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Filters for features 

• Previously, thinking of filtering as a 
way to remove or reduce noise 

• Now, consider how filters will allow 
us to abstract higher-level 
“features”. 

– Map raw pixels to an intermediate 
representation that will be used for 
subsequent processing 

– Goal: reduce amount of data, discard 
redundancy, preserve what’s useful 

Source: Darrell, Berkeley 



Edge detection 
• Goal:  Identify sudden 

changes (discontinuities) in 
an image 
– Intuitively, most semantic and 

shape information from the 
image can be encoded in the 
edges 

– More compact than pixels 
 

• Ideal: artist’s line drawing 
(but artist is also using 
object-level knowledge) 

Source: D. Lowe 
Source: Hays, Brown 



Edge detection 

• Goal: map image from 2d array of pixels to a set of curves 
or line segments or contours. 

• Why? 

 

 

 

 

 

 

 

• Main idea: look for strong gradients, post-process 

 

 

Figure from J. Shotton et al., PAMI 2007 

Source: Darrell, Berkeley 



Why do we care about edges? 
 

• Extract information, 
recognize objects 

 

 

 

 

• Recover geometry and 
viewpoint 
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Source: Hays, Brown 



Origin of Edges 

• Edges are caused by a variety of factors 

depth discontinuity 

surface color discontinuity 

illumination discontinuity 

surface normal discontinuity 

Source: Steve Seitz 
Source: Hays, Brown 



What can cause an edge? 

Depth discontinuity: 
object boundary 

Change in surface 
orientation: shape 

Cast shadows 

Reflectance change: 
appearance 
information, texture 

Source: Darrell, Berkeley 



Contrast and invariance 

Source: Darrell, Berkeley 



Closeup of edges 

 

Source: D. Hoiem 
Source: Hays, Brown 



Closeup of edges 

 

Source: D. Hoiem 
Source: Hays, Brown 



Closeup of edges 

 

Source: D. Hoiem 
Source: Hays, Brown 



Closeup of edges 

 

Source: D. Hoiem 
Source: Hays, Brown 



Characterizing edges 
• An edge is a place of rapid change in the 

image intensity function 

image 
intensity function 

(along horizontal scanline) first derivative 

edges correspond to 
extrema of derivative 

Source: Hays, Brown 



Differentiation and convolution 

For 2D function, f(x,y), the partial derivative is: 

 

 

 
 

For discrete data, we can approximate using finite differences: 

 

 

 

To implement above as convolution, what would be the associated 
filter? 
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Source: Darrell, Berkeley 



Partial derivatives of an image 

Which shows changes with respect to x? 
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(showing flipped filters) Source: Darrell, Berkeley 



Assorted finite difference filters 

>> My = fspecial(‘sobel’); 

>> outim = imfilter(double(im), My);  

>> imagesc(outim); 

>> colormap gray; 

Source: Darrell, Berkeley 



Image gradient 
The gradient of an image:  

 

 
The gradient points in the direction of most rapid change in intensity 

The gradient direction (orientation of edge normal) is given by: 

 

 

The edge strength is given by the gradient magnitude 

Slide credit S. Seitz Source: Darrell, Berkeley 



Intensity profile 

Source: D. Hoiem 
Source: Hays, Brown 



With a little Gaussian noise 

Gradient 

Source: D. Hoiem 
Source: Hays, Brown 



Effects of noise 
• Consider a single row or column of the image 

– Plotting intensity as a function of position gives a signal 

Where is the edge? 
Source: S. Seitz 

Source: Hays, Brown 



Effects of noise 

• Difference filters respond strongly to noise 

– Image noise results in pixels that look very 
different from their neighbors 

– Generally, the larger the noise the stronger the 
response 

• What can we do about it? 

Source: D. Forsyth 
Source: Hays, Brown 



Solution: smooth first 

• To find edges, look for peaks in )( gf
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Source: S. Seitz 
Source: Hays, Brown 



• Differentiation is convolution, and convolution is 
associative: 
 

• This saves us one operation: 
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Source: S. Seitz 
Source: Hays, Brown 



Derivative of Gaussian filter 

* [1 -1] =  

Source: Hays, Brown 



Derivative of Gaussian filters 

x-direction y-direction 

Source: L. Lazebnik Source: Darrell, Berkeley 



Laplacian of Gaussian 

Consider   

Laplacian of Gaussian 
operator 

Where is the edge?   Zero-crossings of bottom graph 
Source: Darrell, Berkeley 



2D edge detection filters 

•       is the Laplacian operator: 

Laplacian of Gaussian 

Gaussian derivative of Gaussian 

Source: Darrell, Berkeley 



Smoothing with a Gaussian 

Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing. 

… 

Source: Darrell, Berkeley 



Effect of σ on derivatives  

The apparent structures differ depending on Gaussian’s 
scale parameter. 
 
Larger values: larger scale edges detected 
Smaller values: finer features detected 

σ = 1 pixel σ = 3 pixels 

Source: Darrell, Berkeley 



So, what scale to choose? 
It depends what we’re looking for. 

Too fine of a scale…can’t see the forest for the trees. 
Too coarse of a scale…can’t tell the maple grain from the cherry. Source: Darrell, Berkeley 



Thresholding 

• Choose a threshold value t 

• Set any pixels less than t to zero (off) 

• Set any pixels greater than or equal to t to one (on) 

 

Source: Darrell, Berkeley 



Original image 

Source: Darrell, Berkeley 



Gradient magnitude image 

Source: Darrell, Berkeley 



Thresholding gradient with a lower threshold 

Source: Darrell, Berkeley 



Thresholding gradient with a higher threshold 

Source: Darrell, Berkeley 



• Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales”. 

1 pixel 3 pixels 7 pixels 

Tradeoff between smoothing and localization 

Source: D. Forsyth 
Source: Hays, Brown 



Designing an edge detector 
• Criteria for a good edge detector: 

– Good detection: the optimal detector should find all 
real edges, ignoring noise or other artifacts 

– Good localization 
• the edges detected must be as close as possible to 

the true edges 
• the detector must return one point only for each 

true edge point 

• Cues of edge detection 
– Differences in color, intensity, or texture across the 

boundary 
– Continuity and closure 
– High-level knowledge 

 

Source: L. Fei-Fei Source: Hays, Brown 



Canny edge detector 
• This is probably the most widely used edge 

detector in computer vision 

• Theoretical model: step-edges corrupted by 
additive Gaussian noise 

• Canny has shown that the first derivative of 
the Gaussian closely approximates the 
operator that optimizes the product of 
signal-to-noise ratio and localization 

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986.  

Source: L. Fei-Fei Source: Hays, Brown 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Example 

original image (Lena) 

Source: Hays, Brown 



Derivative of Gaussian filter 

x-direction y-direction 

Source: Hays, Brown 



The Canny edge detector 

original image (Lena) 

Source: Darrell, Berkeley 



Compute Gradients (DoG) 

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude 

Source: Hays, Brown 



The Canny edge detector 

norm of the gradient 

Source: Darrell, Berkeley 



The Canny edge detector 

thresholding 

Source: Darrell, Berkeley 



The Canny edge detector 

thresholding 

How to turn 
these thick 
regions of the 
gradient into 
curves? 

Source: Darrell, Berkeley 



Non-maximum suppression 

Check if pixel is local maximum along gradient 
direction, select single max across width of the edge 
– requires checking interpolated pixels p and r 

Source: Darrell, Berkeley 



Get Orientation at Each Pixel 

• Threshold at minimum level 

• Get orientation theta = atan2(gy, gx) 

Source: Hays, Brown 



Non-maximum suppression for each 
orientation 

At q, we have a 
maximum if the value 
is larger than those at 
both p and at r. 
Interpolate to get 
these values. 

Source: D. Forsyth Source: Hays, Brown 



Before Non-max Suppression 

Source: Hays, Brown 



After non-max suppression 

Source: Hays, Brown 



The Canny edge detector 

thinning 

(non-maximum suppression) 

Problem: 
pixels along 
this edge 
didn’t survive 
the 
thresholding 

Source: Darrell, Berkeley 



Hysteresis thresholding 

• Check that maximum value of gradient value is 
sufficiently large 

– drop-outs?  use hysteresis 

• use a high threshold to start edge curves and a low 
threshold to continue them. 

Source: S. Seitz Source: Darrell, Berkeley 



Hysteresis thresholding 
• Threshold at low/high levels to get weak/strong edge pixels 

• Do connected components, starting from strong edge pixels 

Source: Hays, Brown 



Hysteresis thresholding 

original image 

high threshold 
(strong edges) 

low threshold 
(weak edges) 

hysteresis threshold 

Source: L. Fei-Fei Source: Darrell, Berkeley 



Final Canny Edges 

Source: Hays, Brown 



Canny edge detector 

1. Filter image with x, y derivatives of Gaussian  

2. Find magnitude and orientation of gradient 

3. Non-maximum suppression: 
– Thin multi-pixel wide “ridges” down to single pixel width 

4. Thresholding and linking (hysteresis): 
– Define two thresholds: low and high 

– Use the high threshold to start edge curves and the low 
threshold to continue them 

 

 

• MATLAB: edge(image, ‘canny’) 

Source: D. Lowe, L. Fei-Fei Source: Hays, Brown 



Effect of  (Gaussian kernel 
spread/size) 

Canny with  Canny with  original  

The choice of  depends on desired behavior 
• large  detects large scale edges 

• small  detects fine features 

Source: S. Seitz Source: Hays, Brown 



Object boundaries vs. edges 

Background Texture Shadows 

Source: Darrell, Berkeley 



Edge detection is just the beginning… 

Berkeley segmentation database: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ 

image human segmentation gradient magnitude 

Source: L. Lazebnik 

Much more on segmentation later in term… 

Source: Darrell, Berkeley 

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


Representing Texture 

Source: Forsyth Source: Hays, Brown 



Texture and Material 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ Source: Hays, Brown 



Texture and Orientation 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ Source: Hays, Brown 



Texture and Scale 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ Source: Hays, Brown 



What is texture? 

 

 Regular or stochastic patterns caused by 
bumps, grooves, and/or markings 

 

Source: Hays, Brown 



How can we represent texture? 

 

• Compute responses of blobs and edges at 
various orientations and scales 

 

 

Source: Hays, Brown 



Overcomplete representation: filter 
banks 

LM Filter Bank 

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html 

Source: Hays, Brown 



Filter banks 

• Process image with each filter and keep 
responses (or squared/abs responses) 

Source: Hays, Brown 



How can we represent texture? 

 

• Measure responses of blobs and edges at 
various orientations and scales 

 

• Idea 1: Record simple statistics (e.g., mean, 
std.) of absolute filter responses 

 

 

 
Source: Hays, Brown 



Can you match the texture to the 
response? 

Mean abs responses 

Filters 
A 

B 

C 

1 

2 

3 

Source: Hays, Brown 



Representing texture 

• Idea 2: take vectors of filter responses at each pixel and 
cluster them, then take histograms. 

Source: Hays, Brown 



Building Visual Dictionaries 
1. Sample patches from 

a database 
– E.g., 128 dimensional 

SIFT vectors 

 

2. Cluster the patches 
– Cluster centers are 

the dictionary 

 

3. Assign a codeword 
(number) to each 
new patch, according 
to the nearest cluster 

Source: Hays, Brown 



pB boundary detector 

Figure from Fowlkes 

Martin, Fowlkes, Malik 2004: Learning to Detect 
Natural Boundaries… 
http://www.eecs.berkeley.edu/Research/Projects/CS/vi
sion/grouping/papers/mfm-pami-boundary.pdf  

Source: Hays, Brown 

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf


pB Boundary Detector 

Figure from Fowlkes Source: Hays, Brown 



Brightness 

Color 

Texture 

Combined 

Human 

Source: Hays, Brown 



Global pB boundary detector 

Figure from Fowlkes Source: Hays, Brown 



45 years of boundary detection 

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf) 
Source: Hays, Brown 


