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Introduction

• Simple-reflex agents directly maps states to actions. 
• Therefore, they cannot operate well in environments 

where the mapping is too large to store or takes too much 
to learn

• Goal-based agents can succeed by considering future 
actions and desirability of their outcomes

• Problem solving agent is a goal-based agent that decides 
what to do by finding sequences of actions that lead to 
desirable states
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Outline

• Problem-solving agents
• Problem types
• Problem formulation
• Example problems
• Basic search algorithms
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Problem solving agents

• Intelligent agents are supposed to maximize their 
performance measure

• This can be simplified if the agent can adopt a goal and aim 
at satisfying it

• Goals help organize behaviour by limiting the objectives 
that the agent is trying to achieve

• Goal formulation, based on the current situation and the 
agent’s performance measure, is the first step in problem 
solving

• Goal is a set of states. The agent’s task is to find out which 
sequence of actions will get it to a goal state

• Problem formulation is the process of deciding what sorts of 
actions and states to consider, given a goal
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Problem solving agents

• An agent with several immediate options of unknown value 
can decide what to do by first examining different possible 
sequences of actions that lead to states of known value, and 
then choosing the best sequence

• Looking for such a sequence is called search
• A search algorithm takes a problem as input and returns a 

solution in the form of action sequence
• One a solution is found the actions it recommends can be 

carried out – execution phase
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Problem solving agents

• “formulate, search, execute” design for the agent
• After formulating a goal and a problem to solve the agent 

calls a search procedure to solve it
• It then uses the solution to guide its actions, doing whatever 

the solution recommends as the next thing to do (typically 
the first action in the sequence)

• Then removing that step from the sequence
• Once the solution has been executed, the agent will 

formulate a new goal
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Problem-solving agents
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Environment Assumptions

• Static, formulating and solving the problem is 
done without paying attention to any changes that 
might be occurring in the environment

• Initial state is known and the environment is 
observable

• Discrete, enumerate alternative courses of actions
• Deterministic, solutions to problems are single 

sequences of actions, so they cannot handle any 
unexpected events, and solutions are executed 
without paying attention to the percepts
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Example: Romania

• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest
• Formulate goal:

– be in Bucharest
• Formulate problem:

– states: various cities
– actions: drive between cities

• Find solution:
– sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Example: Romania
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Well-defined problems and solutions
• A problem can be defined formally by four components
• Initial state that the agent starts in

– e.g. In(Arad)
• A description of the possible actions available to the agent

– Successor function – returns a set of <action,successor> pairs
– e.g. {<Go(Sibiu),In(Sibiu)>, <Go(Timisoara),In(Timisoara)>, <Go(Zerind), In(Zerind)>}

– Initial state and the successor function define the state space ( a 
graph in which the nodes are states and the arcs between nodes are 
actions). A path in state space is a sequence of states connected by a 
sequence of actions

• Goal test determines whether a given state is a goal state
– e.g.{In(Bucharest)}

• Path cost function that assigns a numeric cost to each path. 
The cost of a path can be described as the some of the costs 
of the individual actions along the path – step cost
– e.g. Time to go Bucharest
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Problem Formulation
• A solution to a problem is a path from the initial state to the 

goal state
• Solution quality is measured by the path cost function and an 

optimal solution has the lowest path cost among all solutions
• Real world is absurdly complex 

– state space must be abstracted for problem solving
• (Abstract) state = set of real states
• (Abstract) action = complex combination of real actions

– e.g., "Arad  Zerind" represents a complex set of possible 
routes, detours, rest stops, etc. 

• For guaranteed realizability, any real state "in Arad“ must get 
to some real state "in Zerind"

• (Abstract) solution = 
– set of real paths that are solutions in the real world

• Each abstract action should be "easier" than the original 
problem
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Vacuum world state space graph

• states integer dirt and robot location.
– The agent is in one of two locations, each of which might or might not 

contain dirt – 8 possible states
• Initial state: any state
• actions Left, Right, Suck
• goal test no dirt at all locations
• path cost 1 per action
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Example: The 8-puzzle

• states: locations of tiles 
• Initial state: any state
• actions: move blank left, right, up, down 
• goal test:  goal state (given)
• path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: 8-queens problem

• states: any arrangement of  0-8 queens on the board is a 
state

• Initial state: no queens on the board
• actions: add a queen to any empty square 
• goal test:  8 queens are on the board, none attacked

64.63...57 = 1.8x1014 possible sequences
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Example: Route finding problem

• states: each is represented by a location (e.g. An airport) and the 
current time

• Initial state: specified by the problem
• Successor function: returns the states resulting from taking any 

scheduled flight, leaving later than the current time plus the within 
airport transit time, from the current airport to another

• goal test:  are we at the destination by some pre-specified time
• Path cost:monetary cost, waiting time, flight time, customs and 

immigration procedures, seat quality, time of day, type of airplane, 
frequent-flyer mileage awards, etc

• Route finding algorithms are used in a variety of applications, such 
as routing in computer networks, military operations planning, 
airline travel planning systems



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

17

Other example problems 

• Touring problems: visit every city at least once, starting 
and ending at Bucharest

• Travelling salesperson problem (TSP) : each city must be 
visited exactly once – find the shortest tour

• VLSI layout design: positioning millions of components 
and connections on a chip to minimize area, minimize 
circuit delays, minimize stray capacitances, and maximize 
manufacturing yield

• Robot navigation
• Internet searching
• Automatic assembly sequencing
• Protein design 
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Example: robotic assembly

• states: real-valued coordinates of robot joint angles parts of 
the object to be assembled

• actions: continuous motions of robot joints
• goal test: complete assembly
• path cost: time to execute
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Graphs
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Problem Solving
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Graph Search as Tree Search
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Terminology
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Tree search algorithms

• Basic idea:
– offline, simulated exploration of state space by generating 

successors of already-explored states (a.k.a.~expanding states)
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Example: Romania
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Tree search example



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

26

Tree search example
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Tree search example
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Implementation: Components of a node

• State: the state in the state space to which the node 
corresponds

• Parent-node: the node in the search tree that 
generated this node

• Action: the action that was applied to the parent to 
generate the node

• Path-cost: the cost, traditionally denoted by g(n), 
of the path from the initial state to the node, as 
indicated by the parent pointers

• Depth: the number of steps along the path from the 
initial state 
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Implementation: states vs. nodes

• A state is a (representation of) a physical configuration
• A node is a data structure constituting part of a search tree includes 

state, parent node, action, path cost g(x), depth
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Implementation: general tree search
• Fringe: the collection of nodes that have been 

generated but not yet been expanded
• Each element of a fringe is a leaf node, a node with 

no successors
• Search strategy: a function that selects the next 

node to be expanded from fringe
• We assume that the collection of nodes is 

implemented as a queue
• The operations on the queue are:

– Make-queue(queue)
– Empty?(queue)
– first(queue)
– remove-first(queue)
– insert(element, queue)
– insert-all(elements, queue)
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Implementation: general tree search

– The Expand function creates new nodes, filling in the various fields and 
using the SuccessorFn of the problem to create the corresponding states.



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

32

Simple search algorithms  - revisited
• A search node is a path from state X to the start state (e.g. X B A S)
• The state of  a search node is the most recent state of the path (e.g. X)
• Let Q be a list of search nodes (e.g. (X B A S) (C B A S)) and S be the start state

• Algorithm

1. Initialize Q with search node (S) as only entry, set Visited = (S)
2. If Q is empty, fail. Else pick some search node N from Q
3. If state(N) is a goal, return N (we have reached the goal)
4. Otherwise remove N from Q
5. Find all the children of state(N) not in visited and create all the one-step 

extensions of N to each descendant
6. Add the extended paths to Q, add children of state(N) to Visited
7. Go to step 2

• Critical decisions
– Step2: picking N from Q
– Step 6: adding extensions of N to Q
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Examples: Simple search strategies

• Depth first search
– Pick first element of Q
– Add path extensions to front of Q

• Breadth first search
– Pick first element of Q
– Add path extensions to the end of Q
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Visited versus expanded

• Visited: a state M is first visited when a path to M first gets added to 
Q. In general, a state is said to have been visited if it has ever shown 
up in a search node in Q. The intuition is that we have briefly visited 
them to place them on Q, but we have not yet examined them 
carefully

• Expanded: a state M is expanded when it is the state of a search node 
that is pulled off of Q. At that point, the descendants of M are visited 
and the path that led to M is extended to the eligible descendants. In 
principle, a state may be expanded  multiple times. We sometimes 
refer to the search node that led to M as being expanded. However, 
once a node is expanded, we are done with it, we will not need to 
expand it again. In fact, we discard it from Q
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Testing for the goal

• This algorithm stops (in step 3) when state(N) = G or, in 
general when state(N) satisfies the goal test

• We could have performed the test in step 6 as each 
extended path is added to Q. This would catch termination 
earlier

• However, performing the test in step 6 will be incorrect 
for the optimal searches 
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• Keeping track of visited states generally improves time efficiency when searching 
for graphs, without affecting correctness. Note, however, that substantial additional 
space may be required to keep track of visited states.

• If all we want to do is find a path from the start to goal, there is no advantage of 
adding a search node whose state is already the state of another search node

• Any state reachable from the node the second time would have been reachable from 
that node the first time

• Note that when using Visited, each state will only ever have at most one path to it 
(search node) in Q

• We’ll have to revisit this issue when we look at optimal searching

Keeping track of visited states
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Implementation issues : The visit List

• Although we speak of a visited list, this is never the preferred implementation

• If the graph states are known ahead of time as an explicit set, then space is allocated 
in the state itself to keep a mark, which makes both adding Visited and checking if a 
state is Visited a constant time operation

• Alternatively, as in more common AI, if the states are generated on the fly, then a 
hash table may be used for efficient detection of previously visited states.

• Note that, in any case, the incremental space cost of a Visited list will be 
proportional to the number of states, which can be very high in some problems
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Search strategies

• A search strategy is defined by picking the order of node expansion
• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of 
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
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Classes of Search



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

40

Uninformed search strategies 

• Uninformed search (blind search) strategies use 
only the information available in the problem 
definition

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search
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Breadth-first search

• The root node is expanded first, then all the successors of 
the root node, and their successors and so on

• In general, all the nodes are expanded at a given depth in 
the search tree before any nodes at the next level are 
expanded

• Expand shallowest unexpanded node
• Implementation:

– fringe is a FIFO queue, 
– the nodes that are visited first will be expanded first
– All newly generated successors will be put at the end of 

the queue
– Shallow nodes are expanded before deeper nodes
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Breadth-first search
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Breadth-first search
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Breadth-first search
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Breadth-first search
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Breadth-first search
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8-puzzle problem
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Breadth-first search Breadth-first search of the 8-puzzle, showing order in 
which states were removed from open.

Taken from http://iis.kaist.ac.kr/es/



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

49

Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

58

Breadth first search
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Breadth first (Without visited list)
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Properties of breadth-first search

• Complete? Yes (if b is finite)
• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
• Space? O(bd+1) (keeps every node in memory)
• Optimal? Yes (if cost = 1 per step)

• Space is the bigger problem (more than time)
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Uniform-cost search

• Expand least-cost unexpanded node
• Implementation:

– fringe = queue ordered by path cost
• Equivalent to breadth-first if step costs all equal
• Complete? Yes, if step cost ≥ ε
• Time? # of nodes with g ≤ cost of optimal solution, 

O(bceiling(C*/ ε)) where C* is the cost of the optimal solution
• Space? # of nodes with g ≤ cost of optimal solution, 

O(bceiling(C*/ ε))
• Optimal? Yes – nodes expanded in increasing order of g(n)
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Uniform-cost search

Taken from http://www.cs.nott.ac.uk/~gxk/courses/g5aiai/003blindsearches/blind_searches.htm
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Uniform cost search

• Each link has a length or cost (which is always 
greater than 0)

• We want shortest or least cost path
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Uniform cost search



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

70

Uniform cost search
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Why not stop on the first goal
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Depth-first search

• Expand deepest unexpanded node
• Implementation:

– fringe = LIFO queue (stack) , i.e., put successors at front
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

84

Depth-first search
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Properties of depth-first search

• Complete? No: fails in infinite-depth spaces, 
spaces with loops
– Modify to avoid repeated states along path

 complete in finite spaces
• Time? O(bm): terrible if m is much larger than d

–  but if solutions are dense, may be much faster than 
breadth-first

• Space? O(bm), i.e., linear space!
• Optimal? No
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Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

• Recursive implementation:
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Depth first search
Depth-first search of the 8-puzzle with a depth 
bound of 5.

Taken from http://iis.kaist.ac.kr/es/
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Iterative deepening search
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Iterative deepening search l =0
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Iterative deepening search l =1
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Iterative deepening search l =2
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Iterative deepening search l =3
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Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with 
branching factor b: 

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd 

• Number of nodes generated in an iterative deepening search to depth d 
with branching factor b: 

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd 

• For b = 10, d = 5,
– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%
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Properties of iterative deepening search

• Complete? Yes
• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)
• Space? O(bd)
• Optimal? Yes, if step cost = 1
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Bidirectional search

• Run two simultaneous searches – one forward 
from the initial state, and the other backward from 
the goal, stopping when two searches meetin the 
middle

• bd/2 + bd/2 < bd

• when there is a single goal, it is like forward 
search

• For more than a single goal – dummy goal state
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Summary of algorithms
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Repeated states

• Failure to detect repeated states can turn a linear 
problem into an exponential one!
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Graph search
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Problem types

• Deterministic, fully observable  single-state problem
– Agent knows exactly which state it will be in; solution is a sequence

• Non-observable  sensorless problem (conformant problem)
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable  contingency problem
– percepts provide new information about current state
– often interleave} search, execution

• Unknown state space  exploration problem
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Example: vacuum world

Single-state, start in #5. 
Solution? [Right, Suck]
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Example: vacuum world

– Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution? 
[Right,Suck,Left,Suck]
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Example: vacuum world

• Contingency 
– Nondeterministic: Suck may 

dirty a clean carpet
– Partially observable: location, dirt at current location.
– Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]
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Summary

• Problem formulation usually requires abstracting away real-world 
details to define a state space that can feasibly be explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not much more 
time than other uninformed algorithms


