Recognizing and Learning Object Categories

Li Fei-Fei, Stanford
Rob Fergus, NYU
Antonio Torralba, MIT
Outline

2. Single object categories

- Bag of words
- Part-based
- Discriminative
- Detecting single objects in contexts
- 3D object classes

3. Multiple object categories

- Recognizing a large number of objects
- Recognizing multiple objects in an image
- Objects and annotations

4. Object-related datasets and challenges
object

Perceptible

Vision

Material

thing

1. Something that can be perceived by one or more of the senses, especially sight or touch; an object of perception.
2. A focus of attention, thinking, or action: an object of contemplation.
3. The purpose or result of a specific action or effort: the object of the game.
4. Grammar:
 a. A noun, pronoun, or noun phrase that receives or is affected by the action of a verb within a sentence.
 b. A noun or substantive governed by a preposition.
5. Philosophy. Something intelligible or perceptible by the mind.
6. Computer Science. A discrete item that can be selected and maneuvered, such as an onscreen graphic. In object-oriented programming, objects include data and the procedures necessary to operate on that data.
Plato said...

- Ordinary objects are classified together if they `participate' in the same abstract Form, such as the Form of a Human or the Form of Quartz.
- Forms are proper subjects of philosophical investigation, for they have the highest degree of reality.
- Ordinary objects, such as humans, trees, and stones, have a lower degree of reality than the Forms.
- Fictions, shadows, and the like have a still lower degree of reality than ordinary objects and so are not proper subjects of philosophical enquiry.
How many object categories are there?

~10,000 to 30,000

Biederman 1987
Why do we care about recognition?

Perception of function: We can perceive the 3D shape, texture, material properties, without knowing about objects. But, the concept of category encapsulates also information about what can we do with those objects.

“We therefore include the perception of function as a proper –indeed, crucial- subject for vision science”, from Vision Science, chapter 9, Palmer.
The perception of function

• Direct perception (affordances): Gibson

- Flat surface
- Horizontal
- Knee-high
- ... → Sittable
- upon

• Mediated perception (Categorization)

- Flat surface
- Horizontal
- Knee-high
- ... → Chair
- Chair → Sittable
- upon
Direct perception

Some aspects of an object function can be perceived directly

• Functional form: Some forms clearly indicate to a function ("sittable-upon", container, cutting device, ...)

Sittable-upon Sittable-upon

Sittable-upon

It does not seem easy to sit-upon this...
Direct perception
Some aspects of an object function can be perceived directly

- Observer relativity: Function is observer dependent

From http://lastchancerescueflint.org
Limitations of Direct Perception

Objects of similar structure might have very different functions.

Not all functions seem to be available from direct visual information only.

The functions are the same at some level of description: we can put things inside in both and somebody will come later to empty them. However, we are not expected to put inside the same kinds of things...
How do we achieve Mediated perception?

Well... this requires object recognition (for more details, see entire course)
Object recognition
Is it really so hard?

Find the chair in this image

This is a chair

Output of normalized correlation
Object recognition
Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it
Object recognition
Is it really so hard?

A “popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts.” Nivatia & Binford, 1977.
And it can get a lot harder

So what does object recognition involve?
Verification: is that a lamp?
Detection: are there people?
Identification: is that Potala Palace?
Object categorization

- mountain
- tree
- banner
- building
- street lamp
- vendor
- people
Scene and context categorization

- outdoor
- city
- ...

The image shows a cityscape with a prominent building in the background, indicating an outdoor setting in a city context.
Computational photography

[Face priority AE] When a bright part of the face is too bright
Assisted driving

Pedestrian and car detection

Lane detection

- Collision warning systems with adaptive cruise control,
- Lane departure warning systems,
- Rear object detection systems,
Improving online search

Query: STREET

Organizing photo collections
Challenges 1: viewpoint variation

Michelangelo 1475-1564
Challenges 2: illumination

slide credit: S. Ullman
Challenges 3: occlusion

Magritte, 1957
Challenges 4: scale
Challenges 5: deformation

Xu, Beihong 1943
Challenges 6: background clutter

Klimt, 1913
Challenges 7: intra-class variation
~10,000 to 30,000
Object categorization: the statistical viewpoint

\[p(\text{zebra} \mid \text{image}) \]

vs.

\[p(\text{no zebra} \mid \text{image}) \]

- Bayes rule:

\[
\frac{p(\text{zebra} \mid \text{image})}{p(\text{no zebra} \mid \text{image})} = \frac{p(\text{image} \mid \text{zebra})}{p(\text{image} \mid \text{no zebra})} \cdot \frac{p(\text{zebra})}{p(\text{no zebra})}
\]

posterior ratio

likelihood ratio

prior ratio
Object categorization: the statistical viewpoint

\[
\frac{p(\text{zebra} \mid \text{image})}{p(\text{no zebra} \mid \text{image})} = \frac{p(\text{image} \mid \text{zebra})}{p(\text{image} \mid \text{no zebra})} \cdot \frac{p(\text{zebra})}{p(\text{no zebra})}
\]

posterior ratio likelihood ratio prior ratio

- Discriminative methods model posterior
- Generative methods model likelihood and prior
• Direct modeling of \(\frac{p(zebra|image)}{p(no\ zebra|image)} \)
Generative

• Model $p(image|zebra)$ and $p(image|no\ zebra)$
Three main issues

• Representation
 – How to represent an object category

• Learning
 – How to form the classifier, given training data

• Recognition
 – How the classifier is to be used on novel data
Learning

– Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning
Learning

- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)

- Methods of training: generative vs. discriminative
Learning

– Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
– What are you maximizing? Likelihood (Gen.) or performances on train/validation set (Disc.)
– Level of supervision
 • Manual segmentation; bounding box; image labels; noisy labels

Contains a motorbike
Recognition

– Scale / orientation range to search over
– Speed
– Context
Classical Methods

1. Bag of words approaches
2. Parts and structure approaches
3. Discriminative methods
Bag of Words Models
Bag of Words

- Independent features
- Histogram representation
learning

- feature detection & representation
- image representation

recognition

- codewords dictionary

category models (and/or) classifiers

category decision
1. Feature detection and representation

- Compute descriptor
e.g. SIFT [Lowe’99]

- Normalize patch

- Detect patches

[Mikojaczyk and Schmid ’02]
[Mata, Chum, Urban & Pajdla, ’02]
[Sivic & Zisserman, ’03]
1. Feature detection and representation
2. Codewords dictionary formation

128-D SIFT space
2. Codewords dictionary formation

Vector quantization

128-D SIFT space

Codewords

Vector quantization

Slide credit: Josef Sivic
Image patch examples of codewords
Image representation

Histogram of features assigned to each cluster

frequency

codewords
Uses of BoW representation

- Treat as feature vector for standard classifier
 - e.g SVM

- Cluster BoW vectors over image collection
 - Discover visual themes

- Hierarchical models
 - Decompose scene/object

- Scene
What about spatial info?
Adding spatial info. to BoW

- Feature level
- Generative models
- Discriminative methods
 - Lazebnik, Schmid & Ponce, 2006
Problem with bag-of-words

- All have equal probability for bag-of-words methods
- Location information is important
- BoW + location still doesn’t give correspondence
Model: Parts and Structure
Representation

• Object as set of parts
 – Generative representation

• Model:
 – Relative locations between parts
 – Appearance of part

• Issues:
 – How to model location
 – How to represent appearance
 – How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]
Classifier-based methods
Classifier based methods

Object detection and recognition is formulated as a classification problem.

The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.
Context for single object classes
Who needs context anyway?
We can recognize objects even out of context

Banksy
Why is context important?

• Changes the interpretation of an object (or its function)

• Context defines what an unexpected event is
Even in high resolution, we can not shut down contextual processing and it is hard to recognize the true identities of the elements that compose this scene.
Modeling object relationships
Detecting difficult objects

Detect first simple objects (reliable detectors) that provide strong contextual constraints to the target (screen -> keyboard -> mouse)

Torralba, Murphy, Freeman. NIPS 2004.
\[p(O \mid I) \propto p(I \mid O) \ p(O) \]

Object model

Context model

Full joint

Scene model

Approx. joint

\[p(O) = \sum_s \prod_i p(O_i \mid S=s) \ p(S=s) \]

office

street
Objects in Context

Most consistent labeling according to *object co-occurrences* & local label probabilities.

BRF for car detection: results

Building detection

Car detection

Road detection

Output labeling

b(car) t=1 t=2 t=4 t=20 t=40

Torralba Murphy Freeman (2004)
An integrated model of Scenes, Objects, and Parts

scene

Scene

gist
features

Scene

P(N_{car} \mid S = street)

P(N_{car} \mid S = park)
An integrated model of Scenes, Objects, and Parts

We train a multiview car detector.

\[p(d \mid F=1) = \mathcal{N}(d \mid \mu_1, \sigma_1) \]
\[p(d \mid F=0) = \mathcal{N}(d \mid \mu_0, \sigma_0) \]
An integrated model of Scenes, Objects, and Parts

We train a multiview car detector.

\[
p(d \mid F=1) = \mathcal{N}(d \mid \mu_1, \sigma_1)\]
\[
p(d \mid F=0) = \mathcal{N}(d \mid \mu_0, \sigma_0)\]

N=4
A car out of context ...
3D object categorization

Courtesy of Prof. Silvio Savarese (U. Michigan, Ann-Arbor)
3D Object Categorization

- Weber et al. ‘00
- Schneiderman et al. ’01
- Capel et al. ’02
- Johnson & Herbert ’99
- Bronstein et al. ‘03
- Ruiz-Correa et al. ’03,
- Funkhouser et al. ’03
- Bart et al. ’04
- Thomas et al. ‘06
- Kushal, et al., ’07
- Savarese et al. 07, 08
- Chiu et al. ’07
- Hoiem, et al., ’07
- Yan, et al. ’07
3D Object Categorization

Challenges

- how to model 3D shape variability?

- How to model texture (appearance) variability?

- How to link texture (appearance) across views?
Object representation: Collection of patches in 3D

Rothganger et al. ’06

x,y,z + h,v + descriptor
Model learning
Rothganger et al. ‘03 ’06

Build a 3D model:

- N images of object from N different viewpoints
- Match key points between consecutive views [create sample set]
- Use affine structure from motion to compute 3D location and orientation + camera locations [RANSAC]
- Find connected components
- Use bundle adjustment to refine model
- Upgrade model to Euclidean assuming zero skew and square pixels
A 3D model category is built from a collection of 3D range data or CAD models.

- Bronstein et al, ‘03
- Ruiz-Correa et al. ‘03
- Funkhouser et al ‘03
- Kazhdan et al.03
- Osada et al ‘02
- Capel et al ’02
- Johnson & Herbert ’99
- Amberg et al ‘08
Shape distributions

Osada et al. 02

Kazhdan et al. 03

Spherical harmonics
Sparse set of interest points or parts of the objects are linked across views.
Multi-view models by rough 3d shapes

Yan, et al. ’07
A unified framework for 3D object detection, pose classification, pose synthesis

- Savarese, Fei-Fei, ICCV 07
- Savarese, Fei-Fei, ECCV 08
- Sun, Su, Savarese, Fei-Fei, CVPR 09
- Su, Sun, Fei-Fei, Savarese, ICCV 09

- Canonical parts capture diagnostic appearance information
- 2d ½ structure linking parts via weak geometry
Object Recognition

Algorithm

1. Find hypotheses of canonical parts consistent with a given pose
2. Infer position and pose of other canonical parts
3. Optimize over E, G and s to find best combination of hypothesis

→ error
Multiclass object detection
Context: objects appear in configurations
Generalization: objects share parts
How many object categories are there?
We do not need to recognize the exact category.

A new class can borrow information from similar categories.
Large Scale Recognition and Retrieval
Scaling to billions of images

Object Recognition for large-scale search

Focus on scaling rather than understanding image
Content-Based Image Retrieval

• Variety of simple/hand-designed cues:
 – Color and/or Texture histograms, Shape, PCA, etc.

• Various distance metrics
 – Earth Movers Distance (Rubner et al. ‘98)

• QBIC from IBM (1999)

• Blobworld, Carson et al. 2002
Here is a shot of me and my brothers at my brother Jon's wedding to his first wife. I was 17, Garth was 19 and Jon was 21.

This photo has notes. Move your mouse over the photo to see them.
Day in pictures

A Thai government employee risks a close up shot of a captive tiger in Ratchaburi province as part of a scheme to tackle illegal trading by creating a database of the animals.
Vision and language in human brain

Sentence: The sky is blue.

figure modified from: http://www.colorado.edu/intphys/Class/IPHY3730
Automatic Image Annotation: **ALIP**

Annotation Process

- Classification results form the **basis**
- Salient words appearing in the classification **favored** more

Slide courtesy of Ritendra Datta, Jia Li, James Z. Wang
“Beyond nouns”
(i) Duygulu et. al (2002)

(ii) Our Approach
What, where and who? Classifying events by scene and object recognition

L-J Li & L. Fei-Fei, ICCV 2007
Auto-semi-supervised learning:
Small # of initialized images + Large # of uninitialized images

Scene/Event images from the Internet

Total Scene

Generative Model

Large # of uninitialized images

Small # of initialized images

flickr

Athlete
Horse
Grass
Tree
Wind
Saddle

L-J Li, R. Socher & L. Fei-Fei, CVPR, 2009
Datasets
80,000,000 images

75,000 non-abstract nouns from WordNet

7 Online image search engines

And after 1 year downloading images

Google: 80 million images

A. Torralba, R. Fergus, W.T. Freeman. PAMI 2008
• An ontology of images based on WordNet

• ImageNet currently has
 – ~15,000 categories of visual concepts
 – 10 million human-cleaned images (~700im/categ)
 – Free to public @ www.image-net.org

~10^5+ nodes
~10^8+ images

shepherd dog, sheep dog

collie

German shepherd

Deng, Dong, Socher, Li & Fei-Fei, CVPR 2009
Human vision
• Many input modalities
• Active
• Supervised, unsupervised, semi supervised learning. It can look for supervision.

Robot vision
• Many poor input modalities
• Active, but it does not go far

Internet vision
• Many input modalities
• It can reach everywhere
• Tons of data
Labeling to get a Ph.D.

Labeling for fun

Labeling for money

Just labeling

Visipedia
Dataset labeling by crowd sourcing

Mechanical Turk is a marketplace for work.
We give businesses and developers access to an on-demand, scalable workforce. Workers select from thousands of tasks and work whenever it’s convenient.

90,040 HITs available. [View them now.](#)

Make Money by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. [Find HITs now.](#)

As a Mechanical Turk Worker you:

- Can work from home
- Choose your own work hours
- Get paid for doing good work

Find an interesting task → Work → Earn money

[Find HITs Now](#)

Get Results from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk. [Register Now](#)

As a Mechanical Turk Requester you:

- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you’re satisfied with the results

Fund your account → Load your tasks → Get results

[Get Started](#)

or [learn more about being a Worker](#)

or [learn more about being a Requester](#)
A word of warning of crowd sourcing

“We've heard that a million monkeys at a million keyboards could produce the complete works of Shakespeare; now, thanks to the Internet, we know that is not true.”

-- Robert Wilensky, 1996