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Today’s lecture:
Feature Detection and Matching

_ocal features
Pyramids for invariant feature detection

nvariant descriptors
Matching



Image matching

by Diva Sian

by swashford



http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/

Harder case

by Diva Sian


http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/

Harder still?

NASA Mars Rover images



Answer b@IOW (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely



Local features and alignment

 We need to match (align) images

* Global methods sensitive to occlusion, lighting, parallax
effects. So look for local features that match well.

* How would you do it by eye?

[Darya Frolova and Denis Simakov]
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Local features and alignment

e Detect feature points in both images

e Find corresponding pairs




Local features and alignment

e Detect feature points in both images

e Find corresponding pairs

e Use these pairs to align images




Local features and alignment

* Problem 1:

— Detect the same point independently in both
Images

no Chance to match!

We need a repeatable detector




Local features and alignment

* Problem 2:

— For each point correctly recognize the
corresponding one

We need a reliable and distinctive descriptor




Geometric transformations

Multiple View
Geometry

I8 COmnuler vision

Tl ey o) A o Tunon




Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial



And other nuisances...

Noise
Blur
Compression artifacts



Invariant local features

Subset of local feature types designed to be invariant to common
geometric and photometric transformations.

Basic steps:
1) Detect distinctive interest points
2) Extract invariant descriptors

Figure: David Lowe



Main guestions

* Where will the interest points come from?

— What are salient features that we’ll detect in
multiple views?

* How to describe a local region?

* How to establish correspondences, I.e.,
compute matches?




Figure 4.3: Image pairs with extracted patches below. Notice how some patches can be localized
or matched with higher accuracy than others.
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e Key property: in the region around a corner,
image gradient has two or more dominant

directions
* Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147--151.

Source: Lana Lazebnik


http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf

Corners as distinctive interest points

 We should easily recognize the point by
looking through a small window

e Shifting a window in any direction should
give a large change in intensity

“flat” region: “edge”. “corner”:
no change in no change significant
all directions along the edge change in all

direction directions

Source: A. Efros



Harris Detector formulation
Change of intensity for the shift [u,v]:

E(u,v)=> w(x, Y)[I(X+U,y+V)- I\(x, y)]2
function intensity

Window function W(X,y) = [ —

(Intensity)

1 in window, O outside Gaussian

Source: R. Szeliski
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Detector formulatlon

arri
This measure of c%ange can be approximated by:

where M is a 2x2 matrix computed from image derivatives:

Gradient with
respect to x, times
gradient with
respecttoy

Sum over image region — area
we are checking for corner

| Do el > Il o I
M ‘[zmy ZIyIz]_Z[Iy][My]



where M is a 2x2 matrix computed from image derivatives:

Gradient with
respect to x, times
gradient with
respecttoy

Sum over image region — area
we are checking for corner

| Do el > Il o I
M ‘[zmy ZIyIz]_Z[Iy][My]



What does this matrix reveal?

First, consider an axis-alighed corner:




What does this matrix reveal?

First, consider an axis-alighed corner:

M:'Zlf lely'_'ﬂ1 0"
20, 20 0 4

This means dominant gradient directions align with x or
y axis

If either A is close to O, then this is not a corner, so look
for locations where both are large.

What if we have a corner that is not aligned with the
image axes?

Slide credit: David Jacobs



General Case

Since M is symmetric, we have M=R™"

_ﬂq -
0 4
We can visualize M as an ellipse with axis lengths

determined by the eigenvalues and orientation
determined by R

direction of the
fastest change

direction of the
slowest change

Slide adapted form Darya Frolova, Denis Simakov.



Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

Ay

Aq and A, are small;

E is almost constant ::>

in all directions




Corner response function
R=det(M)—atrace(M)’ = A4, —a(A, +4,)°

o constant (0.04 to 0.06)




Harris Corner Detector

e Algorithm steps:

— Compute M matrix within all image windows to get their
R scores

— Find points with large corner response

(R > threshold)
— Take the points of local maxima of R



Harris Detector: Workflow

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.



Harris Detector: Workflow

Compute corner response R




Harris Detector: Workflow
Find points with large corner response: R>threshold




Harris Detector: Workflow

Take only the points of local maxima of R




Harris Detector: Workflow




Harris Detector: Properties

e Rotation invariance

™ \|‘ A
i S

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response R is invariant to image rotation




Harris Detector: Properties

* Not invariant

to image scale

v

All points will be

B

classified as edges

Corner!



e How can we detect scale invariant interest
points?



How to cope with transformations?

 Exhaustive search
* |nvariance
e Robustness



Exhaustive search

* Multi-scale approach

Slide from T. Tuytelaars ECCV 2006 tutorial



Exhaustive search

* Multi-scale approach




Exhaustive search

* Multi-scale approach




Exhaustive search

* Multi-scale approach




Invariance

* Extract patch from each image individually




Automatic scale selection

 Solution:

— Design a function on the region, which is “scale
invariant” (the same for corresponding regions, even if
they are at different scales)

— For a point in one image, we can consider it as a
function of region size (patch width)

Image 1 f1 Image 2

scale =1/2
/\ =) /\

g »

region size region size



Automatic scale selection

 Common approach:

Take a local maximum of this function

Observation: region size, for which the maximum is
achieved, should be invariant to image scale.

Important: this scale invariant region size is
found in each image independently!

Image 1 f1 Image 2

scale =1/2 |
/T\ =) /\

Sq region size S, region size



Automatic Scale Selection

K. Grauman, B. Leibe
K. Grauman, B. Leibe
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Automatic Scale Selection

K. Grauman, B. Leibe
K. Grauman, B. Leibe
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Automatic Scale Selection

K. Grauman, B. Leibe
K. Grauman, B. Leibe
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Automatic Scale Selection
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Automatic Scale Selection
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Automatic Scale Selection
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Scale selection

e Use the scale determined by detector to compute
descriptor in a normalized frame

[Images from T. Tuytelaars]



What Is A Useful Signature Function?

f-Gaussian = “blob” detector

K. Grauman, B. Leibe
K. Grauman, B. Leibe
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Characteristic scale

 We define the characteristic scale as the scale
that pr‘t‘\f‘lllf"QC ha|/ ~Ff | an.|arl~|a'n rncnnnse

2000

1500

1000

0 1 2 3 ;/" 5 6 7

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116. Source: Lana Lazebnik



http://www.nada.kth.se/cvap/abstracts/cvap198.html

Laplacian-of-Gaussian (LoG)
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Scale A
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K. Grauman, B. Leibe
K. Grauman, B. Leibe



Original image at
% the size

Kristen Grauman



Original image at
% the size

Kristen Grauman




sigma=4.2

Kristen Grauman



sigma=6
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Kristen Grauman



sigma=9.8

Kristen Grauman
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Scale invariant interest points

Interest points are local maxima in both position

and scale.
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Scale-space blob detector: Example

Source: Lana Lazebnik



Scale-space blob detector: Example

sigma = 11.9912

Source : Lana Lazebnik



Example

Scale-space blob detector

5 e ————

Source: Lana Lazebnik



Example

Scale-space blob detector
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Image credit: Lana Lazebnik



Technical detail
 We can approximate the Laplacian with a

difference of Gaussians; more efficient to
implement.

(Laplacian)

(Difference of Gaussians)

1 (ko)




Key point localization with DoG

Detect maxima of difference- A

. . T T LT T
of-Gaussian (DoG) in scale oo == v
Space L A S

Then reject points with low Scale A AT
A AT
contrast (threshold)

Eliminate edge responses

|

Candidate keypoints:
list of (x,y,0)



Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema

lﬂ'- s S 4 (c) 729 left after peak
: e = L STEERE s S value threshold
ol g | ~ﬂ““““"""' — eSS R (d) 536 left after testing

ratio of principle
curvatures (removing
edge responses)




Scale Invariant Detection: Summary

* Given: two images of the same scene with a large
scale difference between them

* Goal: find the same interest points independently
in each image

e Solution: search for maxima of suitable functions
in scale and in space (over the image)



Maximally Stable Extremal Regions muats o

* Based on Watershed segmentation algorithm

* Select regions that stay stable over a large
para =B
E!- A .‘.i y

K. Grauman, B. Leibe
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Example Results: MSER




Harris

MSER




Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

Feature Detector

Corner Blob  Region

Rotation
invariant

Scale
invariant

A ﬂ'l e
invariant

Localization
Bepeatability ACCUracy Robustness Efficiency
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Tuytelaars Mikolajczyk 2008



Choosing a detector

What do you want it for?
— Precise localization in x-y: Harris
— Good localization in scale: Difference of Gaussian
— Flexible region shape: MSER

Best choice often application dependent
— Harris-/Hessian-Laplace/DoG work well for many natural categories
— MSER works well for buildings and printed things

Why choose?
— Get more points with more detectors

There have been extensive evaluations/comparisons
— [Mikolajczyk et al., IJCV’'05, PAMI’05]
— All detectors/descriptors shown here work well



 For most local feature detectors, executables
are available online:

— http://robots.ox.ac.uk/~vgg/research/affine

— http://www.cs.ubc.ca/~lowe/keypoints/

— http://www.vision.ee.ethz.ch/~surf

K. Grauman, B. Leibe



Main questions

 Where will the interest points come from?

— What are salient features that we'll detect in
multiple views?

* How to describe a local region?

* How to establish correspondences, i.e.,
compute matches?



Local descriptors

 We know how to detect points
* Next question:

How to describe them for matching?

Point descriptor should be:
1. Invariant
2. Distinctive




Local descriptors

« Simplest descriptor: list of intensities within
a patch.
« What is this going to be invariant to?

Write regions as vectors region A region B

A—a, B—b g g

a !

b 8 B
vector a vectér b




Feature descriptors

* Disadvantage ofeig

criptors:
— Small shifts ca 0 D

core a lot
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Source: Lana Lazebnik



SIFT descriptor [Lowe 2004}

« Use histograms to bin pixels within sub-patches

according to their orientation.

-

I V2

A
N A AN

KK X

Why subpatches?

Why does SIFT have
some illumination
invariance?



Feature descriptors: SIFT

e Scale Invariant Feature Transform

* Descriptor computation:
— Divide patch into 4x4 sub-patches: 16 cells

— Com aEam Of gradi nt nriantati ns (8
N P
refer for all pixe N sub-
patc > ' ﬁ
% L
— Resu or: 4x4x8 = ions
KK X

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp.
91-110, 2004.

Source: Lana Lazebnik


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Rotation Invariant Descriptors

* Find local orientation
Dominant direction of gradient for the image patch

e Rotate patch according to this angle
This puts the patches into a canonical
orientation.




Rotation Invariant Descriptors

Image from Matthew Brown



Feature descrigugors: SIFT

. Extraordmaﬂy rcl)'gust matching techn
— Can handle changes in viewpoint
* Up to about 60 degree out of plane rotation
— Can handle significant changes in illumination
* Sometimes even day vs. night (below)

— Fast and efficient—can run in real time

— Lots of code available
http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known implementations of SIFT

W '\,‘ ]
N [N

-
Steve Seitz



http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Working with SIFT descriptors

* One image yields:

— n 128-dimensional descriptors: each
one is a histogram of the gradient
orientations within a patch

* [nx 128 matrix]

— n scale parameters specifying the size

of each patch
* [nx 1 vector]

— n orientation parameters specifying the

angle of the patch
* [n x 1 vector]

— n 2d points giving positions of the

patches
* [n X 2 matrix]




More on feature detection/description

address ’EI hitkp: f e, robots, o, ac,ukf~vggfresearch)affine)
() glﬁ‘v mikilajczyk, v | g Searchweb ~ g

Affine Covariant Regions

Publications

Region detectors s Harris-Affine & Hessian Affine: K. Mikolajczvk and C. Schinid, Scale and Affine invariant interest point detectors. In

ITCW 1(607:63-86, 2004, PDF

o MEER I Watas, O Chum, W Tiban, and T. Pajdla, Eobust wide baseline stereo from masamally stable extremal regions.
In BMWVC p. 384-383, 2002, PDF

o [BR & BEBR T Tuytelaars and L. Van Gool, Matching widely separated wiews based onaffine mvariant regions. In ITCV 1
(5%-61-85, 2004 PDF

o Salient regions: T. Kadir, A Zisserman, and M. Brady, An affine invariant salient region detector. In ECCV . 404-416,
2004, FDE

Region descriptors | <157 D Lowe, Distinctive image features from scale invariant keypoints. In TCV 2(60):91-110, 2004. PDF

Performance o E. Mikolajezyk, T. Tuytelaars, C. Schmid, A Zisserman, ] Matas, F. Schaffalitley, T. Eadir and L. Van Gool, A
evaluation comparizon of affine region detectors. Technical Eeport, accepted to ITCWV. FDE

o E Mikolajczyk, C. Schmid, A performance evaluation of local descriptors. Technical Eeport, accepted to PAMI FDF




Main questions

 Where will the interest points come from?

— What are salient features that we'll detect in
multiple views?

* How to describe a local region?

* How to establish correspondences, i.e.,
compute matches?




Feature descri‘?tors
We know how to detect and describe good

points




Feature matching

Given a feature in |, how to find the best match
inl,?
1. Define distance function that compares two

descriptors
2. Test all the features in I,, find the one with min

distance



Feature distance
How to define the difference between two

features f,, f,?

— Simple approach is SSD(f,, f,)

sum of square differences between entries of the two descriptors




Feature distance
How to define the difference between two

features f,, f,?

— Better approach: ratio distance = SSD(f,, f,) /
SSD(f,, f,’)




Evaluating the results

feature distance



True/false posmves_

B (e match |

= 75

false mat¢h

i )00

feature distance

The distance threshold affects performance
— True positives = # of detected matches that are correct
* Suppose we want to maximize these—how to choose threshold?
— False positives = # of detected matches that are incorrect
* Suppose we want to minimize these—how to choose threshold?



Evaluating the results

How can we measure the pertor a feature matcher?

1
0.7 —--o
# true positives true i
# matching features (positives)  positive |
rate !
i
| ..
O 0.1 false positive rate 1

# false positives
# unmatched features (negatives)




Evaluating the results

How can we measure the pertor a feature matcher?

1
07— #
# true positives true
# matching features (positives)  positive
rate
|
O 0.1 false positive rate 1

# false positives
# unmatched features (negatives)

ROC Curves
e Generated by counting # current/incorrect matches, for different threholds
e Want to maximize area under the curve (AUC)
e Useful for comparing different feature matching methods

e For more info: http://en.wikipedia.org/wiki/Receiver operating characteristic



http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Source: L. Lazebnik



Extract features

L. Lazebnik

Source



e Extract features
e Compute putative matches

Source: L. Lazebnik



e Extract features
e Compute putative matches
e |Loop:

— Hypothesize transformation T (small group of
putative matches that are related by T)

Source: L. Lazebnik



e Extract features

e Compute putative matches
e |Loop:
— Hypothesize transformation T (small group of
putative matches that are related by T)

— Verify transformation (search for other matches
consistent with T)

Source: L. Lazebnik



e Extract features
e Compute putative matches
e |Loop:

— Hypothesize transformation T (small group of
putative matches that are related by T)

— Verify transformation (search for other matches
COhSlSte nt Wlth T) Source: L. Lazebnik



Applications of local invariant
features

Wide baseline stereo
Motion tracking
Panoramas

Mobile robot navigation
3D reconstruction
Recognition



Automatic mosaicing

http://www.cs.ubc.ca/~”mbrown/autostitch/autostitch.html



http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]



Recognition of specific objects, scenes

Rothganger et al. 2003 Lowe 2002

Kristen Grauman



Object recognition (David Lowe)

./ b " / ‘ " :




Multi-view matching

Matching two given Search for a matching view
views for depth for recognition

Kristen Grauman



How to quickly find images in a large database
that match a given image region?




Video Google Sy
1. Collect all words within
guery region

2. Inverted file index to find
relevant frames

Compare word counts
4. Spatial verification

| Query
§l region

w

Sivic & Zisserman, ICCV 2003

e Demo online at:

http://www.robots.ox.ac.uk/~vgg/research/vgoo
gle/index.html

Sowlel) PaASLISY

Kristen Grauman



Example Applications
AachenCatI%M

\

\

Mobile tourist guide

« Self-localization

e Object/building recognition
e Photo/video augmentation

/

B. Leibe [Quack, Leibe, Van Gool, CIVR’08]



Applicat
rYNERG

Query Results from 5k Flickr images (demo available for 100k set)
[Philbin CVPR’07]



Colosseum

Left: Wikipedia image
Right: closest match from Flickr

K. Grauman, B. Leibe



Google Goggles

Use pictures to search the web. [> Watch a video

Get Google Goggles

Android (1.6+ required)
Download from Android Market.

Send Goggles to Android phone

lew! iPhone (iOS 4.0 required)
Download from the App Store.

Send Goggles to iPhone

New
BAL
Menu: ffﬂ%“mm
Crépess ’
7
Text Landmarks Books Contact Info Artwork Wine

T M@ 1103
Google gogeles =

Lammbkoteletts vom Biobauern mit
Schalotten, Tomatencoulis und Basilikum-
Gnocchi

German (auto) = English

Lamb chops from the farmers with the
shallots, tomato sauce and basil gnocchi




Photo Tourism

-

T Con (o [ e
i 2 » »
/|__"'| Photo Tourism \\4}_‘ I
C % % hitpy//phototour.cs.washington.edu/ > O S

Photo Tourism Microsoft

Exploring photo collections in 3D
I B 5
A A B
mmEk DR
‘1YY L
it T

| ta)

()

Photo tourism is a system for browsing large collections of photographs in 30. Our approach takes as input large
l collections of images from either personal photo collections or Internet photo sharing sites (a), and automatically
i computes each photo's viewpoint and a sparse 3D model of the scene (b). Our photo explorer interface enables
the viewer to interactively move about the 30 space by seamlessly transitioning between photographs, based on
user control (e).

[ Live Demo ]

*New!* See our work on Finding Paths through the World's Photos.

Our structure from motion code is also now available at the Bundler homepage.




Slide Credits

Trevor Darrell

Bill Freeman
Kristen Grauman
Steve Seitz

lvan Laptev
Tinne Tuytelaars
James Hays
Svetlana Lazebnik



