATED BODY MODEL JOINTS

Angle Joint Rotation Axis Range
61 Base of the Neck y [_%, ﬂ
02 Right Shoulder X [-%7 ]
03 Left Shoulder X -2, 7]
04 Right Shoulder y [_%7 7r]
05 Left Shoulder y [_%7 W]
06 Right Shoulder z [—g, g}
0 Left Shoulder z [_g, g}
03 Right Elbow y [0, 7]
09 Left Elbow y [0, 7]

generality of the solution which we intend to preserve. To tis end,
Particle Filters [2] have become a relevant technique due ttheir ability
to handle multi-modal non-linear and non-Gaussian distritutions. Several
approaches such as partitioned sampling [37], hierarchidasampling [41]
and annealing patrticle filter [15] have been developed to capwith high-
dimensional limitations of the classical Condensation algrithm [21].

We present a particular implementation of the annealing paticle filter
for a simplified body model in order to retrieve the human body poses
of a subject performing different actions in a multi-view seenario. We
propose simplifications of the body tracking problem withou almost no
loss of generality in the given pilot and with the capability of coping with
realistic scenarios.

A. Body Model

A simplistic articulated body model will fulfill the require ments of the
scenario presented in section Il. This model is based on theirematic
chain framework and comprises a set of joints. In our case, tis set of
joints are the base of the neck, shoulders and elbows. Evergint has a
maximum of three degrees of freedom according to the compléy of the
motions that we want to capture. Each degree of freedom is repsented
by an axis of rotation defined in a default body configuration,where all
the angles are set to zero (see fig. 2). The range of joint anglés also
defined according to this default body pose. In our model, a t@al of nine
degrees of freedom are defined (see table I). In order to set ¢hmodel
in a world position, a three-dimensional coordinate systenbuilt with the
base of the neck as origin and a body orientation are defined. @ model
reference point is set to be the base of the neck. Thereforeuo body
model defines a thirteen-dimensional state vector:

09} @

Angle 6y is the orientation of the whole body model while all the
other angles are designed following basic kinematic consimts. The use
of angles ensures a compact representation in front of a statdefined
by only 3D coordinates. Knowing the limbs’ dimensions we cango
from a set of angles to Cartesian coordinates by means of expential
twists formulation [7]; every point of interest can be compued from
its initial location with respect to the reference point in the default
body configuration and the product of the exponential maps decting
the motion of this point:

xt = {0, %0, 20,00, ...

p(xt) = HMi(Xt)po (2
M; = {Rigxt) ti(i‘t) €)

where p(xt) represents a point of interest as a function of the
state vector, that encodes model position, model orientath and joint
angles, and M;(x;) is the exponential map in the chain wherep
is found. The exponential map comprises the rotation matrix R and
the translation vector ¢. The whole notation is being presented in
homogeneous coordinates due to its compactness.

B. Particle Filter

Particle Filters (PF) [2] are recursive Bayesian estimatos derived
from Monte Carlo sampling techniques which can handle nonihear
and non-Gaussian processes. Commonly used in tracking pré#ms, they
are used to estimate the posterior density(x¢|z:) by means of a set of
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Fig. 2. Simple articulated model for body tracking

Ns weighted samples or particles. Given a Bayesian recursivesgmation
problem:

P(Z1:¢| %) p(xe|x¢—1)

p(X0:t|21:t) = p(xo0:t—1]21:¢—1) 4)
p(zt|z1:0—1)
we want to draw samples from the posterior such that:
Ns _
p(x0:t|z1:0) = wid(xe — x}) (5)
i

where w? is the weight associated to the i-th particle. This discrete
approximation of the posterior requires the weights evaluéion. This
is done by means of the importance sampling principle [16], ith
a probability density function (pdf) ¢(xo:.¢|z1:¢) from which we can
generate samples that can be evaluated with the posterior futo
proportionality). Applying the importance sampling princ iple in Eq. 4:

i . P(XO:t\let)
q(x0:t|Z1:¢)

i p(21:¢|x¢)p(xe|x—1)
p(zt|21:4—1)q(x0:¢|21:¢)

and choosing this importance distribution in a way that facors
appropiately we have:

(6)

@)

P(X0:¢—1|21:¢—1)

i p(zlzt‘Xt)p(xt|xt—1)p(x0:t—1‘let—l)
p(Zt\Z1:t71)q(Xt|X0:tf1, Zt)q(xO:tfl ‘let—l)
P(Z1:¢ %) p(xe|xt 1)

p(zt|2z1:¢—1)

Moreover, if we apply the Markov assumption the expression s
simplified regarding the fact that observations and current state only
depend on the previous time instant. Therefore, the PF is a geential
propagation of the importance weights.

Two major problems affect the PF design. The first is the choie of
the importance distribution. This is crucial since the sampes drawn
from ¢() must hit the posterior's typical set in order to produce
a good set of importance weights. It has been shown in [16] tha
q(xt|xt—1,2t) = p(xt|xt—1,2¢) is optimal in terms of variance of
the weights. The second problem deals with particle degenacy in
terms of variance of the weights. After several iterations the majority
of the particles have negligible weights and as a consequenof this
the estimation efficiency decays. An effective measure fothé particle
degeneracy is the survival rate [34] given by:

1
N

Ns Z(“&)Q

=1

®)

t—1

9

(10)

a =

In order to avoid the estimator degradation the particle set is
resampled. After likelihood evaluation a new particle set nust be drawn
from the posterior estimation, hence particles with higherweights are
reproduced with higher probability. Once the new set has bee drawn
all the weights are set toﬁ, leading to a uniformly weighted sample
set concentrated around the higher probability zones of theestimated
posterior.

The Sampling Importance Resampling (SIR) Particle Filter poposed
by Gordon et. al [18] is a method commonly used in computer vien
problems. It's characterized by applying resampling at evey iteration and
by defining the importance distribution as the prior density p(z¢|xi—1).
By substituting this importance density in 8, it's easy to ralize that
weight computation only depends on the likelihood. Conseaently, the
design of the particle filter is basically a problem of findingan appropiate
likelihood function.

C. Likelihood Evaluation

In computer vision problems probability density functions usually
are not directly accessible, thus an observation model is grired to
approximate the likelihood function. It is necessary to detrmine which
image features are more correlated with the true body configtation.
Therefore, finding the appropiate likelihood approximation involves both
image and body model. Deutscher et al. [15] proposed a mataig of the
model projection with foreground segmentation and edges. fieir flesh
model consists of conic sections with elliptical cross-s@ans surronding
virtual skeleton segments. Raskin et al. [50] add the body pahistogram
as an additional feature. Other authors use Visual Hull appoaches [27]
to work with voxel data. In that case, they can use three-dimesional
flesh models, like ellipsoids [40] or three-dimensional Gasian mixtures
[9].

Our challenge is to produce a likelihood approximation ableto deal
with moving objects, clothing, limited number of views and bw frame
rate. In our approach we should not rely on a 3D reconstructim because
only a few views are available, thus a projection of the modebnto
the images is required. Our proposal is to avoid the computabnal cost
of projecting the whole set of sampling points of a 3D flesh maa by
projecting a reduced set of points per body part. Our flesh moel will be
set of cylinders around all the skeleton segments except thead, which
will be modelled by a sphere (see Fig. 2). Therefore, our redied set of
projected points will be defined by the vertices of the trapeaidal section
resulting from the intersection of a plane, approximately parallel to the
image plane, with the cylindric shapes modelling the limb (o spherical
shape in the case of the head).

To define an intersecting plane for a given cylinder, we compte the
vectors going from the camera center towards each one of thaniit
points of the limb. Then the cross product of these vectors wh the one
defined by the limb itself is computed to determine two normalvectors
that lie on the intersecting plane and along which we will findthe key
points to project. The head template is handled with a simila procedure
using as limb vector the one going from the body model referece point
to the head center. The norm of the cross product, as well as éharea
of the projected trapezoid, can be used as a quality measuren iorder
to determine whether the limb is properly aligned with the view (this
does not apply for the head). If this quality measure is abovea certain
threshold, we can change the trapezoidal projected shape bg circle
or an ellipse. However, in our scenario the views are set so dh they
capture good limb alignments in most of the frames, thus we caobviate
the computation of this measure.

Regarding the image features, we have seen that common likebod
approximations like [15] do not perform well in our scenario with the
described body model. We propose modifications on this apprimation
while keeping common features that are easy to extract, likéoreground
silhouettes, contours and detected skin. We extract foregund silhouettes
by means of a background learning technique based on Stauffeand
Grimson’s method [56]. A single multivariate Gaussian/\ (¢, 3¢) with
diagonal covariance in the RGB space is used to model everyxal value
I;. The algorithm learns the background model for every pixel sing a
set of background images and then, for the rest of the sequeacevaluates
the likelihood of a pixel color value to belong to the backgrand. With
every pixel that matches the background the pixel model is ugated,
adaptively learning smooth illumination changes:

(11)
(12

1= p)ui—1 + pIy
(1=p)Ze—1 + p(ly — pr—1)" (Tg — pe—1)

Mt
po
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Fig. 3. Projection of the flesh model associated to a givetigEr

A shadow removal algorithm [65], based on the color and briginess
distortion, is used to enhance the segmentation.

(b) Contours Mask

(a) Foreground Mask

Fig. 4. Extracted Image features

Contour detection is performed by means of the Canny edge dettor
[10]. The result is dilated with a 8-connectivity and 5x5 stucturing
element, and smoothed with a Gaussian mask. In order to avoidpurious
contours, we subtract the background contours. This implis also deleting
some pixels in the edges of interest but the body structure 't in general
preserved. Finally, a simple skin detection method based ogvaluating the
likelihood ratio between skin and non-skin hypothesis is pgormed. The
likelihood functions are estimated by 8-bins color histogams of several
skin and non-skin samples.

The likelihood evaluation procedure involves the projectdn of the flesh
model of every patrticle onto the image coordinate system. Téhresulting
shape is scanned and matched with the foreground segmentati. The
weight is computed as follows:

W= S 3 -1 (13)

M=

n=1

Since pixel intensities in the foreground masks I(tf) have 0 or 1 as
possible values, the weighting function is obtained by a nonalized sum
of the background pixels falling inside the projected flesh mdel. In the
head model case, we add skin detection information:

N

1 .
wh=—N"(1-1]I)
Nn:l

(14)
Therefore, the final foreground weightw/ is the averaged sum of all the
limbs and head weights. Foreground segmentation providesatda that are
generally invariant to clothing and most of the background onditions.
Since many configurations can be explained via this featurdoreground
information is used to penalize false poses rather than to sgle out the
correct one. Moreover, the proposed measure shows how wehd model
fits the observation, but doesn’t evaluate how well the obseations are
being explained by the model. Suppose the likelihoog(z:|x:) is available
and that a given pose generates a pdf. A measure that can be ds® assess
the similarity of the likelihood and the generated pdf is the Kullback-
Leibler divergence. At this point is important to remark that the KL
divergence will provide different results depending on thefactor order

(except if both pdfs are identical). We can establish an anaby with
our likelihood approximation. We are trying to determine the mutual
information of the model and the observations. Therefore, w propose to
include an additional divergence measure between the progtion of the
flesh model and the foreground masks to see how well a particlexplains
the observations.

Ny
a_ 1 5
w® = — (I, (1 = By)) (15)
Ny 7;1

This divergence basically aims for projecting a given parttle and
computing the overlap between the pixelsB,, of this projection and the
Ny foreground pixels of the observation.

Contours found in the body usually provide good information on the
location of the arms and the legs. However, in some cases, ttimg and
background can introduce spurious contours that reduce thereliability
of this feature. As mentioned above, we try to minimize the bekground
impact by subtracting the background contours. The proposd weighting
function for this feature is a sum of squared differences beteen the
contour pixels and the edges of the flesh model aligned with ¢haxis of
the limb:

1N
€= 1—18)? 16
wi= 2D (=T (16)
n=1
Finally, all these weights are combined for every camera:
e}
w = exp (Z(A{wf + Aw® + )\gwd)> 17)
c=1

We use a set of weights for every camera and measure to adjushe
importance of every feature according to its importance andvisibility.
Since in our scenario the subject stays in his seat, we assurtteat the
visibility component can be determined beforehand.

D. Annealing Particle Filter

It has been shown in several works that SIR Particle Filters & a
good approach for tracking in low dimensional spaces, but thy become
inefficient in high-dimensional problems. Deutscher et. aJ15] proposed a
variation of the SIR framework by introducing the concept of Annealing
PF. In body pose tracking problems, the likelihood approxination often
is a function which has several peaked local maxima. Annealg PF
deals with this problem by evaluating the particles in seveal smoothed
versions of the likelihood approximation. After the weights are computed
via the modified likelihood, particles are resampled and prpagated
with Gaussian noise with zero mean and a covariance that deeases at
every step. Each one of this steps (weighting with a smoothednction,
resampling and propagation) is called an annealing run. In he last
annealing run the estimation is given by means of the Monte-@rlo
approximation of the posterior mean:

N
Xt = g wyxXy
=1

The most usual way to smooth the weighting function is by meamnof
an annealing rate, an exponent3 < 1. In the first layer 3 is minimum
but it progressively increases with each layer, sharpeninghe likelihood
approximation. In [15] a method for tuning 3 with the survival rate after
each annealing run is proposed.

The sharpness of the likelihood function is due to the high dnensional
space in which is defined, the use of a hierarchical model [11lis
another possible strategy in order to have annealing layersSince our
model is quite simple, a hierarchical approach is not justifed. We have
implemented an annealing particle filter in which the smootling is done
by means of an exponent3. In our case, the annealing rate is updated
according to the survival rate of the preceding layera(8:—1) . Given a
desired survival rate a:

(18)

Bt = Bt—1 — Mar — a(Bt-1)) (19)
Due to the image feature characteristics, we also introducg in (17),

giving higher importance to the foreground-based measurein the first
layers and to the contour-based measures in the last layers.

C
o= cop (S L Gt 390 3

c=1

)wd)> (20)
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Fig. 5. Annealing Layers. The covariance used in the prapayatep is
progressively reduced through four annealing layers wthiéeestimator gets
closer to the true pose

Therefore, we propose to work with overall smoothing and feture-
based smoothing. However, more work needs to be done in thigem in
order to show that this approach can help to efficiently reachthe true
pose.

IV. SOUND-BASEDEVENT DETECTION

This section deals with detection of sound activity and clasfication
of sounds into the typical events that would be encounteredn the first
step, any sort of sound activity is detected and in the seconstep it is
classified. The details of each step are explained below.

A. Sound Activity Detection

The field of Sound Activity Detection has been researched foseveral
years. Most of the research has been in the field of Voice aciiy
detection in noisy conditions. This is essentially diffenet from the current
experiment in which all sound activity needs to be detectedThis makes
it a slightly difficult problem in a way, because a threshold a the length
of the activity cannot be provided. The detection has to be nmde on short
bursts of sounds like clicks of mouse as well as continuous epch. So
a dynamic threshold needs to be provided, based on the currémoise
level.

Previous work done in voice activity detection was mainly byMak et
al. [38] and Nemer et al. [45]. Nemer et al. proposed a method based
on the residual of the signal, and used higher order statistis of the
noise in order to set the threshold to detect sound activite Renevey
and Drygajlo [52], proposed an Entropy based threshold for ativity
detection. The method used in this experiment uses the enjg found
on the residual as a measure to detect activity.

The following steps are taken to detect sound activity

« The signal is windowed with a window size of 40 ms and a shift of
20 ms.

e The signal within one window is approximated by 2 Linear
Prediction Coefficients (LPC). This is done to grossly appmimate
the frequency spectrum and calculate the bias.

« The residual of the signal, which is the error between the eshated
LPC and the true signal is calculated. Fig. 6 shows the speatm
of the signal and Fig. 7 shows the corresponding residual. Gncan
observe that the bias has been canceled and the spectrum haseln
whitened.

e« The Entropy is calculated for the residual, assuming a gausan
distribution, since whitening has been performed. The evidnce of
activity is given by the entropy. A higher entropy indicatesa higher
level of activity.

« A dynamic threshold is calculated, which decides whether th
entropy is high enough to be classified as noise.

The biggest problem with sound activity detection is the hyresis

associated with detection. After detecting a certain soundve cannot hear

Log Magnitude ————->
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Fig. 6. The log-frequency spectrum of a typical signal

-4 T T T T T

-8} 4

Log Magnitude ———-->

-10 1
0 50

1 1 1 1
100 150 200 250

Frequency ———-> (1/Fs) Hz

300

Fig. 7. The log-frequency spectrum of the residual

other less louder sounds occurring after it. Hence a dynamithreshold has
to be calculated based on the statistics of the past. Sinceethistribution

of the sound activity entropy is unknown, a histogram is calalated, for

the entropy over a history of around 10 seconds. If the entrop level is
in the highest L% range of the histogram, then it considered as activity.
However, the entropy level has to go below the 50% range of thpast
activity to be classified as background noise. Fig. 8 shows ¢hEntropy
variation of a short segment of the signal. The two dynamic tresholds
are also indicated along with the decision.

The value of L decides the region in the Detection Error Trade-off
(DET) curve as shown in Fig. 9. Most of the errors that occur ae due to
the fact that length of the detected activity is either shorér or longer than
the annotated activity. Often what is annotated as a contigous activity
is split into several activities or what is annotated as diférent activities,
is detected as a single activity. The DET curve for length indpendent
detection is shown in Fig. 10.

B. Sound Event Classification

Sound event classification has been commonly called auditprscene
analysis in literature. The most seminal work on auditory sene analysis
is discussed by Bregman [8]. Several methods and several feees have
been tried for this purpose. Among the most common features sed are
Bark-filter coefficients, wavelet coefficients, Linear Predttion Coefficients
etc. Similarly, Support Vector Machines (SVM), Self Organizing Maps
(SOM), Artificial Neural Networks (ANN) and Gaussian Mixtur e Models
(GMM) and their combinations have been used for this purpose

In our experiments Bark filter coefficients are used as featues for
classification, because the Bark filters mimic the subjectiy measurements
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TABLE Il
SOUND EVENT RECOGNITIONRESULTS

| Sound | Accuracy | False Alarm| Most confused |
\oice 67.3% 12.3% Pencil keep
Telephone ringing| 54.3% 0% \oice
Writing sound 5.2% 0% Silence
Keyboard typing 45.0% 15.3% Mouse click
Glass use 89.3% 56.3% -
Mouse click 43.3% 19.5% Typing
Phone receiver 63.3% 32.4% Keyboard Typing
Pencil use 54.3% 12.8% \oice
| Overall | 538% | 23.7% ] - |

of loudness of the human ear. Since we have sound events witiffdrent
durations, and since we are classifying contiguous blocksf csignals,
one-state HMMs are used for event classification where the alervation
probability distribution is expressed with a GMM. This helps in coupling
the likelihoods of each of the frames of the signal to give arsgle likelihood
value.

The most important question in these models is to decide how amy
mixture components will be employed. This is a difficult prodem,
especially because there are only a few available sounds,tkvivarying
length and duration. The number of Gaussians for each soundlass is
decided by maximizing the Bayesian Information Criterion BIC). The
sound classes that we used are as follows:

1) Voice

2) Telephone Ringing

3) Typing Sound

4) Writing sound (with a pencil)

5) Placing the glass on the table

6) Clicking of the Mouse

7) Picking up the phone receiver or putting it back

8) Picking up or placing the pencil

One can see that, a few of these sounds are quite similar andfficult
to distinguish even for human beings. However, since the egpment is
set-up in a controlled environment, one can expect a decenepgformance.
Table Il denotes the results of the recognition of each of thesounds in
the list.

As we can see, the accuracy is higher for detection of voice drglass
use, but the false alarm is also high for the same two sounds.h&re is
a very high confusion rate between mouse click and typing foexample.
It is expected that we assume higher priors for more probableevents
and lower priors for less probable events. However in that cse most
of the sounds would be classified as voice, because the voiceludes
sounds similar to each of these mentioned sounds. So the dd&ation is
done assuming an equal prior. The overall accuracy may be bated if
the priors were selected according to their probability of @currence, but
then the overall accuracy evaluation would be biased. It dae not make
sense to use a weighted average for calculation of accuradyecause one
wrongly classified event with low probability would affect the overall
accuracy greatly.

More work can be done in the direction of a better classifier, sing
combination of GMM with classifiers like ANNs or SVM. More evaluation
is necessary to deal with different time lengths of each of #se sound
events. Different number of models and modeling the dynami of the
sounds could be other options. A varying length window in orér to
calculate the Bark coefficients maybe another direction of esearch.

V. SPEAKERVERIFICATION

The speaker verification system provides a Boolean authewttion
decision based on the analysis of a speech fragment. Spedudsed
verification systems can be classified into two main types. Ithe first
approach, the speaker utters a word or a sentence, which is f&d for all
authentication attempts. This is called the text-dependenapproach. In
the more difficult text-independent approach, which is moreappropriate
for this scenario, the speaker can utter any sentence, and ¢htextual
content is not known a priori. For a good survey of speaker veification
systems, the reader is referred to [47]. Suffice it to say thaall such
systems need a speaker model, and an impostor model to detema the
decision for authentication. Frequently employed methodgor modeling
the speaker as well as the impostor include dynamic time waipg (DTW),
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vector quantization (VQ), Gaussian mixture models (GMM), and hidden
Markov models (HMM).

The DTW is used for non-linear aligning of two time sequences
and computing the minimum distance between them. Use of DTWni
speaker verification system is based on assumption that ewespeaker is
uttering the same word or sentence approximately in the samenanner
but differently from other speakers. Here the speaker is repesented
by a template of one or limited set of words or sentences. As &h,
this method is not adequate for text-independent verificabn. Vector
quantization methods are based on the assumption that the aastic space
of a speaker’s speech output can be divided into non-overlging classes,
representing different kinds of sounds, for example phonems. Each class
is defined by one vector, centroid and so each speaker is remented
by a set of these classes, thus by his own codebook of vectohs.the
GMM approach, the codebook vectors are the means of the Gauss
distributions. Here, the noise around each mean is assumed be normally
distributed. Each speaker is represented by a Gaussian mixte density,
which is weighted linear combination of Gaussian distributons of each
speaker’s acoustic class. Thus speaker is represented by et ®f weigths,
means and variances. In the HMM approach, the speech dynamids
modeled by a Markov model, where the states are modeled by cetdooks
of the VQ (discrete HMM) or by Gaussian mixture densities (catinuous
and semi-continuous HMM). In the particular case of text-independent
verification systems, ergodic models are preferred where hinterstate-
transitions have non-zero probabilities.

In this work, we follow the GMM approach based on the results
reported in [4], [51]. First, a number of features are extraded from
the input signal. Following [20], we use Mel-filter cepstral coefficients
(MFCC) by applying the following transformations:

o Preemphasis filter

« Division of signal into frames

o Fast Fourier transformation for obtaining frequency spectrum
o Logarithmic transform

« Application of Mel-filter banks to the spectrum

« Discrete cosine transform

In speech recognition, usually13 coefficients are selected from the
MFCC. The first and second derivatives (i.e. velocity and aederation)
are added to these coefficients to indicate the history and elution of
the signal, resulting in 39-dimensional feature vectors. N-dimensional
feature vector implies using N-dimensional Gaussian distbutions, thus
the N-dimensional mean and NxN covariance matrix. Because sufficient
effectiveness in modeling the components are restricted toave diagonal
covariances.

Once a speaker model is learned, there are two ways of autheoating
a particular speaker [47]. In the first approach, a threshold is selected
for the probability P(A*|O), where A\ denotes the model parameters of
the target speaker, andO is the observed signal. In the second approach
is a treshold selected to the ratio of proability of the genuie speaker
and probability of the impostor model, which is trained on al speakers
in the system except the genuine speaker class. This impli¢bat for
every person in the system, two models will be trained. In thecase of
sufficiently many subjects, a single and generic impostor mael can be
employed. The implementation of the GMM approach is done by ging
the Hidden Markov Models Toolkit (HTK) [66]. The GMM was buil t as
an HMM with just one state, as shown in Fig. 11.

Fig. 11. One-state HMM

VI. CONTACT-BASEDBIOMETRICS

The concept of Contact-Based Biometrics derives from the siple
observation that every person handles the objects of the stounding
environment quite differently. For example, the action of gcking up a
glass or holding a knife depends on the physiological chargeristics of
each person and the way that this person is used to manipulatebjects.
Contact-Based Biometrics can also been thought as a spedad part of
Activity-Related Biometrics for every activity which involves an object.

In the context of this project we intend to investigate the fasibility
of such biometric features in user authentication applicaibns. The
proposed approach exploits methods from different scientic fields, such
as collision detection and pattern classification, to solvéhe problem of
authentication. The major parts of the final implementation scheme are
the setup of a 3D virtual environment, the registration of the user and the
objects in this environment, the extraction of collision fatures during an
action between the user and an object and the classificationrgcedure.

A. 3D Environment Setup and Model Registration

Collision detection algorithms can only be used in a 3D envimment
with full knowledge of the geometry of each object. The virtal envi-
ronment of the presented pilot requires only the 3D represetation of
the user's hand and each object that is of interest. The uses’ hand is
modeled as a set of five fingers connected to the palm, which isodeled
as a simple rectangle (Figure 12(a)). Each finger has four deges of
freedom (DOF) and consists of three phalanxes which are motél as
simple capsules.

For the registration of the hand we used the CyberGIov@
(http://www.immersion.com/3d/). The CyberGIove® (Figure 12(b)) pro-
vides the angles between the phalanxes of the hand, so it is gsible
to reconstruct the 3D representation of the hand. Note, thathe virtual
representation of the hand is not perfectly accurate becawsthe size of
the fingers and the phalanxes are not known. In order to satisf the
requirements of a realistic pilot we cannot make any assumpbns or
measures on the user so this inaccuracy is considered as rmis

@)

(b)
Fig. 12. (a) The 3D representation of the hand. (b) The Cylwe@.

The objects of the environment can be registered using comper vision
techniques for object tracking. However, it is not absolutéy necessary to
have an accurate representation of the object in the virtualenvironment.
In particular for rigid objects, which are typically encoun tered in an
office environment, we can simplify the geometry of the objecusing a
priori information. This simplification is possible as the real shape of
each object is mostly related to the specific action that is @&l and not
to the way it is handled. For example, a glass can be represexd by a
cylinder since the user grabs only the outer surface of the gks.

B. Collision Feature Extraction

The classification features consist of any information thatcan be
acquired by employing state-of-the-art algorithms for proximity queries.
These include penetration depth [24], closest distance [Rg32], contact
points etc. The literature in the field is vast and there are nmerous
algorithms to accurately perform queries in real-time. The interested
reader is directed to [17], [33], [57], [58], [60] for further details. For
our purposes we used the algorithms for rigid convex object$59], [60]
of the software package SOLID (http://www.dtecta.com/).

Proximity queries are performed between the object and ever finger
of the user’s hand. Each query refers to either of two states;ollision or no
collision between the two virtual shapes. For example penedttion depth
can only be calculated when two objects intersect since it iglways zero
otherwise. However, in a user-object interaction scheme is necessary to
continuously produce discriminant feature samples. Thusany proximity
query as a single feature would not provide adequate informéon to a
classifier.
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In the proposed method we employ the combination of the pengition
depth and the closest distance, depending on the collisionage, to define
the feature space. The penetration depth and the closest tisice are
usually described as 3D vectors in virtual simulations. Howver, in our
case we prefer to describe them as the pair of point§p finger, Pobject)s
one on the finger and the other one on the object, that define thespective
VECIOr V = Pfinger — Pobject- ThiS Way the 3D position of each finger
affects the values of the feature vector, whilev would only describe the
relative direction which is most probable to be similar evenfor different
fingers. Let pd; and cd;, denote the points of the penetration depth and
the closest distance respectively for either the finger or th object k. The
feature sample f.(i,O) for the finger e and the object O on the i-th

frame is
e (pde, pdo),
fe(z,O)— { (cde,cdo),

The final feature vector F = |J_{fe} is formed using the collision
information from all the five fingers and is a 30-dimensional ector.

e and O collide
e and O do not collide

VII. CONTINUOUSFACE AUTHENTICATION

With the rapid increase of video surveillance equipment andvebcam
usage, it became necessary to develop robust recognitiongatithms that
are able to recognize people using video sequences, which naly provide
abundant data for pixel-based techniques, but also recordhe temporal
information. This project inspects two complementary appioaches to face
biometrics from continuous video, detailed in this sectionand the next.

The processing for the face and facial motion analysis modes starts
with detecting the face. We use the OpenCV face detection makk that
relies on the adaboosted cascade of Haar features, i.e. theo\a-Jones
algorithm for this purpose [61]. The face camera is positiord so that
the face image roughly covers al50 x 150 pixel area, which changes
greatly as the subject moves around.

One of the assumptions we have in the face authentication mate
is that the statistical models that incorporate general fae information
are trained offline, prior to the actual experimental setup. This means
that the bulk of the training database should consist of extmal data.
For this purpose, we have used the world model of300 face images
that accompany the BANCA database [3], enriched with one gary
image per enrolled person. This is a realistic assumption, ral since the
gallery is acquired with different illumination condition s as well, the
actual experimental environment presents a formidable chiéenge, with
completely uncontrolled illumination under ordinary (and poor) office
lighting.

For continuous face authentication, we take a straightforvard ap-
proach. The detected faces are cropped, rescaled to a fixedsj projected
to a previously computed subspace, and compared to the tengiks
residing in the gallery. For controlling the illumination, we apply a image
enhancement procedure proposed by Savvides and Kumar [54In this
procedure, the pixel intensities are mapped to a logarithng range, which
nonlinearly allocates a broader range to dark intensity leels, increasing
the visibility.

The subspace is found by applying the Karhunen-Loeve transim
to the enhanced training set. The matching of a claim with a géery
image can be achieved by thresholding a Mahalanobis-cosindistance
between projected vectors. If the subspace-projected qugris denoted
by u = [ujusa...up]” and the subspace-projected gallery template is
denoted byv = [viv2 ... vp]", denote their corresponding vectors in the
Mahalanobis space with unit variance along each dimensionsa

mi = =L (21)

o;

and )
ni = 2 (22)

o;

where o; is the standard deviation for the i** dimension of the p-
dimensional eigenspace. Then the Mahalanobis cosine diste is given
by [49]:

mn

dyrc(u,v) = cos(Omn) = (23)

[m||n]

A. Adaptive Cropping

The preprocessing of the external database is not replicatiein our
acquisition conditions. This means that the eigenspace pjection that
models the variation in aligned face images is not necesshrithe ideal
projection for a given query image. To remedy this situation we apply
an adaptive cropping algorithm that fine-tunes the face detetion result

so as to minimize the reprojection error e. Assume the eigenspace is
denoted with [\, e], where \ stands for the sorted eigenvalues ande
are the corresponding eigenvectors. The projection of quer « to the
eigenspace is:

Upx1) = €puay (T(ax1) = H(ax1)), (24)

where p denotes the data mean, and the subscripts indicate dimengio
ality. The reprojection error is given by:

e=[|l@@x1) — e@xp)U(px1) T Haxnll- (25)

The pseudocode of the algorithm is given in Fig. 13. Fig. 14 slvs the
cumulative effect of illumination correction and adaptive cropping on a
sample frame.

algorithm Adaptive_Cropping(facelmg)
cropping+« [0,0,0,0]
oldError « Infinity
found = False
cropDir = 1
while NOT found
oldError <+ newError
/*Crop the image in one of four directions*/
cropping(cropDir)« cropping(cropDir) + 1
croppedimg«— crop(facelmg,cropping)
/*Scale to fixed size*/
scaledimg— scale(croppedimg)
[lllumination normalization*/
normalizedimg« logTransform(scaledimg)
[*Projection*/
projimg « eigenVectors'*(normalizedlmg-meanimg)
/*Re-projection into the original space*/
reprojimg «— (eigenVectors*projlmg)+meanimg
[*Update the error*/
reprojError = norm(reprojlmg - normalizedimg)
if reprojError< oldError
newError« reprojError
else
/*Reverse the cropping*/
cropping(cropDir)« cropping(cropDir) - 1
end
/*Update the next cropping direction*/
cropDirection<— mod(cropDirection+1,4)
found «— (updated in the last cycle of four directions)
end
return cropping
end

Fig. 13. Adaptive Cropping Algorithm
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Fig. 14. a) The original captured frame. b) The illuminaticompensated
image. c¢) The result of the adaptive cropping

B. Probabilistic Matching

The activity model necessitates a short video sequence to becorded
for training purposes. This allows us to use a larger trainirg set for the
face authentication module as well. For each subject in theadlery, one
sequence of recordings is processed with the face detectiand adaptive
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cropping modules. The ensuing cropped images are projectetb the
Mahalanobis space, and modeled with a mixture distribution
The general expression for amixture modelis written as

J
p(@) = p(x|9;)P(G;) (26)
=1

where G; stand for the components,P(G;) is the prior probability, and
p(x|G;) is the probability that the data point is generated by compormnt
j. In a mixture of Gaussians(MoG), the components in Eq. 26 are
Gaussian distributions:

p(x|G5) ~ N (uj,25)

Typically, the covariance expression is restricted in MoG mdels to con-
trol the complexity of the model, as a diagonal covariance sdes linearly
with dimensionality, whereas a full covariance scales quadtically. In
this work we use the factor analysis approach to model the cavriance,
where the high dimensional datax are assumed to be generated in a
low-dimensional manifold, represented by latent variable z. The factor
spacespanned by the latent variables is similar to the principal pace
in the PCA method, and the relationship is characterized by afactor
loading matrix A, and independent Gaussian noise:

@7

T—p;=Ajz+te; (28)
The covariance matrix in the d-dimensional space is then represented by
X = AjAT + U, where U is a diagonal matrix and €; ~ N (0, ¥) is
the Gaussian noise. We obtain amixture of factor analysers(MoFA) by
replacing the Gaussian distribution in Eq. 26 with its FA formulation.

To learn the distribution of training faces of a single class we use
the incremental mixtures of factor analysers (IMoFA) algorithm, which
automatically determines the number of components in the miture, and
tunes the latent variable dimensionality for each mixture omponent
separately. For more details, the reader is referred to [53] The ensuing
model for the subject is (A, u;, €5, 7;), with m; being the component
prior, and j is the index for mixture components. The authentication of
a normalized and projected imagex; is effected by checking a pre-fixed
threshold:

p(xt|G) > 7

At any point in time, the continuous face authentication modile
evaluates the most recent frame, and returns a Boolean dea®. The
threshold — depends on the Mahalanobis space dimensionality, and scale
approximately linearly with it. For a 300-dimensional Mahalanobis space,
we have used a threshold of-400 for the log-likelihood, a higher value
will reject more frames and ensure a more secure system, wheas a
lower value will favour user convenience over security. I1t$ also possible
to base the decision on all the frames up to time, by using any classifier
combination method.

(29)

VIII. B EHAVIORAL FACE BIOMETRICS

The previous section dealt with the static facial appearang, ignoring
the behavioral cues that can be potentially useful for disdminating iden-
tities. Recently there is much attention to biometric systms that exploit
temporal information in videos, and most of the proposed apmaches
involve a heterogeneous mixture of techniques. These apmches can
roughly be classified into the following categories:

« Holistic approach: This family of techniques analyze the had as a
whole, by extracting the head displacements or the pose ewtion.
In [30] Li et al. propose a model-based approach for dynamic
object verification and identification using videos. In 2002 Li and
Chellappa were the first to develop a generic approach for simita-
neous object tracking and verification in video data, using psterior
probability density estimation through sequential Monte Carlo
methods [29]. Huang and Trivedi in [19] describe a multi-canera
system for intelligent rooms, combining PCA based subspadeature
analysis with Hidden Markov Models (HMM). Liu and Cheng
proposed a recognition system based on adaptive HMMs [35].Hey
first compute low-dimensional feature vectors from the indvidual
video frames by applying a Principal Component Analysis (P®);
next they model the statistics of the sequences and the tempb
dynamics using a HMM for each subject. In [1] Aggarwal et al.
have modeled the moving face as a linear dynamical system agian
autoregressive and moving average (ARMA) model. The paranters
of the ARMA model are estimated for the entire database using
the closed form solution. Recently, Lee et al. developed a ified

framework for tracking and recognition, based on the concep
of appearance manifold [28]. In this approach, the tracking and
recognition components are tightly coupled: they share thesame
appearance model.

o Feature based approach: The second group of methods explsithe
individual facial features, like the eyes, nose, mouth andyebrows.
One of the first attempts to exploit facial motion for identifying
people is presented by Chen et al. in [12]. In their work, they
propose to use the optical flow extracted from the motion of th
face for creating a feature vector used for identification.

e Hybrid approach: These techniques use both holistic and |ad
features. Colmenarez et al. in [14] have proposed a Bayesian
framework which combines face recognition and facial exprssion
recognition to improve results; it finds the face model and egression
that maximizes the likelihood of the test image.

This section proposes a new person recognition system baseuh
temporal features from facial video. As in the previous sedbn the face
area is first detected in each frame of the video. The registtén, or the
alignment problem, however, has different criteria to satsfy. Since we
will track the features, the alignment is not absolute, but elative to the
previous frame, minimizing a mean square error measure. Foraligned
faces, the optical flow is calculated from consecutive frange and used as
feature vectors for person recognition.

Once the faces are detected with the Viola-Jones method, apesen-
tation called the "integral image” is created using Haar-like features.

The learning algorithm is based on AdaBoost, which can effiently
select a small number of critical visual features from a lar@r set, thus
increasing performance considerably.

Next the resulting image is cropped as shown in Fig. 15 basedno
anthropological measures to limit the image to facial featees that exhibit
more motion.

Fig. 15. Detected and cropped face images in two frames.

Face alignment was required due to the simple fact that we waed to
focus our attention on motion of local features from the facesuch as the
lips and the eyes. If this step is not performed before featue extraction,
global motion of the head significantly affects the resultsAlignment of
the faces detected in two different frames was carried out byninimizing
the mean square error of the integral image difference:

1 M N
argmin ———= 3" 3" (11(i. ) — 126, ))° (30)

i=1j=1

where,. .. Fig. 16 shows two facial images found in consecwgi frames
aligned with this method.

3

Fig. 16. Two facial images aligned and superimposed.

We have decided to use optical flow vectors for person recogiun,
calculated by the Lucas-Kanade technique [36], which useshé spatial
intensity gradient of the images to guide the search for matuing locations,
thus requiring much less comparisons with respect to algothms that use
a predefined search pattern or search exhaustively. Then btk means are
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taken to reduce the size of the feature vector to standard dimnsionality
of 200. Fig. 17 shows the optical flow computed from the imagesigned
in Fig. 16.

Fig. 17. Optical flow from consecutive frames.

IX. CONTINUOUSACTIVITY - RELATED BIOMETRIC
AUTHENTICATION

Among the project’'s prominent objectives is to investigatethe effec-
tiveness and applicability of activity - related biometric technologies.
Activity - related biometrics is a novel and innovative conept in biometric
user authentication and refers to biometric signatures extacted by
analyzing the response of the user to specific stimuli, whilperforming
predefined but natural work - related activities. The novely of the
approach lies in the employment of dynamic features extraed by the
moving human model as biometric signal, as well as in the facthat
the biometric measurements will correspond to the user's rgponse to
specific events, being, however, fully unobtrusive and full integrated
in the user’s workspace. The activity - related biometric adhentication
module evaluates the fundamental assumption that each userdynamic
behavioral profile contains unique intrinsic characterisics that can
be used for authentication. Furthermore, a reliable implenentation
of an activity - related biometric authentication system is ideal for
continuous user authentication, thus alleviating the mainlimitation of
some successful state-of-the-art approaches (fingerprintris etc.) which
cannot be recovered once forged.

In the following, the modules and methods that were implemeted to
perform activity - related authentication will be described. In addition to
that, the pilot setup and the experimental procedures follaved in order
to evaluate activity - related biometrics will be presented

A. Activity Detection and Recognition Module

As stated above, the user’'s dynamic profile extraction is ba&sl on the
response to specific environment - generated stimuli. Any hman behavior
is associated to some action or activity. The aim of stimuli gneration is
to trigger the execution of specific actions by the user, uponvhich his
behavioral profile can be then calculated. It is therefore car that the
extraction of the activity - related features must be precedd by an action
detection, segmentation and recognition procedure. Thisaal is achieved
by means of a multimodal approach that uses the output of theaund
event recognition Module, the Object Occlusion Tracking Malule and
the body motion tracking module along with a Coupled Hidden Markov
Model formulation in order to detect the generation of the stmuli and
segment the user’'s response (action). The segmentation put of the
Activity Recognition Module can be then fed to the Activity - Related
Biometric Authentication Module. Fig. 18 illustrates the aove inter -
module relationships.

Numerous relevant approaches for activity recognition hae been
reported in the literature using object manipulation context information
[43], [46], [64] and/or object trajectory information in th e given scene [5],
[31]. Sound event detection has also been previously emptxy to assist
inference of ongoing activities [55], [63].

The proposed method for Activity Recognition is based on theletection
of three different kinds of Scene Events occurring in the sage: Sound
Events (e.g. Phone Ringing), detected by the sound event agmition
Module, Proximity Events (e.g. “Hand close to Glass”), deteted by the

Sound Event
Recognition Module

Activity - Related
Biometric
Authentication Module

Object Occlusion
Tracking Module

Activity Recognition
Module

Body Motion Tracking
Module

Fig. 18. Module cooperation for Activity Recognition

Human Body Tracking Module along with predefined knowledge & the
object positions on the controlled workspace and Object Odasion Events
detected by the respective tracker. An Object Occlusion Eve is emitted
when some object in the scene is missing from its “normal” padson.

In order to achieve action recognition, a two - stream Coupld HMM
is associated to every action class and trained on two sets dfscrete
observation symbols (one for each stream) extracted by therimitive
events described above (i.e. second layer events). The fisstt of second
layer symbols is a subset of the Sound Event set that can be asgmted
to a particular action. For example, the Phone ConversationCoupled
HMM only handles relative sound events (Ringing, Speech, Bince etc.)
and disregards the rest (e.g. Writing sound). The observatin symbols of
the second stream are formed as meaningful (for the particar action
class) combinations of the Object Occlusion and Proximity Eents of
the first layer. For instance, the state “Phone receiver misag” AND
“Left Hand close to Head” forms a single second layer event tht is used
as observation symbol of the second stream of the Phone Comsation
CHMM to represent the state of “talking on the phone”.

At every timestamp of some activity sequence, first and secdnlayer
events are detected and form N double - stream discrete obsation
sequences, where N the number of actions to be recognized and
segmented. Each CHMM uses an overlapping sliding window thtagoes
through its own observation sequence. The size of the slidinwindows
and the size of overlapping are experimentally defined. The BMM of
each action is trained on manually annotated sequences andpgobability
threshold is defined, above which the respective action is cegnized and
a portion in the size of the sliding window is segmented and & to
the Activity Biometrics Module. Fig. 20 graphically depicts the Activity
Recognition Module. The reason for performing the mapping fom first
layer events to second layer events is to impose a smaller sian the final
observation sets and process the three initial streams of emts into only
two - stream Coupled HMMs, which results in making training more
efficient.

B. Coupled Hidden Markov Models

The need of a Coupled Hidden Markov Model formulation is justfied
by the fact that Scene Event detection is often erroneous, pducing
many false alarms, wrong inferences and multiple occlusia over
time. Consequently, detected event symbols would better bthought
of as the probabilistic output of some underlying process, ather than
as deterministic events. Furthermore, Coupled HMMs offer arobust
mathematical background for integrating multimodal observations and
fusing different but correlated processes (sound events +uman activity
based events).

Our Coupled HMM implementation is based on the formulation
presented by Ara V. Nefian et al. [44], where the hidden nodesfo
each stream interact and at the same time have their own obseations
(Fig. 21). The elements of the CHMM (Initial, Transition and Observation
probabilities) are described as:

m(i) =[] 7*(is) = ]| P(ai = is) (31)
be(i) = [[ 6:Gis) = ][ P(O5la; = is) (32)
(33)

a(ilj) = [[ e*Gsli) = [[ P(a = islas—1 = J)

The CHMMs are trained using an EM algorithm, based on
the calculation of the forward and backward variables, a:(i) =
P(Oq,...,0¢,q¢ =1) and Bi(i) = P(O¢41,...,0T,q¢ = i) respec-
tively, where T the length of the observation sequence:
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Fig. 19. Coupled Hidden Markov Model structure. Squareotiethe hidden
nodes of each interacting process and circles the assbabservable outputs

ax (i) = w(i)b1 (i) (34)
ar(i) = be(1) 3 a(iliar-1() (35)
for t =2,3,....,T J
Bi(i) =1 (36)
(37)

Be(§) = Z bet1(1)a(ili)Be+1(i)

fort=T7,T-1,...,2

The probability of the r;;, observation sequenceO, of length T is
computed asa,.7(N1, N2,...Ng) = Br1(1,...,1)

The scaled version of the forward and backward variables &,3) [48]
obtained in the E step are used to re-estimate the transitionand
observation parameters as follows:

S Doistinmi 2op rt()a(ili)bre+1(1)Bre+1 (1)
it ()BreG) =

Bf (k) _ Zr Zi,s.tuis:i Zt,s.tof:k a‘f(l)éf(i) cl_t
PIFDIN Ei,s.t/iszi dt(i)ﬁt(i)a

where c; the scaling coefficient for time t.

The number of states has been defined taking into consideratn the
inherent structure of each action. For instance, the Phone @nversation
action consists of the “natural” states “Ringing” - “Reach Phone”- “Bring
close to Head” - “Speech” - “Hang Up”, upon which various secad layer
events can be defined.

& ilj) =

(38)

39

C. Activity - Related Biometric Authentication Module

The aim of the activity - related biometric authentication module is
to receive the dynamics of the human posture produced by the duly
motion tracking module on some user action segmented by the ctivity
Recognition Module and output some authentication results(Fig 18).
Within this project we would like to evaluate the assumptionthat behavior
can be employed as biometric signal as well as the hypothedisat our
belief measure on the user’s identity increases with time. @thermore,
various work - related motions should be tested with regard ¢ their
discriminative power.

Related work includes several model - based and feature - bed
methods for human gait identification and authentication [&], [13].
Key stroke dynamics have been also employed for activity - feted
person authentication [42]. To our knowledge, activity - réated person
authentication based on environment generated stimuli angvork - related
activities is a completely novel concept and has never beemplemented
before.

The output of this module for a particular action could either be a strict
authentication result (Accepted/Rejected) or a belief mesure that can
be integrated with future partial inferences of the same modlity and/or
inferences of other modalities to converge in a final authemtation result
at later time stamps (Continuous Authentication). The later approach
seems more promising, as the user’s “natural” behavior can & more
reliably confirmed on multiple action instances. In general a user's way

11
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Fig. 20. a) Event Extraction b) Sliding Window for CHMM

of execution of some motion can diverge from its usual dynarog on single
instances depending on various factors (psychological cdition, unusual
environmental conditions etc.). Despite that, it can be assned that over
longer periods of times where multiple instances of many aans take
place, the user’s identity could be reliably inferred.

The Activity - Related Biometric Authentication Module assumes a
mapping of a user's behavior to his identity, therefore toos, methods
and features that have been used for action and gesture recoiion can
be applied. In this implementation the body joint angles andposition of
the central point of the human model (l1l) and their derivati ves are used
as features for modeling the user’s natural way of executingome action,
since those features can powerfully represent the human medl posture
and its dynamics. Principal Component Analysis for each adbn class is
used to reduce the dimensionality of the feature vector.

For biometric authentication Hidden Markov Models with Mul tivariate
Gaussian outputs are used to capture the spatio - temporal damics
of the human behavior. Standard HMM classification is perfomed by
assigning one model to every individual enrolled in the authntication
system. Given some extracted observation sequene@;.r of length T
associated to a segmented action, and the set of HMMs,,i = 1,..., N
where N the number of enrolled users, the probability P(O|X;) is
calculated for all HMMs. By assigning an authentication threshold to
each user's HMM, direct authentication results based on sigle actions
can be obtained. A more promising option is propagating all he above
probabilities to an integration module that emits authentication results
on longer periods of activity. Fig. 21 graphically represets the Activity
- Related Biometric Authentication Module.

X. INTEGRATION OFDECISIONS

A typical authentication system presents a DET (Detection Eor
Trade-off) curve which enables a system to select a point orhé curve
to trade off between security and ease of use of a system. Howeg
a continuous authentication system needs to traverse this EX curve
based on the current situation. If the system is confident basl on past
inferences, temporary drops in the probability of the targe class should
not cause the rejection of the user. However if there is an efmated
period of diffidence about the authenticity of the target peson, then the
system should be able to reject the person eventually.

The second problem is the integration of the inferences fronthe
different modalities. Each mode produces different infereces with a
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Fig. 21. Activity - related biometric feature extractiondaauthentication

different probability and these inferences are available adifferent points
in time. There is the additional complication of assessinghe reliability
(and consequently the relative weight) of each modality. Tis problem is
termed in the literature as “Holistic Fusion”.

Among previous work done on holistic fusion, the most signifiant
are Zhang et al. [67] and Kittler et al. [25]. Zhang et al. suggested a
two state Hidden Markov Model, where the two states are “safé and
“attacked”. A decay factor was proposed, which exponentidy weighted
over the previous observations, as well as weighted sums tatégrate
over modalities, where the weights were the assessed reliiies of the
modalities. The area under the Receiver Operating Charactéstics (ROC)
curve for each modality is used to quantify reliability. The approach we
will present now is similar in some respects to this method, &t it does
not use HMMs.

Let A\ be the model of ‘target’ person, the person whom we want to
authenticate. Let A\,,, be one among theM impostor models. Let O} be
the ¢t observation in time, amongI" observations from thent” modality
among N modalities. Each module produces the likelihood of\; given
Op, i.e. p(OF|Aq). Since the likelihoods from different modalities have
the inherent problem of being in different scales, it become difficult to
find suitable weights. So the posterior is calculated as faivs

The next question is about calculating the prior P(Aq) and the
observation probability p(O}). The observation probability can be given

by

(40)

M
p(O7) = p(O}Aa) * P(Aa) + Y P(OF[Am) * P(Am)

m=1

(41)

How to estimate P(\q) is an interesting problem. This value is tunable
and different points on the DET curve can be achieved by charigg this
value. Increasing this value makes the system more confideabout the
authenticity of the subject and thereby increases the falsacceptance rate
(FAR). Reducing this value increases the false rejection ta (FRR) while
decreasing the FAR.

A continuous authentication system is typically used aftethe authen-
ticity is verified by an independent system. The initial estinate of the
prior, Po(Aq), can be received from this entry system or taken to be an
arbitrarily high value. The subsequent values of this prior are calculated
as shown below

N
> Pi(Aa|O}) * P(O7,)
Pi(A) = =L (42)
> P(OL,)
n=1
where
P(OFXa) + XMy p(OF[Am)
M+1
PO},) = (43)

2

=1

PO A) + S M p(OP|Am)
M+1
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Now with a time-varying estimate of prior available equatian 40 can be
combined with 41 and written as shown below.

Pi(Aq|O7) = p(OF|Aa) * Pi—1(Aq)

M
P(OFXa) * Pio1(Aa) + Y p(OF|Am) * Pio1(Am)
m=1
(44)
where Vm 1= P 1(0a)
Pra(Am) = ——— 25 (45)

The prior is updated at every calculation and the confidence fothe
system depends on all the different modalities. In a systenush as the one
described in the experiment, it may not be possible to get a meinference
from each modality at each instance of time. So the latest iefence from
each modality is used for re-computing the estimate of the por, \q.

The strategy proposed builds a confidence value about the idéty of a
person. This confidence is in terms of the updated posterior nebability.
If the different modalities ascribe low confidence to the autenticity of
the person, then the overall confidence drops down. But if thenodalities
provide high confidence to the authenticity, then the overdl confidence
in the person builds up. At some point, if one of the modalitis ascribes
low confidence to the authenticity of the target, then it is wighed by how
probable the occurrence of such an observation is. So if an gervation is
not very probable in the model of the entire system, then a loar weight
is given in the overall confidence calculation.

If at any point, the user is switched with an impostor, it will take
some time for the system to bring down the confidence levels duto
the high confidence levels initially built on the user, and tle impostor
is likely to be authenticated for some time. But the overall onfidence
will drop eventually, with a speed that depends on the confidece scores
of each modality. Using a window-approach that takes into amount the
last k frames in assessing probabilities may be useful in providig a fast
decrease under switched persons.

Further testing needs to be done in the case of impostor swiiing and
hysteresis of the system under these circumstances.

XI.

A. Continuous Face Authentication

The face authentication module is tested with the recording of 11
individuals. The first session is used to construct the stattical models
for each person. The remaining nine sessions are used for reging the
success of the algorithm. For 99 sessions, the face detentimodule locates
faces92.3 per cent of the total recording time, with a standard deviation
equal to 7.4 per cent. This means that for a 1000 frame session, about
923 face images are processed for authentication. Some ofte faces are
false alarms, caused by the failure of the Viola-Jones faceetkector.

In general, the face detection module is robust enough to crectly
localize faces during activities like phone conversationsThis implies that
for these frames, the cropped face area contains the hand artie phone
itself. We have observed that the face authentication modal frequently
stays below authentication threshold for these cases. Fi@2 shows the
authentication result for a single session. The horizontahxis is the time,
and the vertical axis is the likelihood value obtained by theclass models.
Each face is shown as a dot on this plot. We only report the likéhood
from the genuine class and the best impostor claim for that fame. The
threshold is selected as-400, and the shown sequence justifies this choice
nicely. In fact the threshold is optimized on a separate sethut since it
strictly depends on the subspace dimensionality, it produgs uniformly
good results across the test sessions, as shown by the lowigace of
the results. At the bottom of the figure, a coloured band indiates when
faces are not detected in the video (with red), when they areedected but
the true class authentication does not follow (with yellow)and correct
authentications (with green). The parts with longer bands 6 yellow are
the activities where the face is not isolated or completelyrdntal.

The complete testing data consists of 91250 frames, recodidrom
nine sessions per subject, and 11 subjects. For each framejet best
impostor access is selected by evaluating the remaining 10oakels. We
demostrate the effect of selecting different thresholds irFig. 23, where
the false accept rate and the false rejection rate of the sysin are plotted
for a range of threshold values. For the selected thresholdfo—400, the
system has 0.3 per cent false acceptance rate and 30.1 falsgection
rate. This means that for a video sequence with 1000 detectef@ces,
roughly 3 frames would admit impostors, and 700 frames wouldndicate
the presence of the true user. At this level, there is no int@retation
of these results. In practice, a session of continuous authication can

EXPERIMENTAL RESULTS
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Fig. 22. The output of the continuous face authenticatiordut® during one session. (a) The likelihood of the genuiné laest impostor claims. The
band shows correct authentications (green), no authépticéyellow), and no detection (red) cases. (b) The likadith ratio of the genuine class to the best
impostor class for the same session.

operate on a sliding window of frames, where the genuine andripostor 0 Speaker verlication Performance
likelihoods are compared, and the system outputs a decisioat every
time slot. Under these controlled conditions (i.e. difficul but similar
illumination conditions in training and test sessions), itis obvious that
the face modality provides very robust authentication. 20

Continuous face authentication
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Fig. 24. DET curve for speaker verification module

| of written text. 15 subjects have contributed to the databas, with 10
recording sessions per subject. The results reported in tki section are
obtained by training with sessions one to five, and testing h the session
10° six and seven, for 10 subjects. We have evaluated GMMs with fiérent
numbers of components.

Fig. 24 shows that the best results are achieved using 128 cpaments
for Gaussian mixture densities.

FAR

Fig. 23. The receiver operator characteristic curve forrmeaof thresholds
of authentication. The genuine class is evaluated agdmestbest impostor
model for each frame. The average values for 99 sessionepoeted. The
cross indicates the selected threshold for the operating pbthe system. C. Contact-based Biometrics

The experimental setup includes one testing action and eiglsubjects.

In particular, the right hand of each user and the glass of theoffice were

. registered in the virtual environment for the action notated as “grabbing

B. Speaker verification the glass”. For the classification we implemented standardechniques
For purposes of training and testing, approximately 20 seaods of of pattern recognition. PCA was used to reduce the dimensiality
speech is recorded during each session in form of a telephogenversation  of the feature space while neural networks were trained for he final
in addition to 40 seconds of speech in form of reading a paragph classification. Each person performed the action 10 times vith produced
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1000 sample frames on average for each subject due to the higampling
frequency of the CyberGlove™. From these samples 70% were used to
train the network and 30% for testing. Fig. 25 displays the firal ROC
curve of the FAR and FRR rates for the testing data of the eightsubjects.

RI
o
o
&

25 3 35 4
FAR

Fig. 25. ROC curve for the action “grabbing the glass” anchegubjects.

The results show that collision features are comparable to tber
Activity-Related biometrics and therefore comprise a very interesting
approach for user authentication.

D. Body Motion Tracking

The body tracker was tested in the office pilot. Two webcams, re
frontal and one lateral, recording at 9.5 fps provided the frames onto
which the 3D articulated model was projected. 3D body part lgations
(head, shoulders, elbows and wrists) have been manually aotated in
one subject sequence in order to test the tracker performare The
error is expressed as the mean distance between the annotdtand the
estimated joints. Comparative results between the APF wittthe common
likelihood approach (comprising edges and foreground matging) and our
proposal are shown in Fig. 26. In both cases we used the body o
and the projection procedure explained in section IlI-C. Fhal mean
error obtained by our approach for this sequence was 85 mm. Gomon
likelihood evaluation makes the tracker vulnerable to tradk loss, leading
to higher mean error. On the other hand, the divergence mease and
the feature-based smoothing of the likelihood approximatn make the
tracker more robust under our experimental conditions.

—— Our Proposal
Normal Likelihood Evaluation

400

error (mm)

80 100

Fig. 26. Comparative results using 3 layers and 200 pastioct® layer with
the normal likelihood aproximation and our proposal.

We found out that some spurious contours due to clothing and lgjects
caused our tracker to fail in its estimation. The aparent moton recorded
in the images was very fast in some of the actions required foactivity-
based recognition. These aparent fast motions caused bluis the image
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and abrupt translation of body parts. Since the implementedannealing
PF works with contours as most determinant feature, the algothm was

not able to track several of these fast motions. However, it as able to
recover some poses after a tracking error. Similarly, we dedcted that
some poses couldn't be retrieved due to self-occlusions cmd by the
lack of additional views. Therefore, for some of the actionsand poses,
the problem becomes ill-posed and, as a consequence, moréommation

is needed.

After testing several sequences, it was found that for seval non-fast
motions good results can be obtained with 3 layers and betweel00 and
200 particles per layer. However, a more exhaustive study wi ground
truth angles must be done under similar conditions in order b refine the
likelihood approximation, the annealing parameters and tle number of
particles.

E. Other Modules

The results of the Sound - based Event Detection module arduiktrated
in the respective section IV. Testing of the Activity Recogition module
and the Behavioral Face Biometrics module remain as future wrk.

Preliminary results for the Activity - related biometric mo dule reveal
a potential of using work - related activities as biometric fynals.
Experimenting on 7 manually segmented sequences (5 for treing and
2 for testing) of the action classes Writing and Phone Conveation,
we found out that the true person receives good HMM log - likehood
ranking. Despite that, the need for more accurate and stabl8D Motion
Tracking was obvious, as it is the case for most state of the amodel -
based techniques. Future work includes testing on larger $& and more
action classes, with improved motion tracking data. A featve - based
approach (direct feature extraction on segmented human blos) will also
be implemented.

XII. CONCLUSIONS ANDFUTURE DIRECTIONS

In this project we have evaluated several activity related Bmetric
modalities for their relative success in continuously detenining and
verifying the identity of a user in a typical and non-obtrusive work
environment scenario. Apart from more traditional face and speech
based verification, facial actions and movement patterns we assessed for
authentication. A pilot setup with different action scenaios is defined, and
a large database is collected from 15 subjects. Each subjexbntributed 10
sessions, which are manually annotated by the project groufor further
evaluation.

The experimental evaluation of all the modalities is not acleved
exhaustively, and their possible integration remains to bea future
endeavor. The latter is partly due to the success of individal modalities on
the restricted pilot setup, which suggests that under clodg resembling
training and testing conditions there will be no marked bendit under
fusion scenarios. However, the results demonstrate that &eity-based
biometrics is a promising venue for further study.
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