Edge and Texture

CS 554 – Computer Vision Pinar Duygulu Bilkent University

Filters for features

- Previously, thinking of filtering as a way to remove or reduce noise
- Now, consider how filters will allow us to abstract higher-level "features".
 - Map raw pixels to an intermediate representation that will be used for subsequent processing
 - Goal: reduce amount of data, discard redundancy, preserve what's useful

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Edge detection

- **Goal**: map image from 2d array of pixels to a set of curves or line segments or contours.
- Why?

• Main idea: look for strong gradients, post-process

Why do we care about edges?

• Extract information, recognize objects

 Recover geometry and viewpoint

Origin of Edges

• Edges are caused by a variety of factors

Source: Hays, Brown

Source: Steve Seitz

What can cause an edge?

Reflectance change: appearance information, texture

Change in surface orientation: shape

Depth discontinuity: object boundary

Cast shadows

Contrast and invariance

Source: Darrell, Berkeley

Source: Hays, Brown

Source: D. Hoiem

Source: Hays, Brown

Source: D. Hoiem

Source: Hays, Brown

Source: Hays, Brown

Source: D. Hoiem

Characterizing edges

• An edge is a place of rapid change in the image intensity function

Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

 $\frac{\partial f(x, y)}{\partial x} f(x+1, y) - f(x, y)$ To implement above as convolution, what would be the associated filter? $\frac{\partial x}{\partial x}$

Partial derivatives of an image

Which shows changes with respect to x?

(showing flipped filters)

Assorted finite difference filters

 Prewitt:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$;
 $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

 Sobel:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$;
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

 Roberts:
 $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$;
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The *edge strength* is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Darrell, Berkeley

Source: Hays, Brown

With a little Gaussian noise

Source: Hays, Brown

Effects of noise Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Source: Hays, Brown

Source: S. Seitz

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

• To find edges, look for peaks in

 $\frac{d}{dx}(f*g)$

Source: S. Seitz

Source: Hays, Brown

Derivative theorem of convolution

• Differentiation is $convolution \overline{d}_{dx}$ of $d \overline{d}_{dx} = \frac{d}{dx} d \overline{d}_{dx}$ of $d \overline{d}_{dx} = \frac{d}{dx} d \overline{d}_{dx}$ of $d \overline{d}_{dx} = \frac{d}{dx} d \overline{d}_{dx}$

Source: S. Seitz

Source: Hays, Brown

Derivative of Gaussian filter

Derivative of Gaussian filters

Source: Darrell, Berkeley

Source: L. Lazebnik

Laplacian of Gaussian

Where is the edge?

Zero-crossings of bottom graph

Source: Darrell, Berkeley

2D edge detection filters

• ∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Smoothing with a Gaussian

Recall: parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Effect of σ on derivatives

 σ = 1 pixel

 σ = 3 pixels

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

Source: Darrell, Berkeley

So, what scale to choose?

It depends what we're looking for.

Too fine of a scale...can't see the forest for the trees. source parse of a scale...can't tell the maple grain from the cherry.

Thresholding

- Choose a threshold value t
- Set any pixels less than t to zero (off)
- Set any pixels greater than or equal to t to one (on)

Original image

Gradient magnitude image

Thresholding gradient with a lower threshold

Thresholding gradient with a higher threshold

1 pixel

3 pixels

7 pixels

• Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".
• Criteria for a good edge detector:

- Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
- Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point
- Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of *signal-to-noise ratio* and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Example

original image (Lena)

Derivative of Gaussian filter

The Canny edge detector

original image (Lena)

Compute Gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

The Canny edge detector

norm of the gradient

The Canny edge detector

thresholding

The <u>Canny edge detector</u>

How to turn these thick regions of the gradient into curves?

Source: Darrell, Berkeley

Non-maximum suppression

Check if pixel is local maximum along gradient
direction, select single max across width of the edge
– requires checking interpolated pixels p and r

Get Orientation at Each Pixel

Threshold at minimum level

theta = atan2(gy, gx)

Non-maximum suppression for each orientation

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

SouStoreinerysDBFoorrayth

Before Non-max Suppression

After non-max suppression

The Canny edge detector

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Source: Darrell, Berkeley

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

Hysteresis thresholding

- Threshold at low/high levels to get weak/strong edge pixels
- Do connected components, starting from strong edge pixels

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: Darrell, Berkeley

Source: L. Fei-Fei

Final Canny Edges

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

• MATLAB: edge(image, 'canny')

Source: Hays, Brown

Source: D. Lowe, L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Object boundaries vs. edges

Texture

Shadows

Source: Darrell, Berkeley

Edge detection is just the beginning...

image

human segmentation

gradient magnitude

Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Much more on segmentation later in term...

Source: Darrell, Berkeley

Source: L. Lazebnik

Representing Texture

Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

Source: Hays, Brown

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings

How can we represent texture?

Compute responses of blobs and edges at various orientations and scales

Overcomplete representation: filter banks

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

• Process image with each filter and keep

How can we represent texture?

Measure responses of blobs and edges at various orientations and scales

• Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses

Representing texture

 Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms.

1. Sample patches from

- Sample patches from a database
 - E.g., 128 dimensional
 SIFT vectors
- 2. Cluster the patches
 - Cluster centers are the dictionary
- Assign a codeword (number) to each new patch, according to the nearest cluster

pB Boundary Detector

Figure from Fowlkes

Source: Hays, Brown

Source: Hays, Brown

<u>Clabal nD boundary datactor</u>

Figure from Fowlkes

Source: Hays, Brown

45 years of boundary detection

