Matlab Basics

CS 111

Introduction to Computing in Engineering and Science Pinar Duygulu Bilkent University, Spring 2007

Slides are taken from Selim Aksoy and Ozlem Ozgu

CS111 Introduction to Computing in Engineering and Science © Pinar Duygulu

MATLAB: MATrix LABoratory

- www.mathworks.com
- References:
- Mathworks' Getting Started with Matlab
 - http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/
- Matlab Primer by Kermit Sigmon
 - http://ise.stanford.edu/Matlab/matlab-primer.pdf

MATLAB

- Advantages of MATLAB
 - Ease of use
 - Platform independence
 - Predefined functions
 - Plotting
- Disadvantages of MATLAB
 - Can be slow
 - Expensive

MATLAB Desktop

📣 MATLAB	
File Edit View Web Window Help	
🗋 🗃 🐇 🖻 🛍 🕫 🕫 🧊 ? Current Directory: C:\Progra~1\MATLAB6p1\work	
Workspace 7 X	Command Window 7 X
🖙 🛃 🛐 Bij Stade: Base	To get started select "MATIAR Hein" from the Hein menu
Name Size Bytes Class	To get started, select mains help from the help ment.
ans 1x1 8 double array	>> 2 + 2 ans =
	4
	>> p1 ans =
	3.1416
	ans =
	2.2204e-016
	ans =
	1 >> log(100)
workspace Browser	ans =
	4.6052 >> log10(100)
Vorkspace	ans =
Command History	>> 13 + 21^2 + (15 / 32)
2 + 2 ni	ans = 454,4688
eps	>> sqrt(9)
sin(pi / 2)	ans = 3
log(100)	>> exp(2)
$13 + 21^2 + (15 / 32)$	ans = 7.3891
sqrt(9)	>> $5 + 3 + 1.2 - \text{sqrt}(5) + \dots$
exp(2)	ans =
5 + 3 + 1.2 - 3qrt(5) + 2 + 1.5 + log(2)	11.1571
Command History	Command Window
/	
Command History Current Directory	
Ready	

- A program can be input
 - command by command using the command line (lines starting with "»" on the MATLAB desktop)
 - as a series of commands using a file (a special file called M-file)
- If a command is followed by a semicolon (;), result of the computation is not shown on the command window

- help
 - help *toolbox* \rightarrow e.g., help elfun
 - help *command* \rightarrow e.g., help sin
- helpdesk, helpwin, "?" button
- lookfor
 - lookfor *keyword* \rightarrow e.g., lookfor cotangent
- which
 - which *name* \rightarrow e.g., which log
- demo

- Variable is a name given to a reserved location in memory
 - $class_code = 111;$
 - number_of_students = 65;
 - name = 'Bilkent University';
 - radius = 5;
 - area = pi * radius^2;

- Use meaningful names for variables
- MATLAB variable names
 - must begin with a letter
 - can contain any combination of letters, numbers and underscore (_)
 - must be unique in the first 31 characters
- MATLAB is case sensitive: "name", "Name" and "NAME" are considered different variables
- Never use a variable with the same name as a MATLAB command
- Naming convention: use lowercase letters

• The fundamental unit of data is array

Initializing Variables in Assignment Statements An assignment statement has the general form *var = expression*

Examples:

>> var = 40 * i;	>> a2 = [0 1+8];
>> $var2 = var / 5;$	>> b2 = [a2(2) 7 a];
>> array = [1 2 3 4];	>> c2(2,3) = 5;
>> $x = 1; y = 2;$	>> d2 = [1 2];
>> a = [3.4];	>> $d2(4) = 4;$
>> b = [1.0 2.0 3.0 4.0];	
>> c = [1.0; 2.0; 3.0];	
>> d = [1, 2, 3; 4, 5, 6];	';' semicolon suppresses the
>> e = [1, 2, 3	automatic echoing of values but
4, 5, 6];	it slows down the execution.

CS111 Introduction to Computing in Engineering and Science © Pinar Duygulu

$$- x = 5
 x =
 5
 - y = x + 1
 y =
 6
 - vector = [1234]
 vector =
 1 2 3 4$$

```
- matrix = \begin{bmatrix} 1 & 2 & 3; & 4 & 5 & 6 \end{bmatrix}
matrix =
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}
- matrix = \begin{bmatrix} 1 & 2 & 3; & 4 & 5 \end{bmatrix}
??? Error
- a = \begin{bmatrix} 5 & (2+4) \end{bmatrix}
a =
5 & 6
```

- Initialization using shortcut statements
 - colon operator \rightarrow first:increment:last

•
$$x = 1:2:10$$

 $x =$
1 3 5 7 9
• $y = 0:0.1:0.5$
 $y =$
0 0.1 0.2 0.3 0.4 0.5

- Initialization using built-in functions
 - zeros() • x = zeros(2)• y = zeros(1,4) $\mathbf{X} =$ 0 0 y =0 0 0 0 $\mathbf{0}$ 0 • z = zeros(2,3)z =t = zeros(size(z)) 0 0 0 0 0 0 t = - ones(), size(), length() 0 0 0 0 0 0

Initializing with Built-in Functions

- zeros(n)
- zeros(n,m)
- zeros(size(arr))
- ones(n)
- ones(n,m)
- ones(size(arr))
- eye(n)
- eye(n,m)
- length(arr)
- size(arr)

- Initialization using keyboard input
- The **input** function displays a prompt string in the Command Window and then waits for the user to respond.
 - input()
 - value = input('Enter an input value: ') Enter an input value: 1.25
 value = 1.2500
 - name = input('What is your name: ', 's')
 What is your name: Pinar
 name =
 Pinar

Multidimensional Arrays

• A two dimensional array with m rows and n columns will occupy mxn successive locations in the computer's memory. MATLAB always allocates array elements in **column major order.**

$$a=[1\ 2\ 3;\ 4\ 5\ 6;\ 7\ 8\ 9;\ 10\ 11\ 12];$$
$$a(5)=a(1,2)=2$$

A 2x3x2 array of three dimensions
 c(:, :, 1) = [1 2 3; 4 5 6];
 c(:, :, 2) = [7 8 9; 10 11 12];

Subarrays

- It is possible to select and use subsets of MATLAB arrays. arr1 = [1.1 -2.2 3.3 -4.4 5.5]; arr1(3) is 3.3 arr1([1 4]) is the array [1.1 -4.4] arr1(1 : 2 : 5) is the array [1.1 3.3 5.5]
- For two-dimensional arrays, a colon can be used in a subscript to select all of the values of that subscript.

```
arr2 = [1 2 3; -2 -3 -4; 3 4 5];
arr2(1, :)
arr2(:, 1:2:3)
```

Subarrays

• The **end** function: When used in an array subscript, it returns the highest value taken on by that subscript.

arr3 = [1 2 3 4 5 6 7 8]; arr3(5:end) is the array [5 6 7 8] arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]; arr4(2:end, 2:end)

• Using subarrays on the left hand-side of an assignment statement:

$$arr4(1:2, [1 4]) = [20 21; 22 23];$$

(1,1) (1,4) (2,1) and (2,4) are updated.
 $arr4 = [20 21; 22 23];$ all of the array is changed.

Subarrays

• Assigning a Scalar to a Subarray: A scalar value on the righthand side of an assignment statement is copied into every element specified on the left-hand side.

> >> arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]; >> arr4(1:2, 1:2) = 1 arr4 = 1 1 3 4 1 1 7 8 9 10 11 12

• Array indices start from 1

•
$$y = [1 2 3; 4 5 6];$$

- $y(1,2)$
ans =
2
- $y(2,1)$
ans =
4
- $y(2)$
ans =
4 (column major order)

•
$$y = [123; 456];$$

- $y(1,:)$
ans =
1 2 3
- $y(:,2)$
ans =
2
5
- $y(2,1:2)$
ans =
4 5

y(1,2:end)

 ans =
 2
 3

 y(:,2:end)

 ans =
 2
 3
 5
 6

•
$$x = [-2\ 0\ 9\ 1\ 4\];$$

- $x(2) = 5$
 $x =$
 $-2\ 5\ 9\ 1\ 4$
- $x(4) = x(1)$
 $x =$
 $-2\ 5\ 9\ -2\ 4$
- $x(8) = -1$
 $x =$
 $-2\ 5\ 9\ -2\ 4\ 0\ 0\ -1$

•
$$y = [123; 456];$$

 $-y(1,2) = -5$
 $y =$
 $1 -5 3$
 $4 5 6$
 $-y(2,1) = 0$
 $y =$
 $1 -5 3$
 $0 5 6$
 $-y(1,2:end) = [-19]$
 $y =$
 $1 -1 9$
 $0 5 6$

•
$$y = [123; 456; 789];$$

- $y(2:end, 2:end) = 0$
 $y =$
 123
 400
 700
- $y(2:end, 2:end) = [-15]$
??? Error
- $y(2, [13]) = -2$
 $y =$
 123
 -20
 -2
 700

Special Values

- MATLAB includes a number of predefined special values. These values can be used at any time without initializing them.
- These predefined values are stored in ordinary variables. They can be overwritten or modified by a user.
- If a new value is assigned to one of these variables, then that new value will replace the default one in all later calculations.

Never change the values of predefined variables.

- pi: π value up to 15 significant digits
- i, j: sqrt(-1)
- Inf: infinity (such as division by 0)
- NaN: Not-a-Number (such as division of zero by zero)
- clock: current date and time as a vector
- date: current date as a string (e.g. 16-Feb-2004)
- eps: epsilon
- ans: default variable for answers

MATLAB Basics: Displaying Data

- Changing the data format
 - value = 12.345678901234567

format short $\rightarrow 12.3457$ format long $\rightarrow 12.34567890123457$ format short e $\rightarrow 1.2346e+001$ format long e $\rightarrow 1.234567890123457e+001$ format short g $\rightarrow 12.346$ format long g $\rightarrow 12.3456789012346$ format rat $\rightarrow 1000/81$

MATLAB Basics: Displaying Data

- The disp(array) function
 - disp('Hello');
 - Hello
 - disp(5);
 - 5
 - disp(['Bilkent ' 'University']);
 Bilkent University
 - name = 'Pinar'; disp(['Hello ' name]);
 Hello Pinar

- The num2str() and int2str() functions
 - d = [num2str(16) '-Feb-' num2str(2004)];
 - $\operatorname{disp}(d);$

16-Feb-2004

- -x = 23.11;
- disp(['answer = ' num2str(x)]);
 answer = 23.11
- disp(['answer = ' int2str(x)]);
 answer = 23

MATLAB Basics: Displaying Data

- The fprintf(format, data) function
 - %d integer
 - %f floating point format
 - % exponential format
 - n new line character
 - t tab character

MATLAB Basics: Displaying Data

- fprintf('Result is %d', 3);
 Result is 3
- fprintf('Area of a circle with radius %d is %f', 3, pi*3^2);
 Area of a circle with radius 3 is 28.274334

$$-x = 5;$$

$$-x = pi;$$

- fprintf('x =
$$\frac{1}{2} d \ln y = \frac{1}{2} d \ln'$$
, 3, 13);

$$\begin{array}{c} x = 3 \\ y = 13 \end{array}$$

MATLAB Basics: Data Files

- save filename var1 var2 ...
 - save homework.mat x y \rightarrow binary

 \rightarrow binary

- save x.dat x -ascii \rightarrow ascii
- load filename
 - load filename.mat
 - $\text{load x.dat} \text{ascii} \longrightarrow \text{ascii}$

MATLAB Basics: Scalar Operations

- *variable_name = expression*;
 - $addition \quad a+b \quad \rightarrow a+b$
 - subtraction $a b \rightarrow a b$
 - multiplication $a \times b \longrightarrow a * b$
 - division $a / b \rightarrow a / b$
 - $exponent a^b \rightarrow a^b$

MATLAB Basics: Scalar Operations

•
$$x = 3 * 2 + 6 / 2$$

-x = ?

- Processing order of operations is important
 - parenthesis (starting from the innermost)
 - exponentials (left to right)
 - multiplications and divisions (left to right)
 - additions and subtractions (left to right)

•
$$x = 3 * 2 + 6 / 2$$

$$-x = 9$$

MATLAB Basics: Built-in Functions

- result = function_name(input);
 - abs, sign
 - log, log10, log2
 - exp
 - sqrt
 - sin, cos, tan
 - asin, acos, atan
 - max, min
 - round, floor, ceil, fix
 - mod, rem
- help elfun

- Syntax errors
 - Check spelling and punctuation
- Run-time errors
 - Check input data
 - Can remove ";" or add "disp" statements
- Logical errors
 - Use shorter statements
 - Check typos
 - Check units
 - Ask your friends, TAs, instructor, parents, ...

- help *command* \rightarrow Online help
- which
- clear
- clc

- lookfor *keyword* \rightarrow Lists related commands
 - \rightarrow Version and location info
 - \rightarrow Clears the workspace
 - \rightarrow Clears the command window
- diary *filename* \rightarrow Sends output to file
- diary on/off \rightarrow Turns diary on/off
- \rightarrow Lists content of the workspace who, whos
- more on/off \rightarrow Enables/disables paged output •
- Ctrl+c
- \rightarrow Aborts operation
- \rightarrow Continuation . . .
- \rightarrow Comments $\frac{1}{2}$