
Local Features 

CS 554 – Computer Vision 

Pinar Duygulu 

Bilkent University 



Today’s lecture:  
Feature Detection and Matching 

• Local features 

• Pyramids for invariant feature detection 

• Invariant descriptors 

• Matching 



Image matching 

by Diva Sian 

by swashford 

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/


Harder case 

by Diva Sian by scgbt 

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/


Harder still? 

NASA Mars Rover images 



NASA Mars Rover images 

with SIFT feature matches 

Figure by Noah Snavely 

Answer below (look for tiny colored squares…) 



Local features and alignment 

[Darya Frolova and Denis Simakov] 

• We need to match (align) images 

• Global methods sensitive to occlusion, lighting, parallax 
effects.  So look for local features that match well. 

• How would you do it by eye? 



Local features and alignment 

• Detect feature points in both images 

[Darya Frolova and Denis Simakov] 



Local features and alignment 

• Detect feature points in both images 

• Find corresponding pairs 

[Darya Frolova and Denis Simakov] 



Local features and alignment 

• Detect feature points in both images 

• Find corresponding pairs 

• Use these pairs to align images 

[Darya Frolova and Denis Simakov] 



Local features and alignment 

• Problem 1: 

– Detect the same point independently in both 
images 

no chance to match! 

We need a repeatable detector 

[Darya Frolova and Denis Simakov] 



Local features and alignment 

• Problem 2: 

– For each point correctly recognize the 
corresponding one 

? 

We need a reliable and distinctive descriptor 

[Darya Frolova and Denis Simakov] 



Geometric transformations 



Photometric transformations 

 

Figure from T. Tuytelaars ECCV 2006 tutorial 



And other nuisances… 

• Noise 

• Blur 

• Compression artifacts 

• … 



Invariant local features 
Subset of local feature types designed to be invariant to common 
geometric and photometric transformations. 

 

Basic steps: 

1) Detect distinctive interest points  

2) Extract invariant descriptors 

Figure: David Lowe 



Main questions 

• Where will the interest points come from? 

– What are salient features that we’ll detect in 

multiple views? 

• How to describe a local region? 

• How to establish correspondences, i.e., 

compute matches? 

 



 



Finding Corners 

• Key property: in the region around a corner, 
image gradient has two or more dominant 
directions 

• Corners are repeatable and distinctive 

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ 
Proceedings of the 4th Alvey Vision Conference: pages 147--151.   

Source: Lana Lazebnik 

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Corners as distinctive interest points 

• We should easily recognize the point by 
looking through a small window 

• Shifting a window in any direction should 
give a large change in intensity 

“edge”: 

no change 

along the edge 

direction 

“corner”: 

significant 

change in all 

directions 

“flat” region: 

no change in 

all directions 

Source: A. Efros 



Harris Detector formulation 
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Change of intensity for the shift [u,v]: 

Intensity Shifted 
intensity 

Window 
function 

or Window function w(x,y) = 

Gaussian 1 in window, 0 outside 

Source: R. Szeliski 



 



Harris Detector formulation 
This measure of change can be approximated by: 
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where M is a 22 matrix computed from image derivatives: 
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Sum over image region – area 
we are checking for corner 

Gradient with 
respect to x, times 
gradient with 
respect to y 
 



Harris Detector formulation 
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where M is a 22 matrix computed from image derivatives: 

Sum over image region – area 
we are checking for corner 

Gradient with 
respect to x, times 
gradient with 
respect to y 
 

M 



First, consider an axis-aligned corner: 

What does this matrix reveal? 
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First, consider an axis-aligned corner: 

This means dominant gradient directions align with x or 
y axis 

If either λ is close to 0, then this is not a corner, so look 
for locations where both are large. 

 

Slide credit: David Jacobs 

What does this matrix reveal? 

What if we have a corner that is not aligned with the 
image axes?  



General Case 
Since M is symmetric, we have RRM 
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We can visualize M as an ellipse with axis lengths 
determined by the eigenvalues and orientation 
determined by R 

 

direction of the 
slowest change 

direction of the 
fastest change 

(max)
-1/2 

(min)
-1/2 

Slide adapted form Darya Frolova, Denis Simakov. 



Interpreting the eigenvalues 

1 

2 

“Corner” 

1 and 2 are large, 

 1 ~ 2; 

E increases in all 

directions 

1 and 2 are small; 

E is almost constant 

in all directions 

“Edge”  

1 >> 2 

“Edge”  

2 >> 1 

“Flat” 

region 

Classification of image points using eigenvalues of M: 



Corner response function 

“Corner” 

R > 0 

“Edge”  

R < 0 

“Edge”  

R < 0 

“Flat” 

region 

|R| small 

2

2121

2 )()(trace)det(   MMR

α: constant (0.04 to 0.06) 



Harris Corner Detector 

• Algorithm steps:  

– Compute M matrix within all image windows to get their 
R scores 

– Find points with large corner response  

  (R > threshold) 

– Take the points of local maxima of R 



Harris Detector: Workflow 

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute. 



Harris Detector: Workflow 
Compute corner response R 



Harris Detector: Workflow 
Find points with large corner response: R>threshold 



Harris Detector: Workflow 
Take only the points of local maxima of R 



Harris Detector: Workflow 



Harris Detector: Properties 

• Rotation invariance 

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same 

Corner response R is invariant to image rotation 



Harris Detector: Properties 

• Not invariant to image scale 

All points will be 
classified as edges 

Corner ! 



• How can we detect scale invariant interest 
points? 



How to cope with transformations? 

• Exhaustive search 

• Invariance 

• Robustness 

 



Exhaustive search 

• Multi-scale approach 

Slide from T. Tuytelaars ECCV 2006 tutorial 



Exhaustive search 

• Multi-scale approach 

 



Exhaustive search 

• Multi-scale approach 

 



Exhaustive search 

• Multi-scale approach 

 



Invariance 

• Extract patch from each image individually 

 



Automatic scale selection 

• Solution: 

– Design a function on the region, which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales) 
 
 

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same. 

scale = 1/2 

– For a point in one image, we can consider it as a 
function of region size (patch width)  
 

f 

region size 

Image 1 f 

region size 

Image 2 



Automatic scale selection 

• Common approach: 

scale = 1/2 

f 

region size 

Image 1 f 

region size 

Image 2 

Take a local maximum of this function 

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale. 

s1 s2 

Important: this scale invariant region size is 
found in each image independently! 



K. Grauman, B. Leibe 

Automatic Scale Selection 

• Function responses for increasing scale (scale 
signature)  

48 
K. Grauman, B. Leibe 
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K. Grauman, B. Leibe 

Automatic Scale Selection 

• Function responses for increasing scale (scale 
signature)  
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K. Grauman, B. Leibe 

Automatic Scale Selection 

• Function responses for increasing scale (scale 
signature)  
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K. Grauman, B. Leibe 

Automatic Scale Selection 

• Function responses for increasing scale (scale 
signature)  
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K. Grauman, B. Leibe 

Automatic Scale Selection 

• Function responses for increasing scale (scale 
signature)  
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K. Grauman, B. Leibe 

Automatic Scale Selection 

• Function responses for increasing scale (scale 
signature)  

 

53 
K. Grauman, B. Leibe 
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Scale selection 

• Use the scale determined by detector to compute 
descriptor in a normalized frame 

[Images from T. Tuytelaars] 



K. Grauman, B. Leibe 

What Is A Useful Signature Function? 

• Laplacian-of-Gaussian = “blob” detector 

55 
K. Grauman, B. Leibe 



Characteristic scale 

• We define the characteristic scale as the scale 
that produces peak of Laplacian response 

characteristic scale 

T. Lindeberg (1998). "Feature detection with automatic scale selection." 
International Journal of Computer Vision 30 (2): pp 77--116.  Source: Lana Lazebnik 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


K. Grauman, B. Leibe 

Laplacian-of-Gaussian (LoG) 
• Interest points:  

 Local maxima in scale  
space of Laplacian-of- 
Gaussian 

K. Grauman, B. Leibe 
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Example 
Original image at 
¾ the size 

Kristen Grauman 



Original image at 
¾ the size 

Kristen Grauman 



Kristen Grauman 



Kristen Grauman 



Kristen Grauman 



Kristen Grauman 
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scale 

Scale invariant interest points 
Interest points are local maxima in both position 

and scale. 

Squared filter 
response maps 



Scale-space blob detector: Example 

Source: Lana Lazebnik 



Scale-space blob detector: Example 

 

Source: Lana Lazebnik 



Scale-space blob detector: Example 

Source: Lana Lazebnik 



Scale-space blob detector: Example 

Image credit: Lana Lazebnik 



• We can approximate the Laplacian with a 
difference of Gaussians; more efficient to 
implement. 

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian) 

(Difference of Gaussians) 

Technical detail 



Key point localization with DoG 
• Detect maxima of difference-

of-Gaussian (DoG) in scale 
space 

• Then reject points with low 
contrast (threshold) 

• Eliminate edge responses 
Blur 

Resample

Subtract

Candidate keypoints: 
list of (x,y,σ) 



Example of keypoint detection 

(a) 233x189 image 
(b) 832 DOG extrema 
(c) 729 left after peak 
      value threshold 
(d) 536 left after testing 
      ratio of principle 
      curvatures (removing 

edge responses) 
 



Scale Invariant Detection: Summary 

• Given: two images of the same scene with a large 
scale difference between them 

• Goal: find the same interest points independently 
in each image 

• Solution: search for maxima of suitable functions 
in scale and in space (over the image) 



Maximally Stable Extremal Regions [Matas ‘02] 

• Based on Watershed segmentation algorithm 

• Select regions that stay stable over a large 
parameter range 

 

K. Grauman, B. Leibe 



Example Results: MSER 

74 K. Grauman, B. Leibe 



Comparison 

LoG 

MSER 

Harris 



Comparison of Keypoint Detectors 

Tuytelaars Mikolajczyk 2008 



Choosing a detector 
 

• What do you want it for? 
– Precise localization in x-y: Harris 
– Good localization in scale: Difference of Gaussian 
– Flexible region shape: MSER 

 
• Best choice often application dependent 

– Harris-/Hessian-Laplace/DoG work well for many natural categories 
– MSER works well for buildings and printed things 

 
• Why choose? 

– Get more points with more detectors 

 
• There have been extensive evaluations/comparisons 

– [Mikolajczyk et al., IJCV’05, PAMI’05] 
– All detectors/descriptors shown here work well 

 
 
 



• For most local feature detectors, executables 
are available online: 

– http://robots.ox.ac.uk/~vgg/research/affine 

– http://www.cs.ubc.ca/~lowe/keypoints/ 

– http://www.vision.ee.ethz.ch/~surf 

 

K. Grauman, B. Leibe 



Main questions 

• Where will the interest points come from? 

– What are salient features that we’ll detect in 
multiple views? 

• How to describe a local region? 

• How to establish correspondences, i.e., 
compute matches? 

 



Local descriptors 
• We know how to detect points 
• Next question: 

 
             How to describe them for matching? 

? 

Point descriptor should be: 

1. Invariant 

2. Distinctive 



Local descriptors 

• Simplest descriptor: list of intensities within 

a patch. 

• What is this going to be invariant to? 



Feature descriptors 

• Disadvantage of patches as descriptors:  
– Small shifts can affect matching score a lot 

 
 
 
 
 
 
 

• Solution: histograms 

0 2 p 

Source: Lana Lazebnik 



SIFT descriptor [Lowe 2004]  

• Use histograms to bin pixels within sub-patches 

according to their orientation. 

0 2 p 

Why subpatches? 

Why does SIFT have 
some illumination 
invariance? 



• Scale Invariant Feature Transform 

• Descriptor computation: 

– Divide patch into 4x4 sub-patches: 16 cells 

– Compute histogram of gradient orientations (8 
reference angles) for all pixels inside each sub-
patch 

– Resulting descriptor: 4x4x8 = 128 dimensions 

Feature descriptors: SIFT 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 
91-110, 2004.  

Source: Lana Lazebnik 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Rotation Invariant Descriptors 

• Find local orientation 

Dominant direction of gradient for the image patch 

• Rotate patch according to this angle 
 This puts the patches into a canonical 

orientation. 



CSE 576: Computer Vision 

Rotation Invariant Descriptors 

Image from Matthew Brown 



Feature descriptors: SIFT 
• Extraordinarily robust matching technique 

– Can handle changes in viewpoint 

• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 

• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 

– Lots of code available 
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT  

Steve Seitz 

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT


Working with SIFT descriptors 

• One image yields:  
– n 128-dimensional descriptors: each 

one is a histogram of the gradient 
orientations within a patch 

• [n x 128 matrix] 

– n scale parameters specifying the size 
of each patch 

• [n x 1 vector] 

– n orientation parameters specifying the 
angle of the patch 

• [n x 1 vector] 

– n 2d points giving positions of the 
patches 

• [n x 2 matrix] 



More on feature detection/description 



Main questions 

• Where will the interest points come from? 

– What are salient features that we’ll detect in 
multiple views? 

• How to describe a local region? 

• How to establish correspondences, i.e., 
compute matches? 

 



Feature descriptors 
We know how to detect and describe good 

points 
Next question: How to match them? 
 
 
 
 
 
 
 
 
 

? 



Feature matching 

Given a feature in I1, how to find the best match 
in I2? 

1. Define distance function that compares two 
descriptors 

2. Test all the features in I2, find the one with min 
distance 



Feature distance 
How to define the difference between two 

features f1, f2? 

– Simple approach is SSD(f1, f2)  
• sum of square differences between entries of the two descriptors 

• can give good scores to very ambiguous (bad) matches  

I1 I2 

f1 f2 



Feature distance 
How to define the difference between two 

features f1, f2? 

– Better approach:  ratio distance = SSD(f1, f2) / 
SSD(f1, f2’) 
• f2 is best SSD match to f1 in I2 

• f2’  is  2nd best SSD match to f1 in I2 

• gives small values for ambiguous matches 

I1 I2 

f1 f2 f2
' 



Evaluating the results 

How can we measure the performance of a feature matcher? 
50 

75 

200 

feature distance 



True/false positives 

 
 
 
 
 
 
 
 
 
 
The distance threshold affects performance 

– True positives = # of detected matches that are correct 
• Suppose we want to maximize these—how to choose threshold? 

– False positives = # of detected matches that are incorrect 
• Suppose we want to minimize these—how to choose threshold? 

50 

75 

200 

feature distance 

false match 

true match 



0.7 

Evaluating the results 
How can we measure the performance of a feature matcher? 

0 1 

1 

false positive rate 

true 
positive 

rate 
 

# true positives 
# matching features (positives) 

0.1 

# false positives 
# unmatched features (negatives) 



0.7 

Evaluating the results 
How can we measure the performance of a feature matcher? 

0 1 

1 

false positive rate 

true 
positive 

rate 
 

# true positives 
# matching features (positives) 

0.1 

# false positives 
# unmatched features (negatives) 

ROC curve  (“Receiver Operator Characteristic”) 

ROC Curves 

• Generated by counting # current/incorrect matches, for different threholds 

• Want to maximize area under the curve (AUC) 

• Useful for comparing different feature matching methods 

• For more info:  http://en.wikipedia.org/wiki/Receiver_operating_characteristic  

http://en.wikipedia.org/wiki/Receiver_operating_characteristic


Recap: robust feature-based alignment 

Source: L. Lazebnik 



Recap: robust feature-based alignment 

• Extract features 

Source: L. Lazebnik 



Recap: robust feature-based alignment 

• Extract features 

• Compute putative matches 

Source: L. Lazebnik 



Recap: robust feature-based alignment 

• Extract features 

• Compute putative matches 

• Loop: 

– Hypothesize transformation T (small group of 
putative matches that are related by T) 

 Source: L. Lazebnik 



Recap: robust feature-based alignment 

• Extract features 

• Compute putative matches 

• Loop: 
– Hypothesize transformation T (small group of 

putative matches that are related by T) 

– Verify transformation (search for other matches 
consistent with T) Source: L. Lazebnik 



Recap: robust feature-based alignment 

• Extract features 

• Compute putative matches 

• Loop: 
– Hypothesize transformation T (small group of 

putative matches that are related by T) 

– Verify transformation (search for other matches 
consistent with T) Source: L. Lazebnik 



Applications of local invariant 
features 

• Wide baseline stereo 

• Motion tracking 

• Panoramas 

• Mobile robot navigation 

• 3D reconstruction 

• Recognition 

• … 

 



Automatic mosaicing 

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html 

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html


Wide baseline stereo 

[Image from T. Tuytelaars ECCV 2006 tutorial] 



Recognition of specific objects, scenes 

Rothganger et al. 2003 Lowe 2002 

Schmid and Mohr 1997 Sivic and Zisserman, 2003 

Kristen Grauman 



Object recognition (David Lowe) 



Multi-view matching 

vs 

…
 

? 

Matching two given 
views for depth  

Search for a matching view 
for recognition 

Kristen Grauman 



 How to quickly find images in a large database 
that match a given image region? 



Video Google System 
1. Collect all words within 

query region 
2. Inverted file index to find 

relevant frames 
3. Compare word counts 
4. Spatial verification 

 
Sivic & Zisserman, ICCV 2003 
 
• Demo online at : 

http://www.robots.ox.ac.uk/~vgg/research/vgoo
gle/index.html 

 

Query 

region 

R
e
trie

v
e
d
 fra

m
e
s 

Kristen Grauman 



B. Leibe 

Example Applications 

Mobile tourist guide 
• Self-localization 

• Object/building recognition 

• Photo/video augmentation 

[Quack, Leibe, Van Gool, CIVR’08] 



Application: Large-Scale Retrieval 

[Philbin CVPR’07] 

Query Results from 5k Flickr images (demo available for 100k set) 



Application: Image Auto-Annotation 

 

K. Grauman, B. Leibe 117 

Left:   Wikipedia image 
Right: closest match from Flickr 

[Quack CIVR’08] 

Moulin Rouge 

Tour Montparnasse Colosseum 

Viktualienmarkt 
Maypole 

Old Town Square (Prague) 



 



Photo Tourism 
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