
CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

1

Chapter 3
Solving problems by searching

CS 461 – Artificial Intelligence
Pinar Duygulu

Bilkent University, Spring 2008

Slides are mostly adapted from AIMA and MIT Open Courseware

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

2

Introduction

• Simple-reflex agents directly maps states to actions.
• Therefore, they cannot operate well in environments

where the mapping is too large to store or takes too much
to learn

• Goal-based agents can succeed by considering future
actions and desirability of their outcomes

• Problem solving agent is a goal-based agent that decides
what to do by finding sequences of actions that lead to
desirable states

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

3

Outline

• Problem-solving agents
• Problem types
• Problem formulation
• Example problems
• Basic search algorithms

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

4

Problem solving agents

• Intelligent agents are supposed to maximize their
performance measure

• This can be simplified if the agent can adopt a goal and aim
at satisfying it

• Goals help organize behaviour by limiting the objectives
that the agent is trying to achieve

• Goal formulation, based on the current situation and the
agent’s performance measure, is the first step in problem
solving

• Goal is a set of states. The agent’s task is to find out which
sequence of actions will get it to a goal state

• Problem formulation is the process of deciding what sorts of
actions and states to consider, given a goal

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

5

Problem solving agents

• An agent with several immediate options of unknown value
can decide what to do by first examining different possible
sequences of actions that lead to states of known value, and
then choosing the best sequence

• Looking for such a sequence is called search
• A search algorithm takes a problem as input and returns a

solution in the form of action sequence
• One a solution is found the actions it recommends can be

carried out – execution phase

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

6

Problem solving agents

• “formulate, search, execute” design for the agent
• After formulating a goal and a problem to solve the agent

calls a search procedure to solve it
• It then uses the solution to guide its actions, doing whatever

the solution recommends as the next thing to do (typically
the first action in the sequence)

• Then removing that step from the sequence
• Once the solution has been executed, the agent will

formulate a new goal

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

7

Problem-solving agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

8

Environment Assumptions

• Static, formulating and solving the problem is
done without paying attention to any changes that
might be occurring in the environment

• Initial state is known and the environment is
observable

• Discrete, enumerate alternative courses of actions
• Deterministic, solutions to problems are single

sequences of actions, so they cannot handle any
unexpected events, and solutions are executed
without paying attention to the percepts

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

9

Example: Romania

• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest
• Formulate goal:

– be in Bucharest
• Formulate problem:

– states: various cities
– actions: drive between cities

• Find solution:
– sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

10

Example: Romania

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

11

Well-defined problems and solutions
• A problem can be defined formally by four components
• Initial state that the agent starts in

– e.g. In(Arad)
• A description of the possible actions available to the agent

– Successor function – returns a set of <action,successor> pairs
– e.g. {<Go(Sibiu),In(Sibiu)>, <Go(Timisoara),In(Timisoara)>, <Go(Zerind), In(Zerind)>}

– Initial state and the successor function define the state space (a
graph in which the nodes are states and the arcs between nodes are
actions). A path in state space is a sequence of states connected by a
sequence of actions

• Goal test determines whether a given state is a goal state
– e.g.{In(Bucharest)}

• Path cost function that assigns a numeric cost to each path.
The cost of a path can be described as the some of the costs
of the individual actions along the path – step cost
– e.g. Time to go Bucharest

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

12

Problem Formulation
• A solution to a problem is a path from the initial state to the

goal state
• Solution quality is measured by the path cost function and an

optimal solution has the lowest path cost among all solutions
• Real world is absurdly complex

– state space must be abstracted for problem solving
• (Abstract) state = set of real states
• (Abstract) action = complex combination of real actions

– e.g., "Arad  Zerind" represents a complex set of possible
routes, detours, rest stops, etc.

• For guaranteed realizability, any real state "in Arad“ must get
to some real state "in Zerind"

• (Abstract) solution =
– set of real paths that are solutions in the real world

• Each abstract action should be "easier" than the original
problem

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

13

Vacuum world state space graph

• states integer dirt and robot location.
– The agent is in one of two locations, each of which might or might not

contain dirt – 8 possible states
• Initial state: any state
• actions Left, Right, Suck
• goal test no dirt at all locations
• path cost 1 per action

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

14

Example: The 8-puzzle

• states: locations of tiles
• Initial state: any state
• actions: move blank left, right, up, down
• goal test: goal state (given)
• path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

15

Example: 8-queens problem

• states: any arrangement of 0-8 queens on the board is a
state

• Initial state: no queens on the board
• actions: add a queen to any empty square
• goal test: 8 queens are on the board, none attacked

64.63...57 = 1.8x1014 possible sequences

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

16

Example: Route finding problem

• states: each is represented by a location (e.g. An airport) and the
current time

• Initial state: specified by the problem
• Successor function: returns the states resulting from taking any

scheduled flight, leaving later than the current time plus the within
airport transit time, from the current airport to another

• goal test: are we at the destination by some pre-specified time
• Path cost:monetary cost, waiting time, flight time, customs and

immigration procedures, seat quality, time of day, type of airplane,
frequent-flyer mileage awards, etc

• Route finding algorithms are used in a variety of applications, such
as routing in computer networks, military operations planning,
airline travel planning systems

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

17

Other example problems

• Touring problems: visit every city at least once, starting
and ending at Bucharest

• Travelling salesperson problem (TSP) : each city must be
visited exactly once – find the shortest tour

• VLSI layout design: positioning millions of components
and connections on a chip to minimize area, minimize
circuit delays, minimize stray capacitances, and maximize
manufacturing yield

• Robot navigation
• Internet searching
• Automatic assembly sequencing
• Protein design

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

18

Example: robotic assembly

• states: real-valued coordinates of robot joint angles parts of
the object to be assembled

• actions: continuous motions of robot joints
• goal test: complete assembly
• path cost: time to execute

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

19

Graphs

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

20

Problem Solving

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

21

Graph Search as Tree Search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

22

Terminology

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

23

Tree search algorithms

• Basic idea:
– offline, simulated exploration of state space by generating

successors of already-explored states (a.k.a.~expanding states)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

24

Example: Romania

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

25

Tree search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

26

Tree search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

27

Tree search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

28

Implementation: Components of a node

• State: the state in the state space to which the node
corresponds

• Parent-node: the node in the search tree that
generated this node

• Action: the action that was applied to the parent to
generate the node

• Path-cost: the cost, traditionally denoted by g(n),
of the path from the initial state to the node, as
indicated by the parent pointers

• Depth: the number of steps along the path from the
initial state

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

29

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration
• A node is a data structure constituting part of a search tree includes

state, parent node, action, path cost g(x), depth

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

30

Implementation: general tree search
• Fringe: the collection of nodes that have been

generated but not yet been expanded
• Each element of a fringe is a leaf node, a node with

no successors
• Search strategy: a function that selects the next

node to be expanded from fringe
• We assume that the collection of nodes is

implemented as a queue
• The operations on the queue are:

– Make-queue(queue)
– Empty?(queue)
– first(queue)
– remove-first(queue)
– insert(element, queue)
– insert-all(elements, queue)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

31

Implementation: general tree search

– The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

32

Simple search algorithms - revisited
• A search node is a path from state X to the start state (e.g. X B A S)
• The state of a search node is the most recent state of the path (e.g. X)
• Let Q be a list of search nodes (e.g. (X B A S) (C B A S)) and S be the start state

• Algorithm

1. Initialize Q with search node (S) as only entry, set Visited = (S)
2. If Q is empty, fail. Else pick some search node N from Q
3. If state(N) is a goal, return N (we have reached the goal)
4. Otherwise remove N from Q
5. Find all the children of state(N) not in visited and create all the one-step

extensions of N to each descendant
6. Add the extended paths to Q, add children of state(N) to Visited
7. Go to step 2

• Critical decisions
– Step2: picking N from Q
– Step 6: adding extensions of N to Q

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

33

Examples: Simple search strategies

• Depth first search
– Pick first element of Q
– Add path extensions to front of Q

• Breadth first search
– Pick first element of Q
– Add path extensions to the end of Q

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

34

Visited versus expanded

• Visited: a state M is first visited when a path to M first gets added to
Q. In general, a state is said to have been visited if it has ever shown
up in a search node in Q. The intuition is that we have briefly visited
them to place them on Q, but we have not yet examined them
carefully

• Expanded: a state M is expanded when it is the state of a search node
that is pulled off of Q. At that point, the descendants of M are visited
and the path that led to M is extended to the eligible descendants. In
principle, a state may be expanded multiple times. We sometimes
refer to the search node that led to M as being expanded. However,
once a node is expanded, we are done with it, we will not need to
expand it again. In fact, we discard it from Q

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

35

Testing for the goal

• This algorithm stops (in step 3) when state(N) = G or, in
general when state(N) satisfies the goal test

• We could have performed the test in step 6 as each
extended path is added to Q. This would catch termination
earlier

• However, performing the test in step 6 will be incorrect
for the optimal searches

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

36

• Keeping track of visited states generally improves time efficiency when searching
for graphs, without affecting correctness. Note, however, that substantial additional
space may be required to keep track of visited states.

• If all we want to do is find a path from the start to goal, there is no advantage of
adding a search node whose state is already the state of another search node

• Any state reachable from the node the second time would have been reachable from
that node the first time

• Note that when using Visited, each state will only ever have at most one path to it
(search node) in Q

• We’ll have to revisit this issue when we look at optimal searching

Keeping track of visited states

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

37

Implementation issues : The visit List

• Although we speak of a visited list, this is never the preferred implementation

• If the graph states are known ahead of time as an explicit set, then space is allocated
in the state itself to keep a mark, which makes both adding Visited and checking if a
state is Visited a constant time operation

• Alternatively, as in more common AI, if the states are generated on the fly, then a
hash table may be used for efficient detection of previously visited states.

• Note that, in any case, the incremental space cost of a Visited list will be
proportional to the number of states, which can be very high in some problems

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

38

Search strategies

• A search strategy is defined by picking the order of node expansion
• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

39

Classes of Search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

40

Uninformed search strategies

• Uninformed search (blind search) strategies use
only the information available in the problem
definition

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

41

Breadth-first search

• The root node is expanded first, then all the successors of
the root node, and their successors and so on

• In general, all the nodes are expanded at a given depth in
the search tree before any nodes at the next level are
expanded

• Expand shallowest unexpanded node
• Implementation:

– fringe is a FIFO queue,
– the nodes that are visited first will be expanded first
– All newly generated successors will be put at the end of

the queue
– Shallow nodes are expanded before deeper nodes

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

42

Breadth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

43

Breadth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

44

Breadth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

45

Breadth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

46

Breadth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

47

8-puzzle problem

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

48

Breadth-first search Breadth-first search of the 8-puzzle, showing order in
which states were removed from open.

Taken from http://iis.kaist.ac.kr/es/

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

49

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

50

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

51

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

52

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

53

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

54

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

55

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

56

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

57

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

58

Breadth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

59

Breadth first (Without visited list)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

60

Properties of breadth-first search

• Complete? Yes (if b is finite)
• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
• Space? O(bd+1) (keeps every node in memory)
• Optimal? Yes (if cost = 1 per step)

• Space is the bigger problem (more than time)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

61

Uniform-cost search

• Expand least-cost unexpanded node
• Implementation:

– fringe = queue ordered by path cost
• Equivalent to breadth-first if step costs all equal
• Complete? Yes, if step cost ≥ ε
• Time? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε)) where C* is the cost of the optimal solution
• Space? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε))
• Optimal? Yes – nodes expanded in increasing order of g(n)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

62

Uniform-cost search

Taken from http://www.cs.nott.ac.uk/~gxk/courses/g5aiai/003blindsearches/blind_searches.htm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

63

Uniform cost search

• Each link has a length or cost (which is always
greater than 0)

• We want shortest or least cost path

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

64

Uniform cost search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

65

Uniform cost search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

66

Uniform cost search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

67

Uniform cost search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

68

Uniform cost search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

69

Uniform cost search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

70

Uniform cost search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

71

Why not stop on the first goal

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

72

Depth-first search

• Expand deepest unexpanded node
• Implementation:

– fringe = LIFO queue (stack) , i.e., put successors at front

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

73

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

74

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

75

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

76

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

77

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

78

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

79

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

80

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

81

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

82

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

83

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

84

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

85

Depth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

86

Depth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

87

Depth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

88

Depth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

89

Depth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

90

Depth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

91

Depth first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

92

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

93

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

94

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

95

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

96

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

97

Depth-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

98

Properties of depth-first search

• Complete? No: fails in infinite-depth spaces,
spaces with loops
– Modify to avoid repeated states along path

 complete in finite spaces
• Time? O(bm): terrible if m is much larger than d

– but if solutions are dense, may be much faster than
breadth-first

• Space? O(bm), i.e., linear space!
• Optimal? No

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

99

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

• Recursive implementation:

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

100

Depth first search
Depth-first search of the 8-puzzle with a depth
bound of 5.

Taken from http://iis.kaist.ac.kr/es/

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

101

Iterative deepening search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

102

Iterative deepening search l =0

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

103

Iterative deepening search l =1

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

104

Iterative deepening search l =2

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

105

Iterative deepening search l =3

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

106

Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with
branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d
with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

107

Properties of iterative deepening search

• Complete? Yes
• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)
• Space? O(bd)
• Optimal? Yes, if step cost = 1

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

108

Bidirectional search

• Run two simultaneous searches – one forward
from the initial state, and the other backward from
the goal, stopping when two searches meetin the
middle

• bd/2 + bd/2 < bd

• when there is a single goal, it is like forward
search

• For more than a single goal – dummy goal state

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

109

Summary of algorithms

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

110

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

111

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

112

Repeated states

• Failure to detect repeated states can turn a linear
problem into an exponential one!

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

113

Graph search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

114

Problem types

• Deterministic, fully observable  single-state problem
– Agent knows exactly which state it will be in; solution is a sequence

• Non-observable  sensorless problem (conformant problem)
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable  contingency problem
– percepts provide new information about current state
– often interleave} search, execution

• Unknown state space  exploration problem

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

115

Example: vacuum world

Single-state, start in #5.
Solution? [Right, Suck]

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

116

Example: vacuum world

– Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

117

Example: vacuum world

• Contingency
– Nondeterministic: Suck may

dirty a clean carpet
– Partially observable: location, dirt at current location.
– Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

118

Summary

• Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not much more
time than other uninformed algorithms

