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Image matching

• Image matching is a fundamental aspect of many 
problems in computer vision
– Object or scene recognition
– Solving for 3D structure from multiple images
– Stereo correspondence
– Motion tracking
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Matching

Adapted from Martial Hebert, CMU

First step toward 3-D reconstruction: find correspondences between
feature points in two images of a scene
Object recognition: Find correspondences between feature points
in training and test images



CS554 Computer Vision © Pinar Duygulu

4

Applications – Stereo correspondence
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Applications – Image Retrieval

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

…
> 5000
images

change in viewing angle
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Applications – Recognition

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

texture recognition

car detection
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Applications – 3D Recognition

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 
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Matching

• Matching based on a form of continuum like texture, 
edge pixels or line segments

• Not very discriminant
• Solution : matching with interest points & correlation

•  discrete, reliable  and meaningful
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Matching

• There are two important requirements for feature points to 
have a better correspondence for matching: 

– points corresponding to the same scene points should be extracted 
consistently over the different views 

– They should be invariant to image scaling, rotation and to change 
in illumination and 3D camera viewpoint

– there should be enough information in the neighborhood of the 
points so that corresponding points can be automatically matched. 
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Interest Points
Local invariant photometric descriptors

( )
local descriptor 

Local : robust to occlusion/clutter  + no segmentation
Photometric : distinctive
Invariant : to image transformations + illumination changes

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 
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Interest points

Intuitively junctions or contours
Generally more stable features over changes of view point
Intuitively large variations in the neighborhood of the point
in all directions

Adapted from Martial Hebert, CMU
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Edges vs. Corners
At sharp corners partial derivative estimates are poor, because 
their support will cross the corner

At the corners gradient swings sharply 

The statistics of the gradient in an image neighborhood yields 
quite useful description of the image neighborhood:

Constant windows

Edge windows

Flow windows : several parallel stripes

2D windows : spots or corners
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Edges vs. Corners

Adapted from Martial Hebert, CMU
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Edges vs. Corners

Adapted from Martial Hebert, CMU
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Overview of the approach

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

1) Extraction of interest points (characteristic locations)

2) Computation of  local descriptors

3) Determining correspondences

4) Selection of similar images 

( )
local descriptor 
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Moravec's Corner Detector

Shift a local window over the image to determine the average intensity changes

-If the windowed image patch is flat (i.e. approximately constant in intensity) 
then all shifts will result in only a small change

-If the window straddles an edge then a shift along the edge will result in a 
small change, but a shift perpendicular to the edge will result in a large 
change

-If the windowed patch is a corner or isolated point then all shifts will result in 
a large change. A corner can thus be detected by finding when the minimum 
change produced by any of the shifts is large



CS554 Computer Vision © Pinar Duygulu

17

Moravec's Corner Detector

E(x,y) = ∑ W(u,v) |I(x+u,y+v) – I(u,v)|2

w: window
I: image intensities
E: the change produced by a shift (x,y)

Moravec's corner detector : look for local maxima 
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Moravec's Corner Detector

Problems:
- The response is anisotropic because only a discrete set of shifts at every 45 

degrees is considered
-The response is noisy because the window is binary and rectangular
-The operator responds to readily to edges because only the minimum of E is 

taken into account
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Harris & Stephens, 1988

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

Based on the idea of auto-correlation

Important difference in all directions => interest point
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Harris & Stephens, 1988

Rewrite E for small shifts as

E(x,y) = Ax2 + 2Cxy + By2

A = X2 * w
B = Y2 * w
C = (XY) * w

X = I * (-1, 0, 1) = ∂I/∂x 
Y = I * (-1, 0, 1)T = ∂I/∂y



CS554 Computer Vision © Pinar Duygulu

21

Harris & Stephens, 1988

E(x,y) = (x,y)M(x,y)T

M = [  A  C ]
        [  C  B ]

E is related to local auto correlation function, with M 
describing its shape at the origin
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Harris & Stephens, 1988

Let λ1 and λ2 be the eigenvalues of M

λ1 and λ2 will be proportional to the principal curvatures 
of the local auto-correlation function, and form a 
rotationally invariant description of M

M
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Harris Corner Detector

If both curvatures are small, so that auto-correlation function is  
flat, then the windowed image region is of approximately constant 
intensity --> arbitrary shifts of the image patch cause little change 
in E

If one curvature is high and the other low, so that the auto-
correlation function is ridge shaped, then only shifts along the ridge 
(along the edge) cause little changes in E --> this indicates an edge

If both curvatures are high, so that the local auto-correlation 
function is sharply peaked then shifts in any direction will increase 
E --> this indicates a corner
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Harris Corner Detector

Three cases may occur:

•In a constant window both eigenvalues are small
•In an edge window there is one large eigenvalue
•In a 2D window both eigenwindows are large
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Harris Corner Detector

Adapted from Trevor Darrell, MIT 
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Harris Corner Detector

Adapted from Trevor Darrell, MIT 
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Harris Corner Detector

Adapted from Trevor Darrell, MIT 
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Harris detector

To  measure the corner quality:

If at a certain point the two eigenvalues of the matrix  M  are large, then a 
small motion in any direction will cause an important change of grey 
level. This indicates that the point is a corner. 

The corner response function (R) is given by:
 

 R = det(M) – k(trace(M))2   

trace(M) = λ1 + λ2
Det(M) = λ1 . λ2 

R is positive for corners
negative in edge regions
small in flat regions
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Interest points

Adapted from Martial Hebert, CMU
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Harris detector

In practice often far too much corners are extracted. 
– first restrict the numbers of corners before trying to match them. 

• One possibility consists of only selecting the corners with a value   above a 
certain threshold. 

• This threshold can be tuned to yield the desired number of features. 
• Since for some scenes most of the strongest corners are located in the same 

area, it can be interesting to refine this scheme further to ensure that in 
every part of the image a sufficient number of corners are found. 
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Harris Detector

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

Interest points extracted with Harris (~ 500 points)
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Harris Detector

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

Robust estimation of the fundamental matrix

99 inliers 89 outliers
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Approach for Matching and Recognition

• Detection of interest points/regions
– Harris  detector

• Computation of descriptors for each point

• Similarity of descriptors
– correlation, Mahalanobis distance, Euclidean distance

• Semi-local constraints

• Global verification

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 
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Determining Correspondences

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

Vector comparison using the Mahalanobis distance

)()(),( 1 qpqpqp −Λ−= −T
Mdist

( ) ( )=?
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Selection of Similar Images

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

• In a large database 
– voting algorithm
– additional constraints

• Rapid access with an indexing mechanism
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Voting Algorithm

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

local characteristics
vector of

( )
1I 1I nI2I2I
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Voting Algorithm

• Compute a set of invariant features V around each interest 
point for each image in the database

• For a query image compute the same model

• Compare the vectors for each of the interest points in the 
query image with all the models in the database

• If distance is below some threshold then give a vote to the 
corresponding model
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Additional Constraints

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

• Semi-local constraints
– neighboring points should match
– angles, length ratios should be similar

• Global constraints
• robust estimation of the image transformation (homogaphy, 

epipolar geometry)

1α
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2
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Results

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

database with ~1000 images

The image on the right is correctly retrieved using any of the images on the left



CS554 Computer Vision © Pinar Duygulu

40

Results

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 
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Results

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 
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Approach for Matching and Recognition

• Detection of interest points/regions
– Harris  detector (extension to scale and affine invariance)

• Computation of descriptors for each point
– greyvalue patch, diff. invariants, steerable filter, SIFT descriptor

• Similarity of descriptors

• Semi-local constraints

• Global verification

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 
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SIFT (Scale Invariant Feature Transform) –Lowe’04

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

• Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features
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Advantages of Invariant Local Features

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

• Locality: features are local, so robust to occlusion and 
clutter (no prior segmentation)

• Distinctiveness: individual features can be matched to a 
large database of objects

• Quantity: many features can be generated for even small 
objects

• Efficiency: close to real-time performance

• Extensibility: can easily be extended to wide range of 
differing feature types, with each adding robustness
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Approach

• Scale space extrema detection : search over all scales and image locations. 
Efficient implementation by using Difference of Gaussians to identify 
potential interest points that are invariant to scale and orientation

• Keypoint localization: At each candidate location, a detailed model is fit to 
determine location and scale. Keypoints are selected based on measure of 
stability

• Orientation assignment: One or more orientations are assigned to each 
keypoint location based on local image gradient directions. All future 
operations are performed on image data that has been transformed relative to 
the assigned orientation, scale and location for each feature – invariance 

• Keypoint descriptor : The local image gradient are measured at the selected 
scale in the region around each point
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Scale Invariance

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

Requires a method to repeatably select points in location and 
scale:

• The only reasonable scale-space kernel is a Gaussian (Koenderink, 1984; 
Lindeberg, 1994)

• An efficient choice is to detect peaks in the difference of Gaussian pyramid 
(Burt & Adelson, 1983; Crowley & Parker, 1984 – but examining more scales)

• Difference-of-Gaussian with constant ratio of scales is a close approximation to 
Lindeberg’s scale-normalized Laplacian (can be shown from the heat diffusion 
equation)

• The extremum of scale-normalized Laplacian of Gaussian produces the most 
stable image feature compared to Hessian or Harris corner detector 
(Mikolajczyk. 2002)
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Scale space processed one octave at a time

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

For each octave of scale space, the initial image is repeatedly convolved with Gaussian to produce the 
set of scale space images (Left). Adjacent Gaussian images are subtracted to produce difference of 
Gaussian images (Right) After each octave Gaussian image is downsampled by a factor of 2
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Key point localization

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

• Detect maxima and minima of 
difference-of-Gaussian in scale space

Compare each sample point with its 
eight neighbors in the current image 
and nine neighbors in the scale above 
and below
Select only if it is greater or smaller 
than all the others

Problem : how to determine the frequency of sampling
Consider a white circle on a black background. There is only single scale 
space maximum where the circular positive central region of DOG function 
matches the size and location of the circle
There is a trade of between the sampling frequency and rate of detection
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Key point localization

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

• To reject the points that have low 
contrast (sensitive to noise) or poorly 
localized on the edges

• Fit a quadratic to surrounding values 
for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 2002)

• Taylor expansion around point:

• The location of extremum is found by

The function value at extremum
is useful to rejecting unstable 
extrema with low contrast
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Example of Keypoint detection

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak
      value threshold
(d) 536 left after testing
      ratio of principle
      curvatures
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Select canonical orientation

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

• Create histogram of local 
gradient directions computed at 
selected scale

• Assign canonical orientation at 
peak of smoothed histogram

• Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2π
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SIFT vector formation

Adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial 

Compute the gradient magnitude and orientation at each sample point in a region around the keypoint
Weight by a Gaussian window. Accumulate into orientation histogram 
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Affine Invariance of Interest Points

• Scale invariance is not sufficient for large baseline 
changes

• Affine invariant interest points
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Scale invariant Harris points

• Multi-scale extraction of Harris interest points

• Selection of points at characteristic scale in scale 
space

Laplacian

Chacteristic scale :
- maximum in scale space
- scale invariant
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Scale invariant interest points

     
         invariant points + associated regions [Mikolajczyk & Schmid’01]

multi-scale Harris points

selection of points 

at the characteristic scale

with Laplacian 
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Viewpoint changes

• Locally approximated by an affine transformation

A

detected scale invariant region projected region
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Image retrieval

…
> 5000
images

change in viewing angle



CS554 Computer Vision © Pinar Duygulu

58

Matches

22 correct matches
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Image retrieval

…
> 5000
images

change in viewing angle
+ scale change
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Matches

33 correct matches
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3D Recognition



CS554 Computer Vision © Pinar Duygulu

62

3D Recognition

3D object modeling and recognition using affine-invariant 
patches and multi-view spatial constraints, 
F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce,
CVPR 2003
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Planar texture models

• Models for planar surfaces with SIFT keys
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Planar recognition

• Planar surfaces can be 
reliably recognized at a 
rotation of 60° away 
from the camera

• Affine fit approximates 
perspective projection

• Only 3 points are 
needed for recognition
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3D Object Recognition

• Extract outlines 
with background 
subtraction
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3D Object Recognition

• Only 3 keys are needed 
for recognition, so extra 
keys provide robustness

• Affine model is no longer 
as accurate
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Recognition under occlusion
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Test of illumination invariance

• Same image under differing illumination

273 keys verified in final match
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        Examples of view interpolation
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    Recognition using View Interpolation
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Location recognition
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Robot Localization
• Joint work with Stephen Se, Jim Little
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Map continuously built over time
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Locations of map features in 3D
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Recognizing Panoramas

• Matthew Brown and David Lowe
• Recognize overlap from an unordered set of images and 

automatically stitch together
• SIFT features provide initial feature matching
• Image blending at multiple scales hides the seams

Panorama of our lab automatically assembled from 143 images
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Multiple panoramas from an unordered image set
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Image registration and blending


