
Edge and Texture

CS 554 – Computer Vision

Pinar Duygulu

Bilkent University

Filters for features

• Previously, thinking of filtering as a
way to remove or reduce noise

• Now, consider how filters will allow
us to abstract higher-level
“features”.

– Map raw pixels to an intermediate
representation that will be used for
subsequent processing

– Goal: reduce amount of data, discard
redundancy, preserve what’s useful

Source: Darrell, Berkeley

Edge detection
• Goal: Identify sudden

changes (discontinuities) in
an image
– Intuitively, most semantic and

shape information from the
image can be encoded in the
edges

– More compact than pixels

• Ideal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe
Source: Hays, Brown

Edge detection

• Goal: map image from 2d array of pixels to a set of curves
or line segments or contours.

• Why?

• Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

Source: Darrell, Berkeley

Why do we care about edges?

• Extract information,
recognize objects

• Recover geometry and
viewpoint

Vanishing
 point

Vanishing
 line

Vanishing
 point

 Vertical vanishing
 point

(at infinity)

Source: Hays, Brown

Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz
Source: Hays, Brown

What can cause an edge?

Depth discontinuity:
object boundary

Change in surface
orientation: shape

Cast shadows

Reflectance change:
appearance
information, texture

Source: Darrell, Berkeley

Contrast and invariance

Source: Darrell, Berkeley

Closeup of edges

Source: D. Hoiem
Source: Hays, Brown

Closeup of edges

Source: D. Hoiem
Source: Hays, Brown

Closeup of edges

Source: D. Hoiem
Source: Hays, Brown

Closeup of edges

Source: D. Hoiem
Source: Hays, Brown

Characterizing edges
• An edge is a place of rapid change in the

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Source: Hays, Brown

Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:

To implement above as convolution, what would be the associated
filter?

),(),(
lim

),(

0

yxfyxf

x

yxf

1

),(),1(),(yxfyxf

x

yxf

Source: Darrell, Berkeley

Partial derivatives of an image

Which shows changes with respect to x?

-1
1

1
-1

or

?
-1 1

x

yxf

),(

y

yxf

),(

(showing flipped filters) Source: Darrell, Berkeley

Assorted finite difference filters

>> My = fspecial(‘sobel’);

>> outim = imfilter(double(im), My);

>> imagesc(outim);

>> colormap gray;

Source: Darrell, Berkeley

Image gradient
The gradient of an image:

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Slide credit S. Seitz Source: Darrell, Berkeley

Intensity profile

Source: D. Hoiem
Source: Hays, Brown

With a little Gaussian noise

Gradient

Source: D. Hoiem
Source: Hays, Brown

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Source: Hays, Brown

Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very
different from their neighbors

– Generally, the larger the noise the stronger the
response

• What can we do about it?

Source: D. Forsyth
Source: Hays, Brown

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d

f

g

f * g

)(gf
dx

d

Source: S. Seitz
Source: Hays, Brown

• Differentiation is convolution, and convolution is
associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
)(

Derivative theorem of convolution

g
dx

d
f

f

g
dx

d

Source: S. Seitz
Source: Hays, Brown

Derivative of Gaussian filter

* [1 -1] =

Source: Hays, Brown

Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik Source: Darrell, Berkeley

Laplacian of Gaussian

Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph
Source: Darrell, Berkeley

2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Source: Darrell, Berkeley

Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.

…

Source: Darrell, Berkeley

Effect of σ on derivatives

The apparent structures differ depending on Gaussian’s
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Source: Darrell, Berkeley

So, what scale to choose?
It depends what we’re looking for.

Too fine of a scale…can’t see the forest for the trees.
Too coarse of a scale…can’t tell the maple grain from the cherry. Source: Darrell, Berkeley

Thresholding

• Choose a threshold value t

• Set any pixels less than t to zero (off)

• Set any pixels greater than or equal to t to one (on)

Source: Darrell, Berkeley

Original image

Source: Darrell, Berkeley

Gradient magnitude image

Source: Darrell, Berkeley

Thresholding gradient with a lower threshold

Source: Darrell, Berkeley

Thresholding gradient with a higher threshold

Source: Darrell, Berkeley

• Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth
Source: Hays, Brown

Designing an edge detector
• Criteria for a good edge detector:

– Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

– Good localization
• the edges detected must be as close as possible to

the true edges
• the detector must return one point only for each

true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the

boundary
– Continuity and closure
– High-level knowledge

Source: L. Fei-Fei Source: Hays, Brown

Canny edge detector
• This is probably the most widely used edge

detector in computer vision

• Theoretical model: step-edges corrupted by
additive Gaussian noise

• Canny has shown that the first derivative of
the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei Source: Hays, Brown

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

original image (Lena)

Source: Hays, Brown

Derivative of Gaussian filter

x-direction y-direction

Source: Hays, Brown

The Canny edge detector

original image (Lena)

Source: Darrell, Berkeley

Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: Hays, Brown

The Canny edge detector

norm of the gradient

Source: Darrell, Berkeley

The Canny edge detector

thresholding

Source: Darrell, Berkeley

The Canny edge detector

thresholding

How to turn
these thick
regions of the
gradient into
curves?

Source: Darrell, Berkeley

Non-maximum suppression

Check if pixel is local maximum along gradient
direction, select single max across width of the edge
– requires checking interpolated pixels p and r

Source: Darrell, Berkeley

Get Orientation at Each Pixel

• Threshold at minimum level

• Get orientation theta = atan2(gy, gx)

Source: Hays, Brown

Non-maximum suppression for each
orientation

At q, we have a
maximum if the value
is larger than those at
both p and at r.
Interpolate to get
these values.

Source: D. Forsyth Source: Hays, Brown

Before Non-max Suppression

Source: Hays, Brown

After non-max suppression

Source: Hays, Brown

The Canny edge detector

thinning

(non-maximum suppression)

Problem:
pixels along
this edge
didn’t survive
the
thresholding

Source: Darrell, Berkeley

Hysteresis thresholding

• Check that maximum value of gradient value is
sufficiently large

– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz Source: Darrell, Berkeley

Hysteresis thresholding
• Threshold at low/high levels to get weak/strong edge pixels

• Do connected components, starting from strong edge pixels

Source: Hays, Brown

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei Source: Darrell, Berkeley

Final Canny Edges

Source: Hays, Brown

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
– Define two thresholds: low and high

– Use the high threshold to start edge curves and the low
threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei Source: Hays, Brown

Effect of (Gaussian kernel
spread/size)

Canny with Canny with original

The choice of depends on desired behavior
• large detects large scale edges

• small detects fine features

Source: S. Seitz Source: Hays, Brown

Object boundaries vs. edges

Background Texture Shadows

Source: Darrell, Berkeley

Edge detection is just the beginning…

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: L. Lazebnik

Much more on segmentation later in term…

Source: Darrell, Berkeley

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Representing Texture

Source: Forsyth Source: Hays, Brown

Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ Source: Hays, Brown

Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ Source: Hays, Brown

Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ Source: Hays, Brown

What is texture?

 Regular or stochastic patterns caused by
bumps, grooves, and/or markings

Source: Hays, Brown

How can we represent texture?

• Compute responses of blobs and edges at
various orientations and scales

Source: Hays, Brown

Overcomplete representation: filter
banks

LM Filter Bank

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Source: Hays, Brown

Filter banks

• Process image with each filter and keep
responses (or squared/abs responses)

Source: Hays, Brown

How can we represent texture?

• Measure responses of blobs and edges at
various orientations and scales

• Idea 1: Record simple statistics (e.g., mean,
std.) of absolute filter responses

Source: Hays, Brown

Can you match the texture to the
response?

Mean abs responses

Filters
A

B

C

1

2

3

Source: Hays, Brown

Representing texture

• Idea 2: take vectors of filter responses at each pixel and
cluster them, then take histograms.

Source: Hays, Brown

Building Visual Dictionaries
1. Sample patches from

a database
– E.g., 128 dimensional

SIFT vectors

2. Cluster the patches
– Cluster centers are

the dictionary

3. Assign a codeword
(number) to each
new patch, according
to the nearest cluster

Source: Hays, Brown

pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detect
Natural Boundaries…
http://www.eecs.berkeley.edu/Research/Projects/CS/vi
sion/grouping/papers/mfm-pami-boundary.pdf

Source: Hays, Brown

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf

pB Boundary Detector

Figure from Fowlkes Source: Hays, Brown

Brightness

Color

Texture

Combined

Human

Source: Hays, Brown

Global pB boundary detector

Figure from Fowlkes Source: Hays, Brown

45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
Source: Hays, Brown

