Edge and Texture
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Filters for features

* Previously, thinking of filtering as a
way to remove or reduce noise

* Now, consider how filters will allow
us to abstract higher-level
“features”.

— Map raw pixels to an intermediate
representation that will be used for
subsequent processing

— Goal: reduce amount of data, discard
redundancy, preserve what’s useful

Source: Darrell, Berkeley



Edge detection

e Goal: Identify sudden
changes (discontinuities) in
an image rac
— Intuitively, most semantic and | ?

shape information from the
image can be encoded in the

edges
— More compact than pixels

e |deal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe

Source: Hays, Brown



Edge detection

* Goal: map image from 2d array of pixels to a set of curves

or line segments or contours.
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Main idea: look for strong gradients, post-process

Source: Darrell, Berkeley



Why do we care about edges?

e Extract information,
recognize objects

* Vertical vanishing
point
i (atinfinity)
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Source: Hays, Brown



Origin of Edges

surface normal discontinuity

. < depth discontinuity
AO ‘/;(\ surface color discontinuity
M“_JZ illumination discontinuity
\'\___________.-’)

* Edges are caused by a variety of factors

Source: Steve Seitz
Source: Hays, Brown



What can cause an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape

Source: Darrell, Berkeley



Contrast and invariance

Source: Darrell, Berkeley



Closeup of edges
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Source: Hays, Brown



Closeup of edges
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Source: D. Hoiem
Source: Hays, Brown
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Closeup of edges

Source: D. Hoiem
Source: Hays, Brown



Characterizing edges

e An edge is a place of rapid change in the
image intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Source: Hays, Brown



Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

ot (x,y) _ i F e )= f(x,y)
ax e—0 E

For discrete data, we can approximate using finite differences:

To imm\@ f (X +1"y) o (X, e the associated

filter?  OX 1

Source: Darrell, Berkeley



Partial derivatives of an image

Which shows changes with respect to x?

Source: Darrell, Berkeley (showing flipped filters)



Assorted finite difference filters

-0 1171
Prewitt: M, = [-1]0 M, = 1] 0
-1pn -1]-17-1
L{o}1 L 2] 1
Sobel: M, = 1 E | M, = R
L{opl 1 ]1-271-1
01 1
Roberts: M: = 7715 o My = T

>> My = fspecial(‘'sobel’);

>> outim = imfilter (double (im), My);
>> 1magesc (outim) ;

>> colormap gray;

Source: Darrell, Berkeley



Image gradient

The gradient of an image:
_ [9f of
V= [Gx’ Gy]

The gradient points in the direction of most rapid change in intensity

V=15 0]
IVf— 0,90 k

78y

V=4

The gradient direction (orientation of edge normal) is given by:
— -1 (9f ﬁ)
6 = tan ( 9y =
The edge strength is given by the gradient magnitude
o 2
VA= /D + (D)

Source: Darrell, Berkeley Slide credit S. Seitz
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Effects of noi

* Consider a single row or column o t%e image
— Plotting intensity as a function of position gives a signal
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Where is the edge?

Source: Hays, Brown Source: S. Seitz



Effects of noise

e Difference filters respond strongly to noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What can we do about it?

Source: Hays, Brown Source: D. Forsyth



Solution: smooth first

Sigma = 50
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e To find edges, look for peaks in

Source: Hays, Brown

Source: S. Seitz



Derivative theorem of convolution

d d
e Differentiation is co&vglﬁl%ﬁ, Bﬁg)’é:gnvolution is

associative:
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Derivative of Gaussian filter
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Derivative of Gaussian filters
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Source: Darrell, Berkeley Source: L. Lazebnik



Laplacian of Gaussian

Consider 5"—;@ *x f)
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Source: Darrell, Berkeley
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2D edge detection filters
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Source: Darrell, Berkeley
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Smoothing with a Gaussian

Recall: parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.
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Source: Darrell, Berkeley



Effect of o0 on derivatives

o =3 pixels

The apparent structures differ depending on Gaussian’s
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

Source: Darrell, Berkeley



So, what scale to choose?

It depends what we’re looking for.

Too fine of a scale...can’t see the forest for the trees.
soulORQCoarse of a scale...can’t tell the maple grain from the cherry.



Thresholding

* Choose a threshold value t
* Set any pixels less than t to zero (off)
e Set any pixels greater than or equal to t to one (on)

Source: Darrell, Berkeley
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Gradient magnitude image




Thresholdmg gradient W|th a lower threshold
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Source: Darrell, Berkeley -
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g and Iocallzatlon

Tradeoff between smoothin

1 pixel 3 pixels 7 pixels

* Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: Hays, Brown Source: D. Forsyth



. critdnERIBNIIB AN §48E. Fetector

— Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

— Good localization

* the edges detected must be as close as possible to
the true edges

* the detector must return one point only for each
true edge point
* Cues of edge detection

— Differences in color, intensity, or texture across the
boundary

— Continuity and closure
— High-level knowledge

Source: Hays, Brown Source: L. Fei-Fei



Canny edge detector
e This is probably the most widely used edge

detector in computer vision

e Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of

the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, |EEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

urce: Hays, Brown


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

original image (Lena)

Source: Hays, Brown



Source: Hays, Brown

Derivative of Gatissian filter
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The Canny edge detector

original image (Lena)

Source: Darrell, Berkeley



Compute Gradients (DoG)

AR :
X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: Hays, Brown



The Canny edge detector

norm of the gradient

Source: Darrell, Berkeley



The Canny edge detector

thresholding

Source: Darrell, Berkeley



The Cannv edoce detector

How to turn
these thick
regions of the
gradient into
curves?

Source: Darrell, Berkeley



Non-maximum suppression
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Check if pixel is local maximum along gradient

direction, select single max across width of the edge

— requires checking interpolated pixels p and r

Source: Darrell, Berkeley




Get Orientation at Each Pixel

e Threshold at minimum level

theta = atan2(gy, gx)




Non-maximum suppression for each

arientatign
® ® o @
P
] 9
_ |
Gradient /
e © » ®
I
L & ®

Soroeetraeyd)Brawsyth

At g, we have a
maximum if the value
is larger than those at
both pand atr.
Interpolate to get
these values.




Before Non-max Suppression




After non-max suppression

Source: Hays, Brown



The Canny edge detector

Problem:
pixels along
this edge

i didn’t survive
the
thresholding

thinning

(non-maximum suppression)

Source: Darrell, Berkeley



Hysteresis thresholding

e Check that maximum value of gradient value is
sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: Darrell, Berkeley Source: S. Seitz



Hysteresis thresholding
* Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels
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Source: Hays, Brown



Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: Darrell, Berkeley Source: L. Fei-Fei
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Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
— Thin multi-pixel wide “ridges” down to single pixel width
4. Thresholding and linking (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and the low
threshold to continue them

« MATLAB: edge(image, ‘canny’)

Source: Hays, Brown Source: D. Lowe, L. Fei-Fei



Effect of o (Gaussian kernel
spread/size)

Canny with o = 2

original Canny with o =

The choice of ¢ depends on desired behavior

e large o detects large scale edges
e small o detects fine features

Source: Hays, Brown Source: S. Seitz



Object boundaries vs. edges

Background

Source: Darrell, Berkeley



Edge detection is just the beginning...

image human segmentation gradient magnitude
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Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Much more on segmentation later in term...

Source: Darrell, Berkeley Source: L. Lazebnik


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Representing Texture

Source: Hays, Brown Source: Forsyth



exture and Material

Source: Hays, Brown http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Orientation

Source: Hays, Brown http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Scale

.edu/ponce_grp/data/texture_database/samples/

-Cvr.al.uiuc

://www

http

Hays, Brown

Source



Source

What is texture?

Regular or stochastic patterns caused by
bumps, grooves, and/or markings

: Hays, Brown



Source

How can we represent texture?

 Compute responses of blobs and edges at
various orientations and scales

: Hays, Brown



Sourc

Overcomplete representation: filter
banks

LM Filter Bank
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Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html/

e: Hays, Brown



Filter banks

* Process image with each filter and keep

Source: Hays, Brown



Source

How can we represent texture?

 Measure responses of blobs and edges at
various orientations and scales

* |dea 1: Record simple statistics (e.g., mean,
std.) of absolute filter responses

: Hays, Brown



Can you match the texture to the
response’?

Filters

Mean abs responses

Source: Hays, Brown



Representing texture

* |dea 2: take vectors of filter responses at each pixel and

Source: Hays, Brown



Building Visual chtlonarles
1. Sample patches NS

a database

— E.g., 128 dimensional
SIFT vectors

e S S
-----

2. Cluster the patches

— Cluster centers are
the dictionary

3. Assign a codeword
(number) to each
new patch, according
to the nearest cluster

Source: Hays, Brown



[ ]
Brightness

A Martin, Fowlkes, Malik 2004: Learning to Detect
Natural Boundaries...
http://www.eecs.berkeley.edu/Research/Projects/CS/vi
sion/grouping/papers/mfm-pami-boundary.pdf

Figure from Fowlkes

Source: Hays, Brown


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf

pB Boundary Detector

—— Non-Boundaries — Boundarnies

urce: Hays, Brown FIgU re from Fowlkes



Brightness

Color

Texture

Combined

Human

Source: Hays, Brown
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Source: Hays, Brown
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45 years of boundary detection
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Source: Hays, Brown



