Filters (cont.)

CS 554 – Computer Vision Pinar Duygulu Bilkent University

Today's topics

- Image Formation
- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Templates and Image Pyramids
 - Filtering is a way to match a template to the image
 - Detection, coarse-to-fine registration

Template (mask)

Scene

A toy example

Detected template

Template

Source: Darrell, Berkeley

Detected template

Correlation map

Where's Waldo?

Template

Scene

Where's Waldo?

Template

Where's Waldo?

Detected template

Correlation map

Template

Scene

What if the template is not identical to some subimage in the scene?

Source: Darrell, Berkeley

Template

Detected template

Match can be meaningful, if scale, orientation, and general appearance is right.

Application

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Template matching Goal: find in image

- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross Correlation

- Goal: find I in image
- Method 0: filter the image with eye patch $h[m,n] = \sum g[k,l] f[m+k,n+l]$

k,l

f = image g = filter

What went wrong?

response is stronger for higher intensity

Source: Hays, Brown

Filtered Image

- Goal: find 💽 in image
- Method 1: filter the image with zero-mean eye $h[m,n] = \sum_{l,l} (f[k,l] - \bar{f}) \underbrace{(g[m+k,n+l])}_{\text{mean of f}}$

Source: Hays, Brown

Filtered Image (scaled)

Thresholded Image Slide: Hoiem

- Goal: find 💽 in image
- Method 2: SSD $h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$

Source: Hays, Brown

1- sqrt(SSD)

Thresholded Image Slide: Hoiem

- Goal: find I in image
- Method 2: SSD $h[m,n] = \sum_{k=1}^{\infty} (g[k,l] - f[m+k,n+l])^2$

What's the potential downside of SSD?

SSD is sensitive to average intensity

Source: Hays, Brown

1- sqrt(SSD)

Slide: Hoiem

- Goal: find I in image
- Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Matlab: normxcorr2 (template, im)

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Normalized X-Correlation

Source: Hays, Brown

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Source: Hays, Brown

Normalized X-Correlation

Thresholded Image Slide: Hoiem

Q: What is the best method to use?

A: Depends

- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast

Q: What if we want to find larger or smaller eyes?

Motivation for studying scale.

ELDER AND ZUCKER: LOCAL SCALE CONTROL FOR EDGE DETECTION AND BLUR ESTIMATION

A: Image Pyramid

俞 ඛ

î, î

Irani & Basri

Review of Sampling

Slide: Hoiem

Gaussian Pyramid

Gaussian nvramid

512 256 128 64 32 16 8

Source: Forsyth

Source: Hays, Brown

Template Matching with Image Pyramids

Input: Image, Template 1. Match template at current scale

- 2. Downsample image
- 3. Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression

Coarse-to-fine Image Registration

- 1. Compute Gaussian pyramid
- 2. Align with coarse pyramid
- Successively align with finer pyramids
 - Search smaller range

Why is this faster?

Are we guaranteed to get the same result?

Slide: Hoiem

Laplacian filter

Source: Lazebnik

Source: Hays, Brown

Laplacian pyramid

Source: Forsyth

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Texture segmentation

Malik & Perona, 1990. Preattentive texture discrimination with early vision mechanisms.

Clues from Human Perception Early processing in humans filters for various orientations and scales of

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Source: Hays, Brown