
1

CS315 Programming Languages © Pinar Duygulu

Introduction

CS 315 – Programming Languages

Pinar Duygulu

Bilkent University

2

CS315 Programming Languages © Pinar Duygulu

Course information

• Course Homepage

www.cs.bilkent.edu.tr/~duygulu/Courses/CS315/

3

CS315 Programming Languages © Pinar Duygulu

Reference Material

• Textbook:

Robert W. Sebesta, Concepts of Programming Languages,

Addison-Wesley, (Ninth Edition)

• Supplementary material:

http://www.aw-bc.com/sebesta

4

CS315 Programming Languages © Pinar Duygulu

Syllabus

• Preliminaries

• Syntax and Semantics

• Describing Syntax and Semantics

• Lexical and Syntax Analysis, Lex

• Lexical and Syntax Analysis, Yacc

• Names, Bindings, Type Checking, and Scopes

• Data Types

• Expressions and the Assignment Statement

• Statement-Level Control Structures

• Subprograms

• Implementing Subprograms

• Abstract Data Types

• Functional Programming Languages, Lisp

• Logic Programming Languages, Prolog

5

CS315 Programming Languages © Pinar Duygulu

Grading

• Quizzes : 15%

• Homeworks : 15%

• Projects : 25%

• Midterm : 20%

• Final : 25%

6

CS315 Programming Languages © Pinar Duygulu

This week's lecture : Preliminaries

• Why study concepts of programming languages?

• The major programming domains

• Criteria for language evaluation

Readings:

• Chapter 1 & 2

• C.A.R. Hoare: Hints on the Design of

Programming Languages; Stanford Report

7

CS315 Programming Languages © Pinar Duygulu

Why study programming languages?

• Working knowledge of one or two programming

languages is not sufficient for a computer scientists

• You should study general concepts of language design

and evaluation

8

CS315 Programming Languages © Pinar Duygulu

Reasons for studying concepts of programming languages

• Increased capacity to express ideas

• Improved background for choosing appropriate

languages

• Increased ability to learn new languages

• Better understanding of the significance of

implementation

• Overall advancement of computing

9

CS315 Programming Languages © Pinar Duygulu

Increased capacity to express ideas

It is difficult for people to conceptualize structures
that they cannot describe verbally.

Consider natural languages. The depth at which you
can think is influenced by the expressive power of
the language that you are using to communicate.

It is similar for programming languages. The
language in which you develop software puts limits
on the kind of control structures, data structures and
abstractions, and therefore the algorithms that you
can develop.

10

CS315 Programming Languages © Pinar Duygulu

Increased capacity to express ideas

Awareness of a wider variety of programming
language features can reduce such limitations in
software development.

If you have to use a specific language which does not
have those capabilities still you can make use of
those concepts by simulating them.

For example you can simulate associative arrays in Perl
with the structures in C

11

CS315 Programming Languages © Pinar Duygulu

Improved background for choosing appropriate languages

If all you have is a hammer, then everything looks
like a nail

Same for PLs. If all you know is Java, then every
solution to every problem will be a Java solution

Many programmer learn one or two languages
specific to the projects.

Some of those languages may be no longer used

When they start a new project they continue to use
those languages which are old and not suited to the
current projects.

12

CS315 Programming Languages © Pinar Duygulu

Improved background for choosing appropriate languages

However another language may be more
appropriate

If they were familiar with the other languages,
particularly the features in those languages they
would choose better languages

Studying the principles of PLs provides a way to
judge languages, and make informed statements:
“The advantages of Perl for this problem are …..”,
“The advantages of Java are ….”

13

CS315 Programming Languages © Pinar Duygulu

Increased ability to learn new languages

• If you know the programming language concepts you will
learn other languages much easier compared to programmers
knowing only one or two languages.

• For example, if you know concept of object oriented

programming, it is easier to learn C++ after learning Java

• Just like natural languages

Learning new languages actually causes you to learn things
about the languages you already know

• Example

Languages may differ in the way in which arithmetic
expressions are evaluated

Doing something the old way in a new language and getting
surprising results may cause you to double check your
assumptions about the old language, which will hopefully help
you to understand it better

14

CS315 Programming Languages © Pinar Duygulu

Better understanding of the significance of implementation

• The best programmers are the ones having at least

understanding of how things work under the hood

• You can simply write a code and let the compiler do

everything, but knowing implementation details helps

you to use a language more intelligently and write the

code that is more efficient

• Also, it allows you to visualize how a computer

executes language constructs (e.g. recursion is slow)

15

CS315 Programming Languages © Pinar Duygulu

Increased ability to design new languages

• It is a very low possibility that you will design a
general purpose programming language.

• However, you may end up designing a special
purpose language to enter the commands for a
software that you develop

16

CS315 Programming Languages © Pinar Duygulu

Overall advancement of computing

New ways of thinking about computing, new
technology, hence need for new appropriate
language concepts

Not to repeat history

Although ALGOL 60 was a better language than
FORTRAN, it did not become popular. It those who
choose languages are better informed, better
languages will be more popular.

17

CS315 Programming Languages © Pinar Duygulu

Programming Domains

• Scientific Applications (first digital computers – 1940s)

– Large floating-point arithmetic, execution efficiency, arrays and matrices, counting loops

– Examples: FORTRAN, ALGOL 60, C

• Business Applications (1950s)

– Producing elaborate reports, decimal numbers and character data

– Examples: COBOL (1960s), Spread sheets, Word processors, Databases (SQL)

• Artificial Intelligence
– Symbolic programming (names rather than numbers, linked lists rather than arrays)

– Examples: LISP (1959), PROLOG (early 1970s)

• Systems Programming
– System software : Operating system and all of the programming support tools of a computer system

– Efficient and fast execution, low-level features for peripheral device drivers

– Examples: PLS/2 (IBM Mainframe), BLISS (Digital), C (Unix)

• Scripting Languages
– List of commands (Script) to be executed is put in a file.

– Examples: sh, csh, tcsh, awk, gawk, tcl, perl, javascript

• Special-Purpose lnguages
– Examples: RPG (Business Reports), SPICE (Simulation of Electronic Circuitry), SPSS (Statistics),

Latex, nroff, troff (Document preparation packages). HTML, XML (internet programming)

18

CS315 Programming Languages © Pinar Duygulu

Language Evaluation Criteria

To examine the underlying concepts of the various

constructs and capabilities of programming languages

– Readability

– Writability

– Reliability

– Cost

19

CS315 Programming Languages © Pinar Duygulu

Readability

Ease with which programs can be read and understood

in the early times, efficiency and machine readability was important

1970s-Software life cycle: coding (small) + maintenance (large)

Readability is important for maintenance

Characteristics that contribute to readability:

– Overall simplicity

– Orthogonality

– Control statements

– Data types and structures

– Syntax Considerations

20

CS315 Programming Languages © Pinar Duygulu

Overall simplicity

• Large number of basic components - difficult to learn

• User learns only a subset

– but this subset may differ from one user to another

• feature multiplicity:having more than one way to accomplish an operation

– e.g. In Java
count = count + 1

count += 1

count ++

++count

• operator overloading

– if users are allowed to create their own and not use this sensibly it is a problem,

e.g. to use + for integer and floating point addition is acceptable, but to sum up

all the elements of two singe dimensional arrays is not – different from vector

addition

• On the other hand, the simplest does not mean the best. e.g.Assembly languages

21

CS315 Programming Languages © Pinar Duygulu

Orthogonality

• It means that a relatively small set of primitive constructs can be

combined in a relatively small number of ways to build the control

and data structures of the language

• Furthermore, every possible combination of primitives is legal and

meaningful

Example:

• Four primitive data types : integer, float, double and character

• Two type operators : array and pointer

• If the two type operators can be applied to themselves and the four

primitive data types, a large number of data structures can be defined

• However, if pointers were not allowed to point to arrays, many of

those possibilities would be eliminated

22

CS315 Programming Languages © Pinar Duygulu

Orthogonality

• Example : Adding two 32-bit integers residing in memory or registers,
and replacing one of them with the sum

• IBM (Mainframe) Assembly language has two instructions:

A Register1, MemoryCell1

AR Register1, Register2

They mean

Register1 contents(Register1) + contents(MemoryCell1)

Register1 contents(Register1) + contents(Register2)

• WAX Assembly language has one instruction:

ADDL operand1, operand2

It means

operand2 contents(operand1) + contents(operand2)

Here, either operand can be a register or a memory cell.

23

CS315 Programming Languages © Pinar Duygulu

Orhthogonality

• VAX instruction design is orthogonal

– Because a single instruction can use either registers or memory

cells as the operands

• IBM design is not orthogonal

– Only two operand combinations are legal out of for possibilities

and two require different instructions, A and AR

– More restricted and less writable (you cannot add two values and

store the sum in memory location)

– More difficult to learn because of the restrictions and the

additional instructions

24

CS315 Programming Languages © Pinar Duygulu

Orthogonality

• Orthogonality is closely related to simplicity

• The more orthogonal the design of a language, the fewer exceptions
the language rules require

• Pascal is not an orthogonal language, because

A function cannot return a record (only unstructured types allowed),

A file must be passed as a var parameter,

Formal parameter types must be named (cannot be type descriptions)

Compound statements are formed by begin-end pair, except repeat-until

• C is not an orthogonal language, because

-records(structs) can be returned from functions but arrays cannot

-a member of a structure can be any type but not void or structure of the same type

-a member of an array can be any type but not void or function

25

CS315 Programming Languages © Pinar Duygulu

Orthogonality

Too much orthogonality can cause problems as well:

ALGOL68 is the most orthogonal language.

• Every construct has a type

• Most constructs produce values

• This may result in extremely complex constructs,

• e.g., A conditional can appear as the left side of an
assignment statement, as long as it produces a
location:

(if (A<B) then C else D) := 3

• This extreme form of orthogonality leads to
unnecessary complexity

26

CS315 Programming Languages © Pinar Duygulu

Orthogonality

Functional languages offer a good

combination of simplicity and orthogonality.

27

CS315 Programming Languages © Pinar Duygulu

Control Statements

• Control statement design of a language is an

important factor in readability.

• For example, languages such as BASIC and
FORTRAN, that allow the use of goto

statement, are not readable.

28

CS315 Programming Languages © Pinar Duygulu

Control Statements

while (incr < 20) {

while (sum < =100) {

sum += incr;

}

incr++;

}

29

CS315 Programming Languages © Pinar Duygulu

Control Statements

If C did not have a loop construct:

loop1:

if (incr >=20) go to out;

loop2:

if (sum > 100) go to next;

sum += incr;

go to loop2;

next:

incr++;

go to loop1:

out:

30

CS315 Programming Languages © Pinar Duygulu

Data types and structures

Facilities for defining data types and data structures are

helpful for readability

– If there is no boolean type available then a flag may be defined as

integer:

found = 1 (instead of found = true)

May mean something is found as boolean or what is found is 1

An array of record type is more readable than a set of independent

arrays

– In Fortran

Character(Len=30) Name(100)

IntegerEmployeeNumber(100)

Real Salary(100)

31

CS315 Programming Languages © Pinar Duygulu

Syntax considerations

• Identifier Forms: restricting identifier length is bad

for readability.

• Example:

– FORTRAN77 identifiers can have at most 6 characters.

– The extreme case is the ANSI BASIC, where an identifier

is either a single character or a single character followed

by a single digit.

• Availability of word concatenating characters

(e.g., _) is good for readability.

32

CS315 Programming Languages © Pinar Duygulu

Syntax considerations

Special Words:

Readability is increased by special words (e.g., begin, end,

for).

In PASCAL and C, end or } is used to end a compound

statement. It is difficult tell what an end or } terminates.

However, ADA uses end if and end loop to terminate a

selection and a loop, respectively.

Another issue is the use of special words as names of

variables. For example, in FORTRAN77, special words,
e.g., DO and END can be used as variable names.

33

CS315 Programming Languages © Pinar Duygulu

Syntax considerations

Forms and Meaning:

Forms should relate to their meanings. Semantics

should directly follow from syntax.

For example,

sin(x)

should be the sine of x,

not the sign of x or cosign of x.

• Grep is hard to understand for the people not familiar with using
regular expressions

• grep : g/regular_expression/p /reg_exp/ : search for that reg_exp g:
scope is whole file p:print

34

CS315 Programming Languages © Pinar Duygulu

Writability

• Ease of creating programs

• Characteristics that contribute to readability

– Simplicity and Orthogonality

– Support for abstraction

– Expressivity

35

CS315 Programming Languages © Pinar Duygulu

Simplicity and orthogonality

Simplicity and orthogonality are good for writability
also.

• When there are large number of construct
programmers may not be familiar with all of them,
and lead to either misuse or disuse of those items.

• A smaller number of primitive constructs (simplicity)
and consistent set of rules for combining them
(orthogonality) is good for writability

• However, too much orthogonality may lead to
undetected errors, since almost all combinations are
legal.

36

CS315 Programming Languages © Pinar Duygulu

Support for abstraction

Abstraction: ability to define and use complicated
structures and operations in ways that allows ignoring the
details.

Abstraction is the key concept in contemporary
programming languages

The degree of abstraction allowed by a programming
language and the naturalness of its expressions are very
important to its writability.

PLs can support two types of abstraction:

process

data

37

CS315 Programming Languages © Pinar Duygulu

Process abstraction

The simplest example of abstraction is

subprograms (e.g., methods).

You define a subprogram, then use it by ignoring

how it actually works.

Eliminates replication of the code

Ignores the implementation details

e.g. sort algorithm

38

CS315 Programming Languages © Pinar Duygulu

Data abstraction

As an example of data abstraction, a tree can

be represented more naturally using pointers in

nodes.

In FORTRAN77, where pointer types are not

available, a tree can be represented using 3

parallel arrays, two of which contain the indexes

of the offspring, and the last one containing the

data.

39

CS315 Programming Languages © Pinar Duygulu

Expressivity

Having more convenient and shorter ways of

specifying computations.

For example, in C,

count++;

is more convenient and expressive than

count = count + 1;

for is more easier to write loops than while

40

CS315 Programming Languages © Pinar Duygulu

Reliability

• Reliable: it performs to its specifications

under all conditions

– Type Checking

– Exception Handling

– Aliasing

– Readability and writability

41

CS315 Programming Languages © Pinar Duygulu

Type Checking

• Testing for type errors in a given program either by
the compiler or during program execution

• The compatibility between two variables or a variable
and a constant that are somehow related (e.g.,
assignment, argument of an operation, formal and
actual parameters of a method).

• Run-time (Execution-time) checking is expensive.

• Compile-time checking is more desirable.

• The earlier errors in programs are detected, the less
expensive it is to make the required repairs

42

CS315 Programming Languages © Pinar Duygulu

Type Checking

Ada requires type checking on all variables in

compile time.

Original C language requires no type

checking neither in compilation nor execution

time. That can cause many problems.

Java requires checks of the types of nearly all

variables and expressions at compile time

43

CS315 Programming Languages © Pinar Duygulu

Type Checking

For example, the following program compiles an runs!

foo (float a) {

printf (“a: %g and square(a): %g\n”, a,

a*a);

}

main () {

char z = „b‟;

foo(z);

}

Output is : a: 98 and square(a): 9604

44

CS315 Programming Languages © Pinar Duygulu

Type Checking

• Subscript range checking for arrays is a part

of type checking, but it must be done in the

run-time. Out-of-range subscript often cause

errors that do not appear until long after

actual violation.

45

CS315 Programming Languages © Pinar Duygulu

Exception Handling

• The ability of a program

• to intercept run-time errors, as well as other

unusual conditions

• to take corrective measures and continue

• Ada, C++, and Java include extensive capabilities

for exception handling, but in C and Fortran it is

practically non-exsistent

46

CS315 Programming Languages © Pinar Duygulu

Aliasing

• Having two distinct referencing methods (or

names) for the same memory cell.

• It is a dangerous feature in a programming

language.

• E.g., pointers in PASCAL and C

• two different variables can refer to the same

memory cell

47

CS315 Programming Languages © Pinar Duygulu

Readability and Writability

• The easier a program to write, the more

likely it is correct.

• Programs that are difficult to read are difficult

both to write and modify.

48

CS315 Programming Languages © Pinar Duygulu

Cost

1)Cost of training the programmers. Function of
simplicity and orthogonality, experience of the
programmers.

2)Cost of writing programs. Function of the writability

-These two costs can be reduced in a good
programming environment

3)Cost of compiling programs (cost of compiler, and
time to compile)

49

CS315 Programming Languages © Pinar Duygulu

Cost

4)Cost of executing programs. If a language requires many run-

time type checking, the programs written in that language will

execute slowly.

Trade-off between compilation cost and execution

cost.

Optimization: decreases the size or increases the

execution speed.

Without optimization, compilation cost can be

reduced.

Extra compilation effort can result in faster execution.

50

CS315 Programming Languages © Pinar Duygulu

Cost

5)Cost of the implementation system. If expensive or

runs only on expensive hardware it will not be widely

used

6)Cost of reliability – important for critical systems such

as a power plant or X-ray machine

7)Cost of maintaining programs. For corrections,

modifications and additions. Function of readability.

Usually, and unfortunately, maintenance is done by

people other that the original authors of the program

For large programs, the maintenance costs is about

2 to 4 times the development costs.

51

CS315 Programming Languages © Pinar Duygulu

Other criteria for evaluation

Portability: program can be moved from one

environment to another

Generality: applicable to wide range of

applications

Well-definedness: complete and precise

definition of the language

52

CS315 Programming Languages © Pinar Duygulu

Influence on Language Design

• Several other factors influence the design of PLs

– Computer architecture

– Programming Methodologies

53

CS315 Programming Languages © Pinar Duygulu

The von Neumann computer architecture

54

CS315 Programming Languages © Pinar Duygulu

Computer Architecture

• Von Neumann architecture Imperative languages

• CPU executes instructions operations, statements

• Operands reside in the memory cells variables

• Values are stored back to memory assignment

• Branching, jumping goto, for, repeat, while loops
(iteration)

• Discourages recursion, although it is natural.

• Functional languages are not efficient on Von Neumann
architectures.

• Several attempts were made on new architectures for LISP
(LISP machine, and Symbolics). They did not survive.

55

CS315 Programming Languages © Pinar Duygulu

Program Design Methodologies

• There has been a major shift from process-
oriented programming to data-oriented
programming.

• More emphasis on Abstract Data Types.

• The latest trend in the evaluation of data-oriented
software development is the object-oriented
design. It is based on Data Abstraction,
Encapsulation, Information hiding, Dynamic type
binding.

• Smalltalk, Objective C, C++, Java are O-O
programming languages.

56

CS315 Programming Languages © Pinar Duygulu

Language Categories

• PL’s are often categorized into four

categories:

• Imperative, Functional, Logic, and Object-

Oriented.

• Visual languages

57

CS315 Programming Languages © Pinar Duygulu

Language Design tradeoffs

• The programming language evaluation criteria are

conflicting.

• reliability vs cost of execution : in Java all references to

array elements are checked to ensure that the indices are in

their legal ranges. C does not require such a checking

• writability vs readability: in APL there are many powerful sets

of operators for array operands, very short programs can be

written but it is hard to read those programs

• flexibility vs safety: variant records in PASCAL that allow a

memory cell to contain different values at different times

58

CS315 Programming Languages © Pinar Duygulu

Layered interface of virtual computers, provided by a

typical computer system

Bare Machine: Internal memory and

processor

Macroinstructions: Primitive

operations, or machine instructions such

as those for arithmetic and logic

operations

Operating system: Higher level

primitives than machine code, which

provides system resource management,

input and output operations, file

management system, text and/or

program editors…

Virtual computers: provides interfaces

to user at a higher level

59

CS315 Programming Languages © Pinar Duygulu

Implementation

• Compilation

• Pure Interpretation

• Hybrid implementation

60

CS315 Programming Languages © Pinar Duygulu September 16,19, 2007

Compilation

• A program is

translated to machine

code, which is directly

executed on the

computer.

• Advantage: very fast

program execution,

once the translation

process is complete

• E.g. C, COBOL, Ada

61

CS315 Programming Languages © Pinar Duygulu September 16,19, 2007

Compilation

• Source language: The language

that the compiler translates

• Lexical analyzer: gathers the

characters of the source program

into lexical units (e.g. identifiers,

special words, operators,

punctuation symbols) Ignores the

comments

• Syntax analyzer: takes the lexical

units, and use them to construct

parse trees, which represent the the

syntactic structure of the program

• Intermediate code generator:

Produces a program at an

intermediate level. Similar to

assembly languages

62

CS315 Programming Languages © Pinar Duygulu September 16,19, 2007

Compilation

• Semantic analyzer: checks for
errors that are difficult to check
during syntax analysis, such as
type errors

• Optimization : optional

Used if execution speed is more
important than compilation speed

• Code generator: Translates the
intermediate code to machine
language program

• Symbol table: serves as a
database of type and attribute
information of each user defined
name in a program. Placed by
lexical and syntax analyzers, and
used by semantic analyzer and
code generator

63

CS315 Programming Languages © Pinar Duygulu

Linker

• Most user programs require programs from the operating
system, such as input/output

• Before the machine language programs produced by a
compiler can be executed, the required programs from the
operating system must be found and linked to user
programs

• The linking operation connects the user program to the
system programs by placing the addresses of the entry
points of the system programs in the calls to them in the
user programs

• User programs must often be linked to previously
compiled user programs that reside in libraries

64

CS315 Programming Languages © Pinar Duygulu

Fetch-Execute cycle

• Execution of machine code program on a von Neumann

architecture computer occurs in a process called the fetch-

execute cycle

• Programs reside in memory but are executed in the CPU

• Each instruction to be executed must be moved from

memory to CPU

• The address of the next instruction to be executed is

maintained in a register called the program counter

65

CS315 Programming Languages © Pinar Duygulu

Fetch-Execute cycle

Initialize the program counter

repeat forever

fetch the instruction pointed to by the program counter

increment the program counter to point at the next instruction

decode the instruction

execute the instruction

End repeat

Program terminates when stop instruction is encountered

Or, control transfers from user program to OS when the user program execution is

complete

66

CS315 Programming Languages © Pinar Duygulu

Von Neumann Bottleneck

• The speed of the connection between a computer’s

memory and its processors determines the speed of

the computer

67

CS315 Programming Languages © Pinar Duygulu

Pure interpretation

• Each statement is decoded and

executed individually.

• No translation

• The interpreter program acts as a

software simulation of a machine

whose fetch-execute cycle deals

with high level language program

statements rather than machine

instructions

• Advantage: debugging is easy.

Good for development

• Disadvantage: slow execution.

• It must be decoded everytime

68

CS315 Programming Languages © Pinar Duygulu

Compiler vs Interpreter

How an English speaker can communicate to a French speaker

1. The English speaker employs an interpreter who translates the English

sentences into French as they are spoken. The English speaker says a

sentence in English, the interpreter hears it, translates it in his/her brain into

French, and the speaks the sentence in French. This is repeated for each

sentence. Progress is slow: there are pauses between sentences as the

translation process takes place.

1. The English speaker writes down (in English) what needs to be said. The

whole document is then translated into French, producing another piece of

paper with the French version written on it. There are two factors to consider

in this scenario:

• There is a slight delay at the start as the English document needs to be

translated in its entity before it can be read.

• The translated document can be read at any time after that, and at the

normal speed at which the French-speaker reads.

69

CS315 Programming Languages © Pinar Duygulu

Compiler vs Interpreter
A compiler translates a complete source program into machine code. The

whole source code file is compiled in one go, and a complete, compiled

version of the file is produced. This can be saved on some secondary

storage medium (e.g. floppy disk, hard disk...). This means that:

The program can only be executed once translation is complete

ANY changes to the source code require a complete recompilation.

An interpreter, on the other hand, provides a means by which a program

written in source language can be understood and executed by the CPU line

by line. As the first line is encountered by the interpreter, it is translated and

executed. Then it moves to the next line of source code and repeats the

process. This means that:

The interpreter is a program which is loaded into memory alongside the source

program

Statements from the source program are fetched and executed one by one

No copy of the translation exists, and if the program is to be re-run, it has to be

interpreted all over again.

70

CS315 Programming Languages © Pinar Duygulu

Compiler vs Interpreter
• Because the interpreter must be loaded into memory, there is less

space available during execution; a compiler is only loaded into

memory during compilation stage, and so only the machine code is

resident in memory during run-time;

• Once we have a compiled file, we can re-run it any time we want to

without having to use the compiler each time; With any interpreted

language, however, we would have to re-interpret the program each

time we wanted to run it;

• Machine code programs run more quickly than interpreted programs;

• However, it is often quicker and easier to make changes with an

interpreted program than a compiled one, and as such development

time may be reduced.

71

CS315 Programming Languages © Pinar Duygulu September 16,19, 2007

Hybrid implementation system

• Translate high-level language

programs to and intermediate

language designed to allow easy

interpretation.

72

CS315 Programming Languages © Pinar Duygulu

Compiler vs Interpreter in Java

•In Java intermediate form is called byte code, which

provides portability to any machine that has a byte

code interpreter and an associated run-time system.

Together these are called Java Virtual Machine

Typically, when used in that generic manner, the term
Java compiler refers to a program which translates
Java language source code into the Java Virtual
Machine (JVM) bytecodes. The term Java interpreter
refers to a program which implements the JVM
specification and actually executes the bytecodes
(and thereby running your program).

73

CS315 Programming Languages © Pinar Duygulu

Interpreter and compiler

•If both interpreter and compiler exists for a

language (e.g., LISP), programs are first

developed using the interpreter, then they are

compiled to obtain fast executing programs.

74

CS315 Programming Languages © Pinar Duygulu

Programming environments

• Text editor, pretty-printer, linker, compiler,

debugger, graphical interface, interaction between

these tools.

• JCreator is an example of a programming

environment.

75

CS315 Programming Languages © Pinar Duygulu

History

Most of the ideas of Modern PLs appear in four or five classic

languages

• Fortran (1956/8): Jump-based control structures (looping,

conditionals) subroutines, arrays, formatted I/O

• Cobol: Task-specific types for business applications, e.g. decimal

arithmetic and strings

• Algol (1960+): Lexical scoping, composite types(records),

automated type-checking, high-level control structures, recursion

• Lisp(1959): Functions yielding functions as return values, same

notation for code and data, dynamic typing, recursion in lieu of

iteration

• Simula(1967): Information hiding, object oriented programming

76

CS315 Programming Languages © Pinar Duygulu September 16,19, 2007

History

77

CS315 Programming Languages © Pinar Duygulu

‘Hello World’ in different languages

http://www.all-science-fair-projects.com/science_fair_projects_encyclopedia/Hello_world_program

78

CS315 Programming Languages © Pinar Duygulu

Java

public class Hello {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

79

CS315 Programming Languages © Pinar Duygulu

C++

#include <iostream>

int main()

{

std::cout << "Hello, world!\n";

}

80

CS315 Programming Languages © Pinar Duygulu

C

#include <stdio.h>

int main()

{

printf("Hello, world!\n");

return 0;

}

81

CS315 Programming Languages © Pinar Duygulu

Fortran

PROGRAM

HELLO

WRITE(*,10)

10 FORMAT('Hello, world!')

STOP

END

82

CS315 Programming Languages © Pinar Duygulu

LISP

(format t "Hello world!~%")

83

CS315 Programming Languages © Pinar Duygulu

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. HELLO-WORLD.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

DISPLAY "Hello, world!".

STOP RUN.

84

CS315 Programming Languages © Pinar Duygulu

PERL

print "Hello, world!\n";

85

CS315 Programming Languages © Pinar Duygulu

PROLOG

write('Hello world'),nl.

86

CS315 Programming Languages © Pinar Duygulu

ADA

with Ada.Text_Io;

procedure Hello is

begin

Ada.Text_Io.Put_Line ("Hello, world!");

end Hello;

87

CS315 Programming Languages © Pinar Duygulu

Assembly Language

bdos equ 0005H ; BDOS entry point

start: mvi c,9 ; BDOS function: output string

lxi d,msg$; address of msg

call bdos ret ; return to CCP

msg$: db 'Hello, world!$'

end start

88

CS315 Programming Languages © Pinar Duygulu

HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello, world!</title>

<meta http-equiv="Content-Type“ content="text/html;

charset=UTF-8">

</head>

<body>

<p>Hello, world!</p>

</body>

</html>

