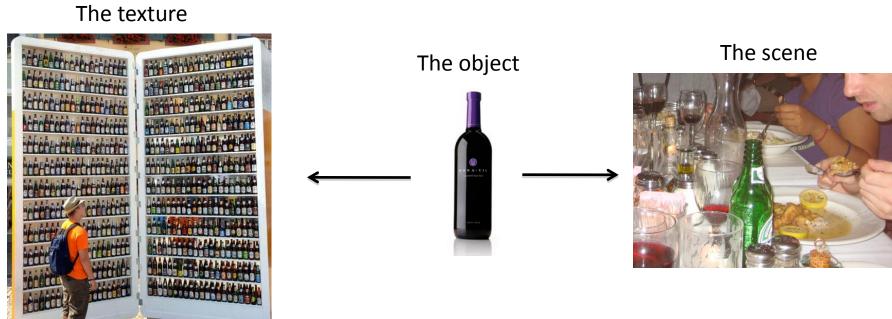
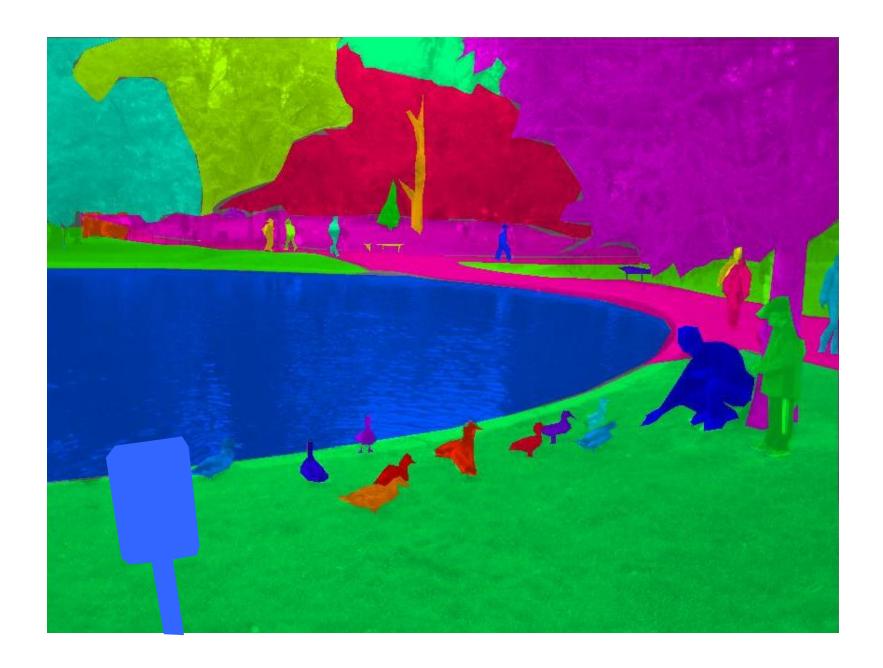
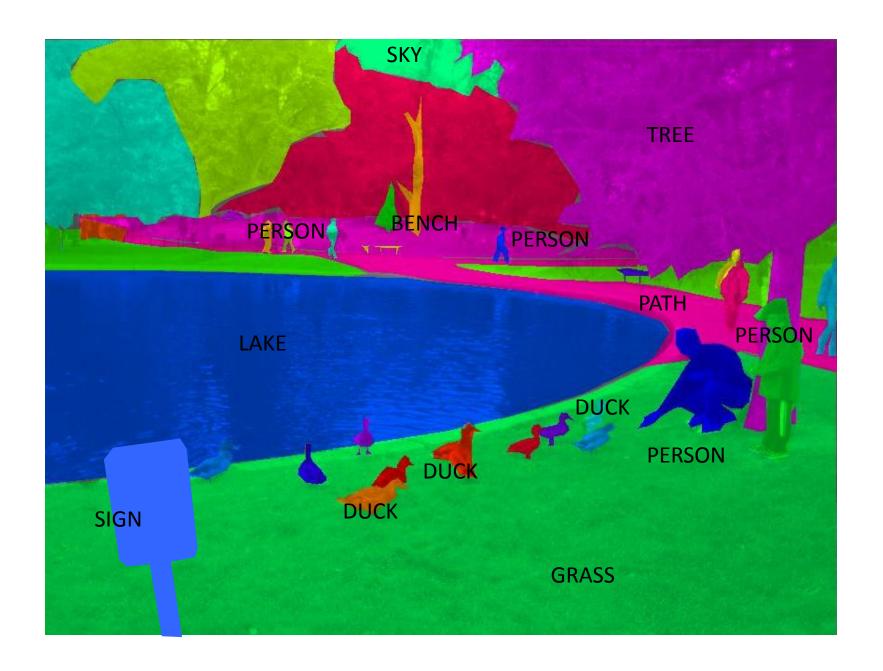
Scene Classification

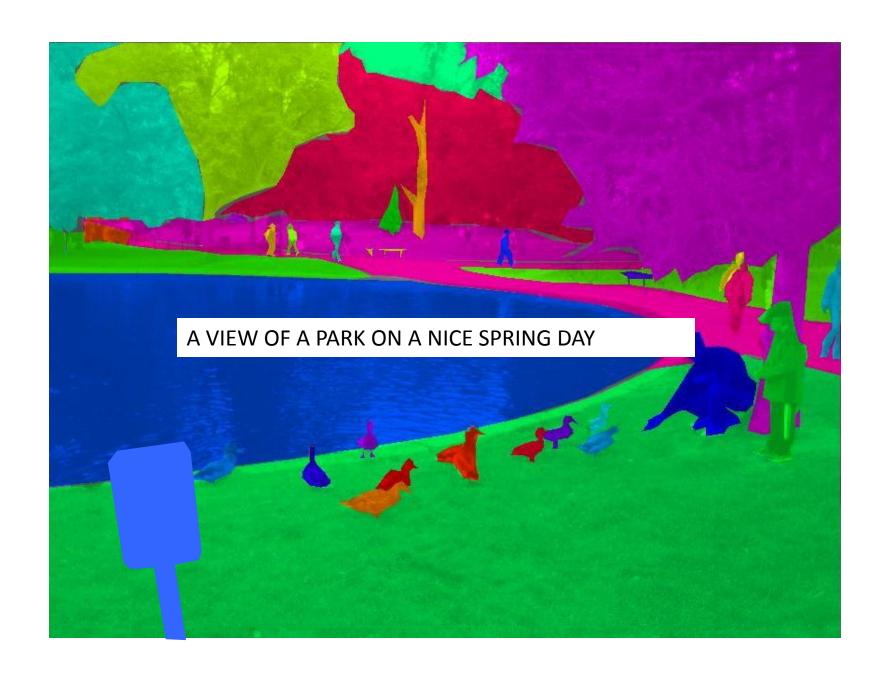
CS 554 – Computer Vision
Pinar Duygulu
Bilkent University

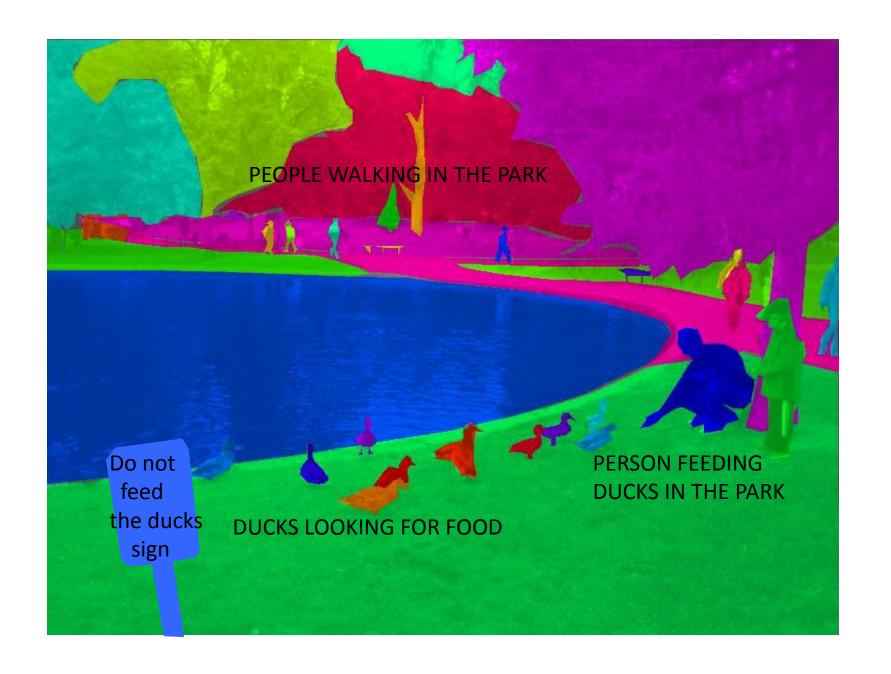
(Source: Antonio Torralba)











Scene views vs. objects

By scene we mean a place in which a human can act within, or a place to which a human being could navigate. Scenes are a lot more than just a combination of objects (just as objects are more than the combinations of their parts). Like objects, scenes are associated with specific functions and behaviors, such as eating in a restaurant, drinking in a pub, reading in a library, and sleeping in a bedroom.

Scene views vs. objects

A photograph of a firehydrant

A photograph of a street

Mary Potter (1976)

Mary Potter (1975, 1976) demonstrated that during a rapid sequential visual presentation (100 msec per image), a novel picture is instantly **understood** and observers seem to comprehend a lot of visual information

Demo: Rapid image understanding

By Aude Oliva

Instructions: 9 photographs will be shown for half a second each. Your task is to memorize these pictures

Memory Test

Which of the following pictures have you seen?

If you have seen the image clap your hands once

If you have not seen the image do nothing

Have you seen this picture?

Have you seen this picture?

Have you seen this picture?

Have you seen this picture?

Have you seen this picture?

Have you seen this picture?

You have seen these pictures

You were tested with these pictures

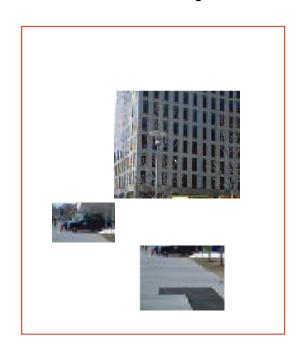
The gist of the scene

In a glance, we remember the meaning of an image and its global layout but some objects and details are forgotten

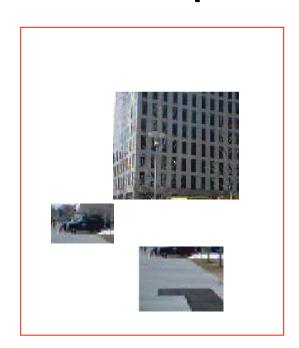
What can be an alternative to objects?

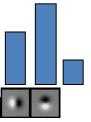
•	An alternative to objects: scene emergent features

Global and local representations



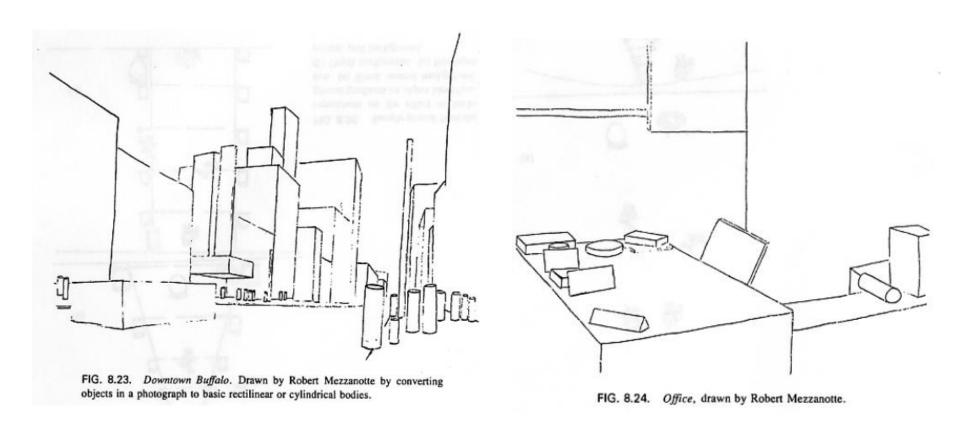
Global and local representations





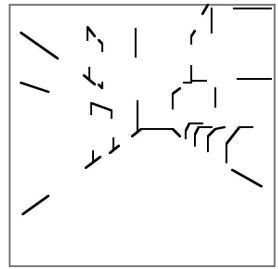
Scene emergent features "Recognition via features that are not those of individual objects but "emerge" as

"Recognition via features that are not those of individual objects but "emerge" as objects are brought into relation to each other to form a scene." – Biederman 81



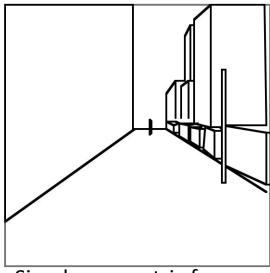
From "on the semantics of a glance at a scene", Biederman, 1981

Examples of scene emergent features



Suggestive edges and junctions

Blobs

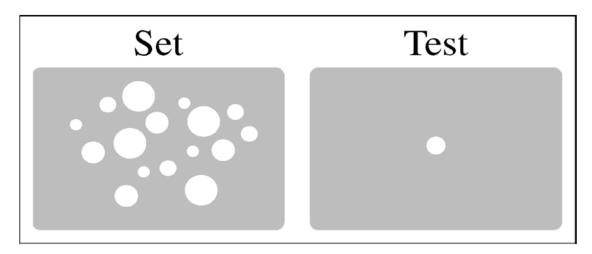


Simple geometric forms

Textures

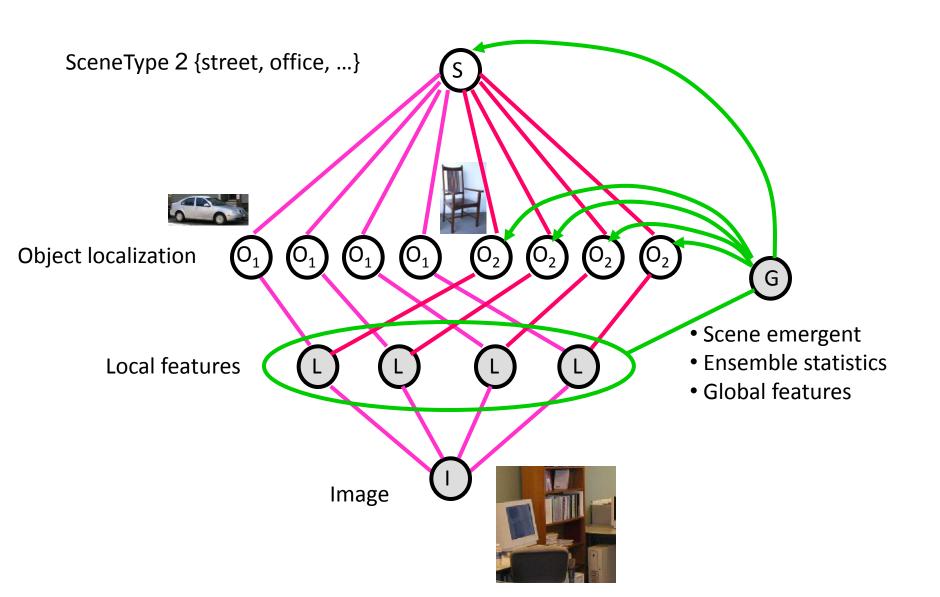
Ari E, no seing es beleent statistics ies

Chong, Treisman, 2003, Representation of statistical properties Alvarez, Oliva, 2008, 2009, Spatial ensemble statistics

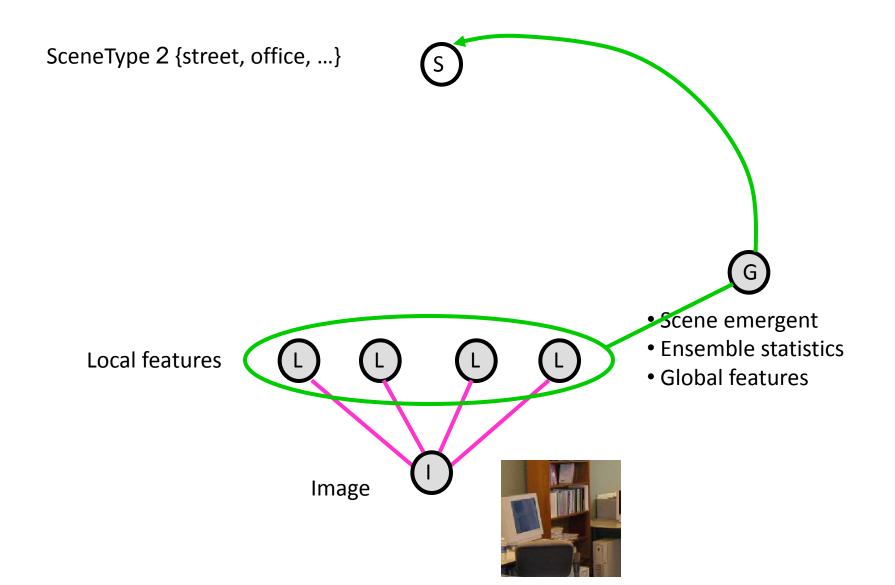


Conclusion: observers had more accurate representation of the mean than of the individual members of the set.

From scenes to objects



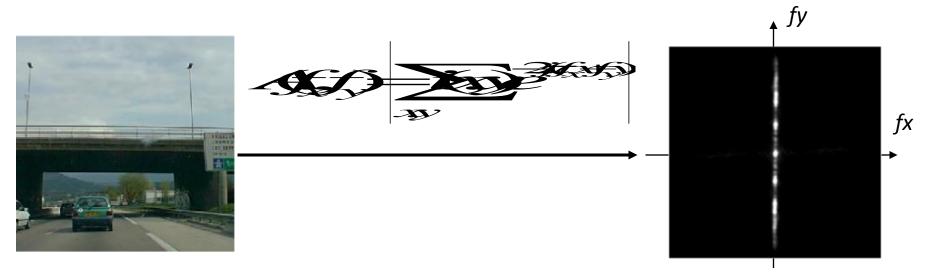
How far can we go without objects?



Scenes as textures

A simple texture descriptor

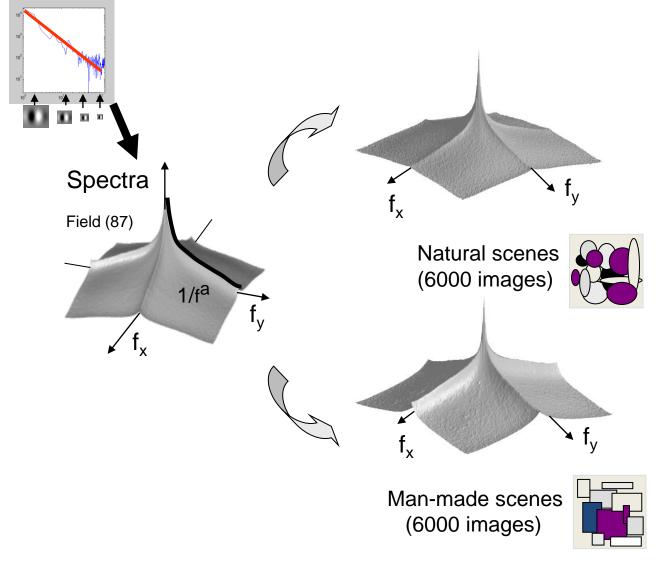
Magnitude of the Fourier Transform

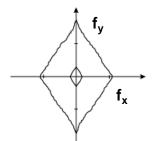


Magnitude of the Fourier Transform encodes unlocalized information about dominant orientations and scales in the image.

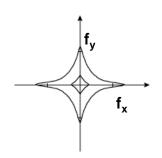
The magnitude of the Fourier transform does not contain information about object identities and spatial arrangements.

Statistics of Scene Categories





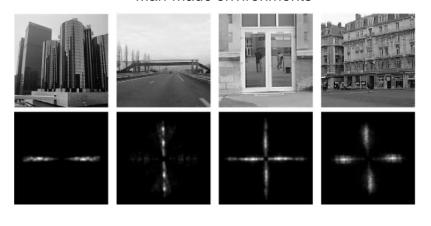
Natural scenes spectral signature



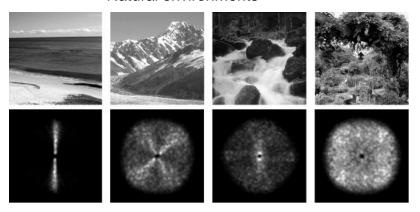
Man-made scenes spectral signature

Statistics of Scene Categories

Man-made environments



Natural environments



Spectral signature of natural environments

Spectral signature of man-made environments

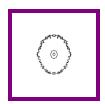
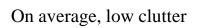
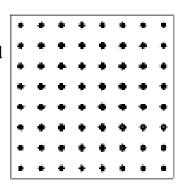
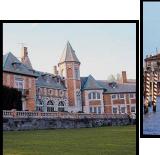


Image Statistics and Scene Scale



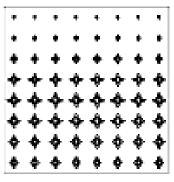
Point view is unconstrained





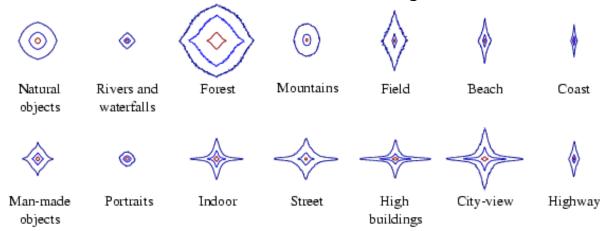
On average, highly cluttered

Point view is strongly constrained



Statistics of Scene Categories

• The statistics of orientations and scales across the image differ between scene categories:



• also differ when conditioning for the presence or absence of objects in the image:

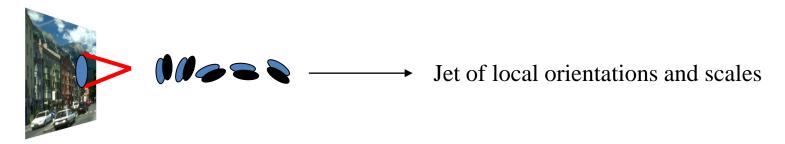
• or for different properties of the scene like the mean depth:

• Gist

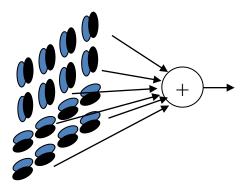
- Spatial envelope
- Depth

Local and Global features

A set of local features describes image properties at one particular location in the image:

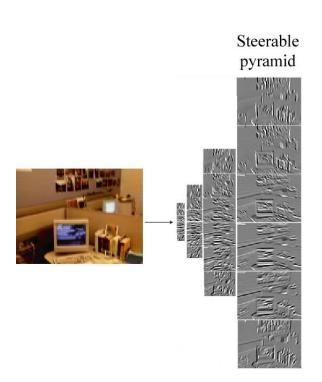


A set of global features provides information about the global image structure without encoding specific objects

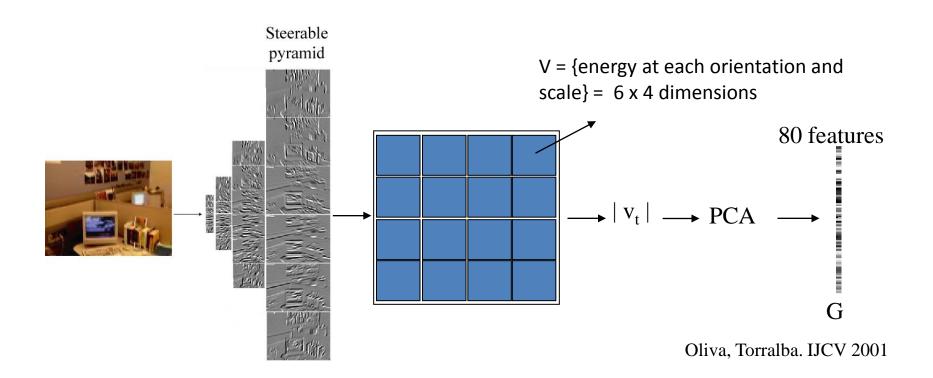


This feature likes images with vertical structures at the top part and horizontal texture at the bottom part (this is a typical composition of an empty street)

Gist descriptor

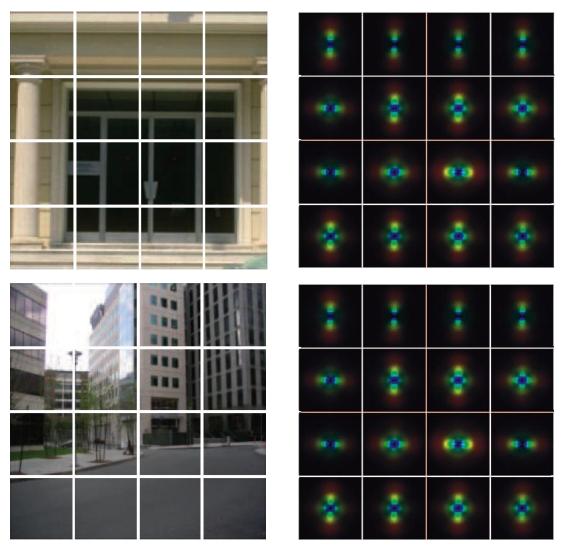


Gist descriptor



Gist descriptor

Oliva and Torralba, 2001



- Apply oriented Gabor filters over different scales
- Average filter energy in each bin

8 orientations

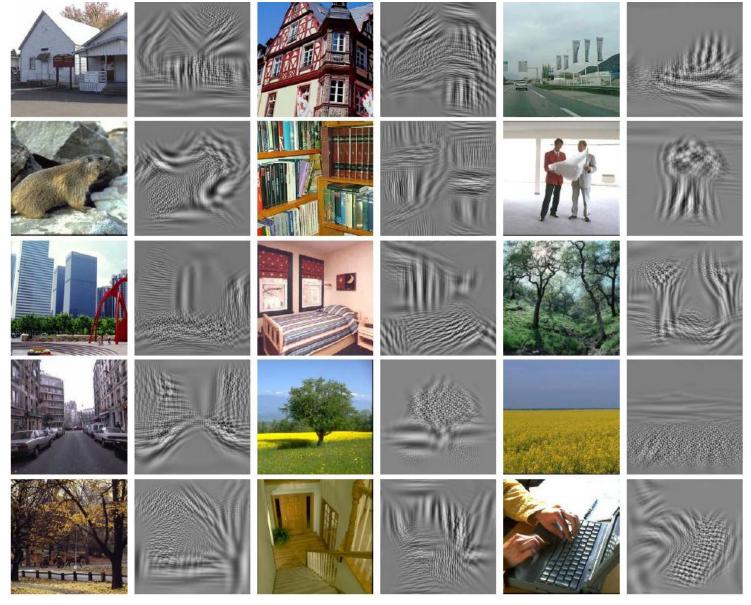
4 scales

x 16 bins

512 dimensions

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004; Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...

Example visual gists



Global features (I) \sim global features (I')

Like a *texture*, a scene could be represented by a set of structural dimensions, but describing surface properties of a *space*.

We use a classification task: observers were given a set of scene pictures and were asked to organize them into groups of similar shape, similar global aspect, similar spatial structure.

They were explicitly told to not use a criteria related to the objects or a scene semantic group.

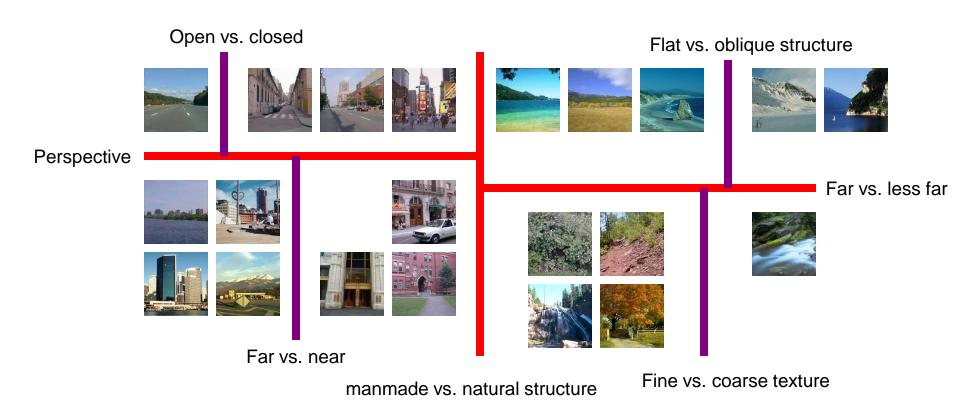
<u>Task:</u> The task consisted in 3 steps: the first step was to divide the pictures into 2 groups of similar shape.

Example: manmade vs. natural structure

<u>Task:</u> The second step was to split each of the 2 groups in two more subdivisions.

manmade vs. natural structure

<u>Task:</u> In the third step, participants split the 4 groups in two more groups.

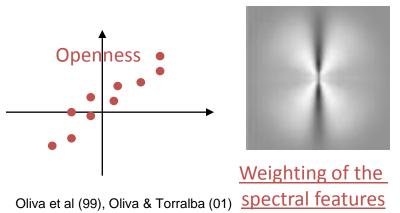


Estimation of a space descriptor: openness

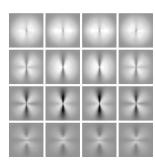
From open scenes... to closed scenes.

From vertical components to isotropic components.

Regression: we look for a weighting of the spectral components so that we can reproduce the same ordinal ranking as the subjects.

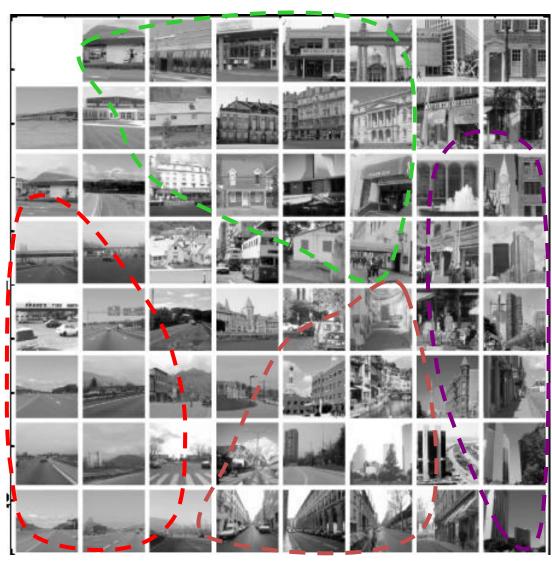


The template represents
the best weighting of the
spectral components in order
to estimate the degree of openness



Layout of weighted spectral features

Spatial envelope: a continuous space of scenes

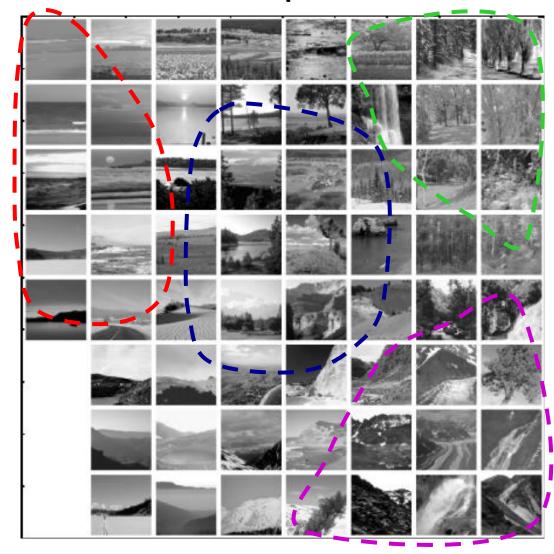


Highway Street City centre Tall Building

Spatial envelope:

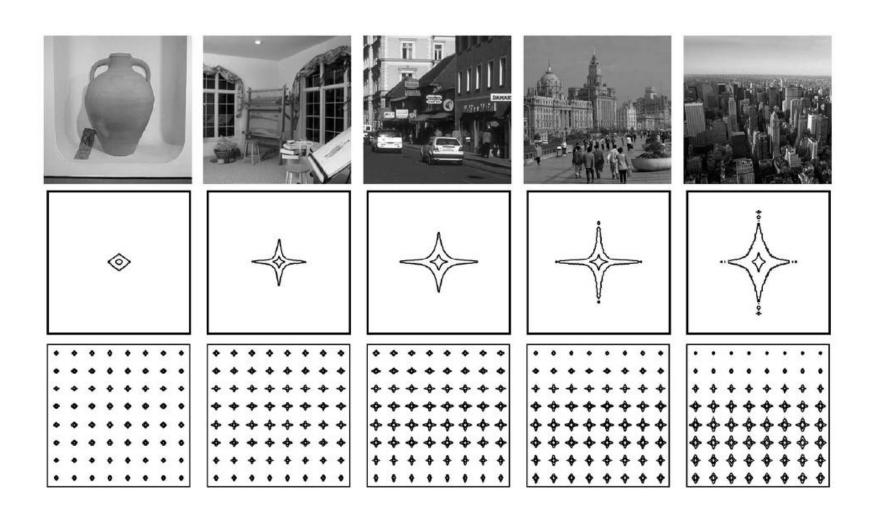
Degree of Ruggedness

a continuous space of scenes

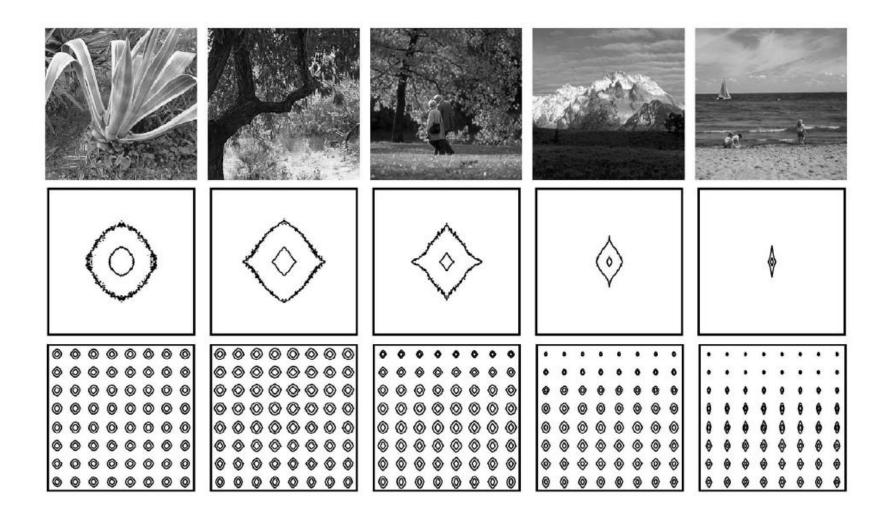


Coast Countryside Forest Mountain

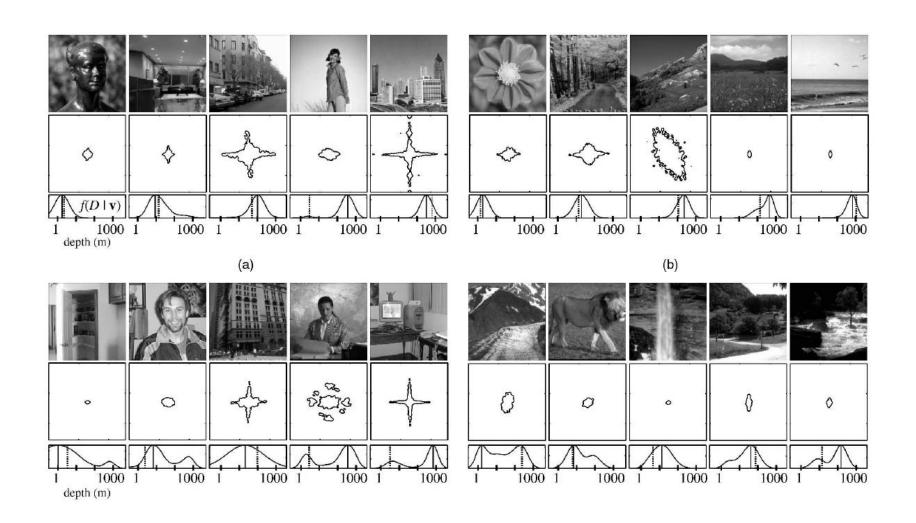
Examples (man-made)



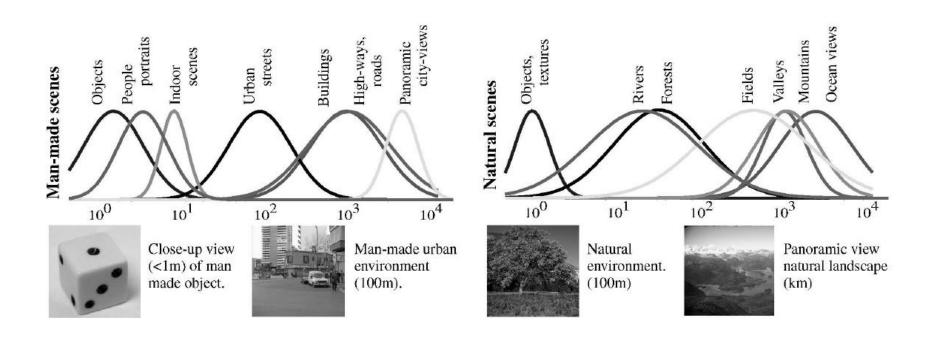
Examples (Natural)



Some Results



Distribution of Scene Categories as a function of mean depth.



Multiple-Level Categorization

Panoramic view (5000 m)

From superordinate category to

Panoramic view (5000 m). Manmade scenes.

Panoramic view (5000 m). Natural scenes.

Panoramic view (5000 m). Natural scenes. Flat landscapes

Panoramic view (5000 m). Natural scenes. Mountainous landscapes

... Basic-level category mountain

Space-centered description

Close-up view (1m)

Close-up view (1m) Natural scene.

Close-up view (1m) Natural scene.

Natural scene. Close-up view (1m)

Close-up view (1m) Man-made object.

Small space (6m) Man-made scene. Closed environment

Small space (3m) Man-made scene. Enclosed environment.

Small space (9m) Man-made scene. Closed environment. Empty space.

Small space (10m) Man-made scene. Closed environment. Empty space.

Large space (140m) Man-made scene. Semiclose environment.

Large space (120m) Natural scene. Closed environment.

Large space (80m) Man-made scene. Semiopen environment. Space in perspective.

Panoramic view (3500m) Man-made scene. Open environment. Space in perspective. Empty space.

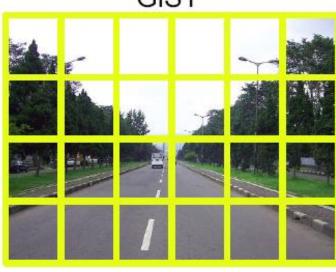
Large space (200m) Natural scene. Semiopen environment.

Panoramic view (4000m) Natural scene. Open environment. Flat view.

Scene matching

Query image

GIST



Best match

Top matches

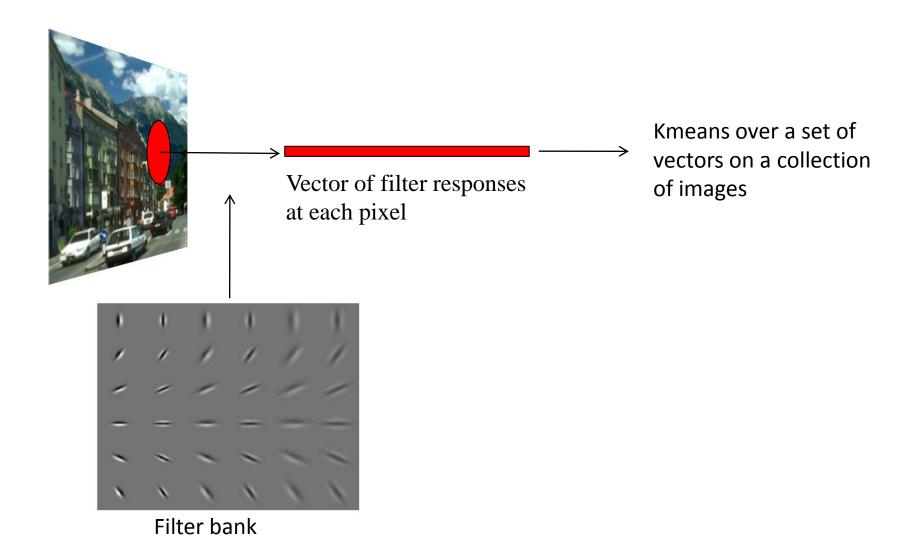
Bag of words

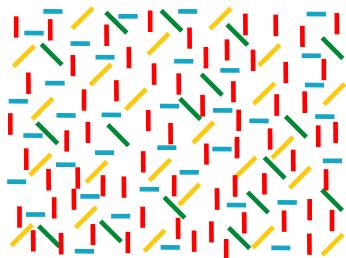
- Sift
- Visual words
- Pyramid matching
- SVM

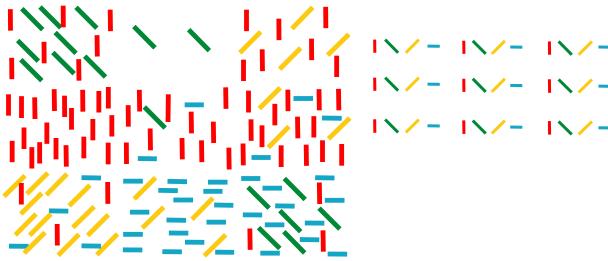
Scene

Bag of 'words'

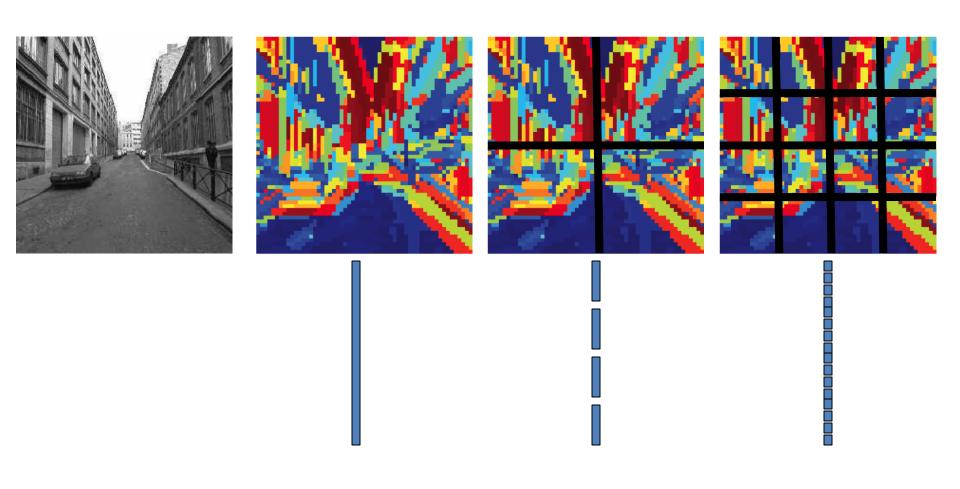
Textons







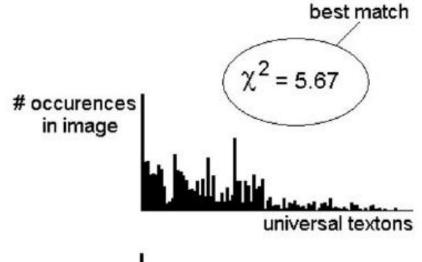
Bag of words & spatial pyramid matching



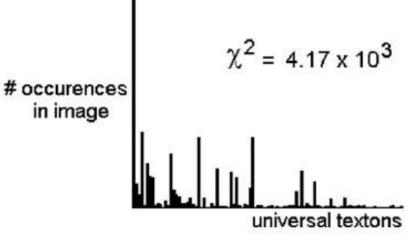
Grauman & Darell, S. Lazebnik, et al, CVPR 2006

Textons

label = bedroom



label = beach



Walker, Malik, 2004

The 15-scenes benchmark

Oliva & Torralba, 2001 Fei Fei & Perona, 2005 Lazebnik, et al 2006

Office

Skyscrapers

Suburb

Building facade

Coast

Forest

Bedroom

Living room

Industrial

Street

Highway

Mountain

Open country

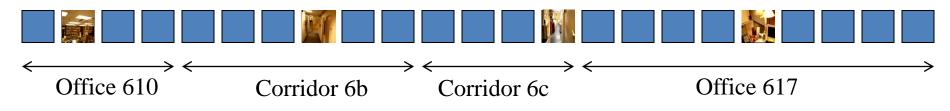
Kitchen

Store

• Classification results and applications

- Categorization
- Computing image similarities
- Place recognition

Training for scene recognition



Scene categorization:

3 categories

Place identification:

Office 610

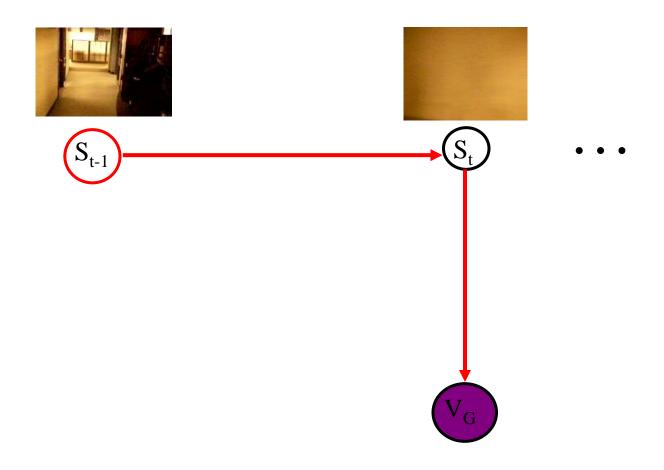
Office 615

'Draper' Street

62 places

Classifying isolated scene views can be hard

Scene recognition over time

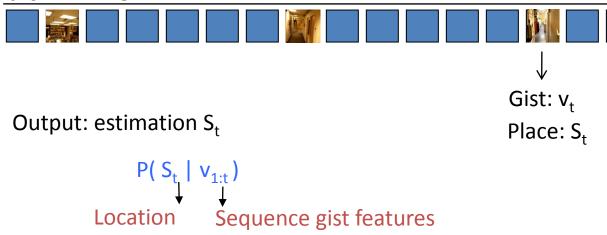


Cf. topological localization in robotics

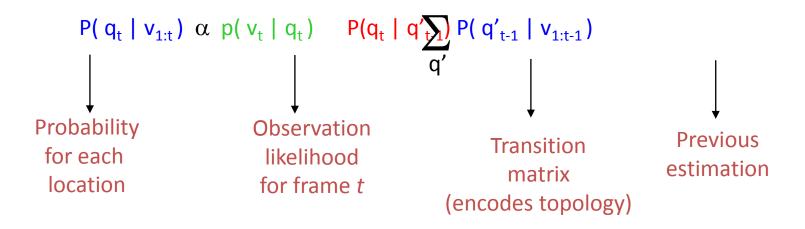
Input

Hidden Markov Model

t=0 1 2 3

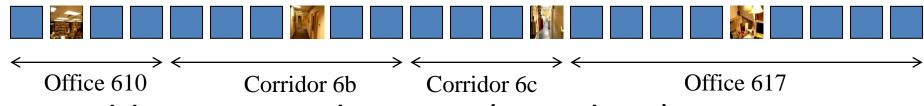


We use a HMM to estimate the location recursively:



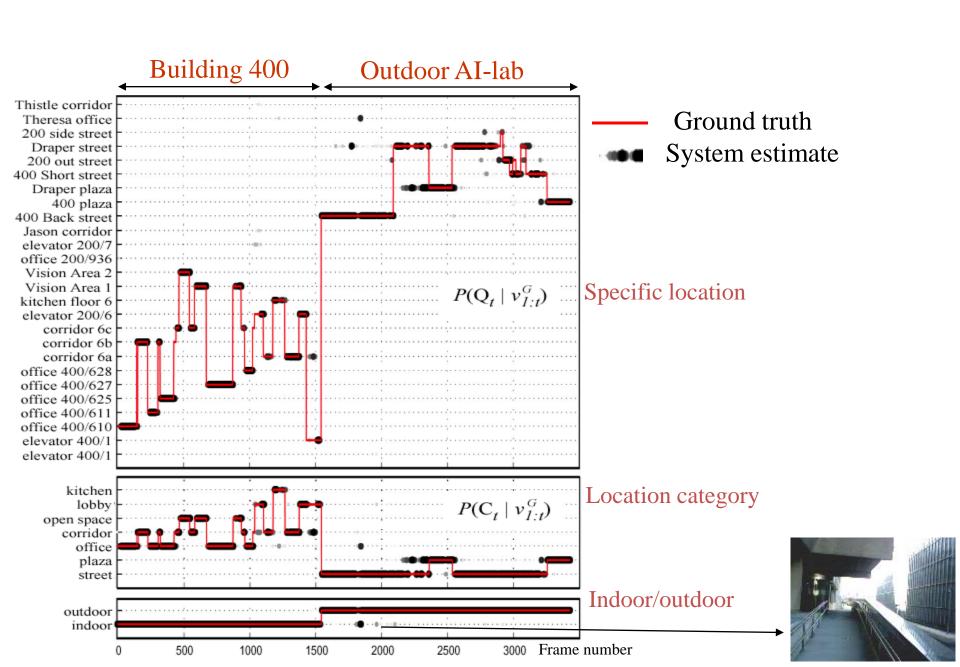
Learning to recognize places

We use annotated sequences for training

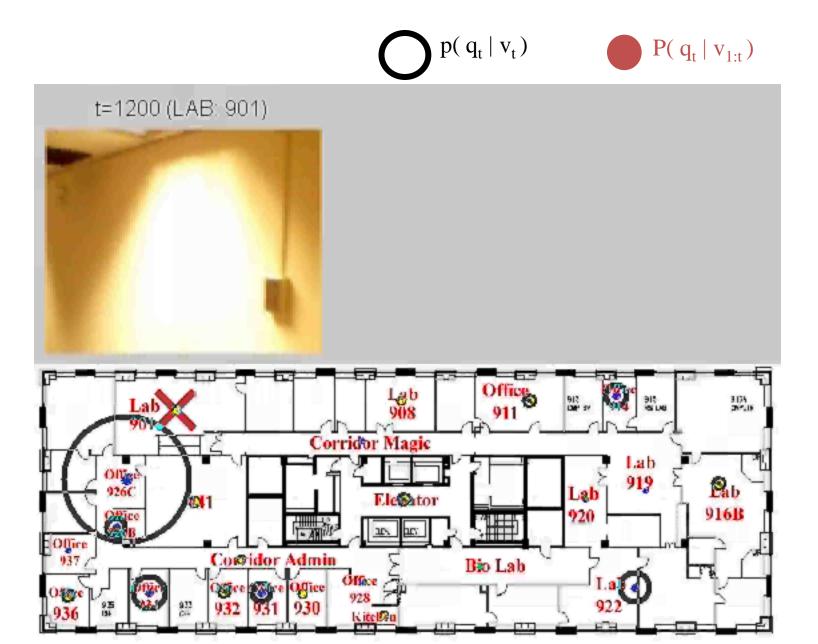


- Hidden states = location (63 values)
- Observations = v_t^G (80 dimensions)
- Transition matrix encodes topology of environment
- Observation model is a mixture of Gaussians centered on prototypes (100 views per place)

Place and scene recognition using gist

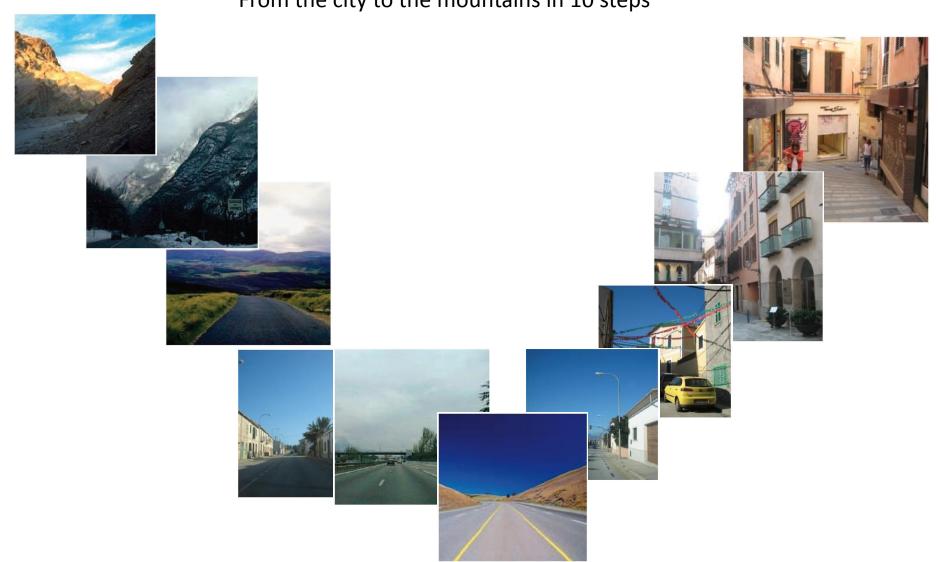


Place recognition demo

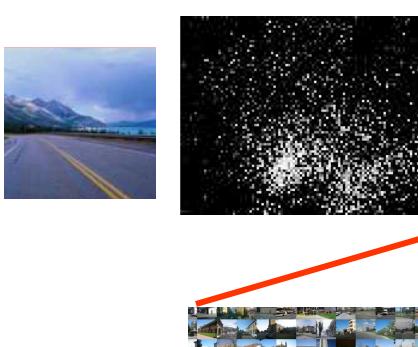


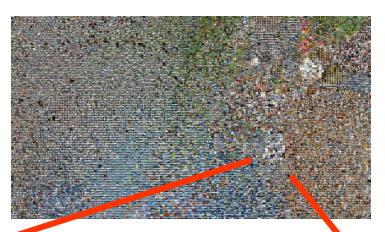
Categories or a continuous space?

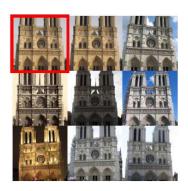
From the city to the mountains in 10 steps

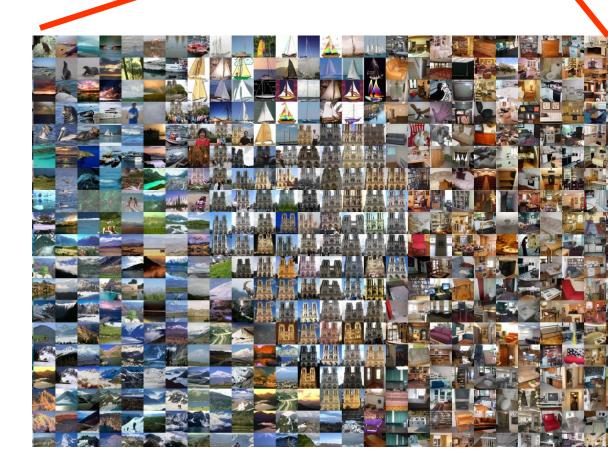


Mosaic using 12,000 images









Instead of using objects labels, the web provides with some kinds of metadata associate to large collections of images

Figure 2. The distribution of photos in our database. Photo locations are cyan. Density is overlaid with the jet colormap (log scale).

20 million geotagged and geographic text-labeled images

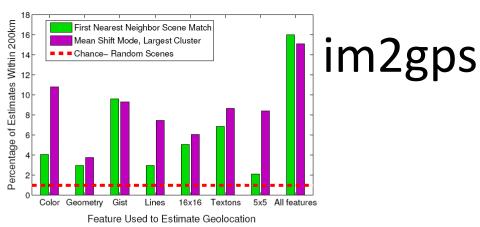
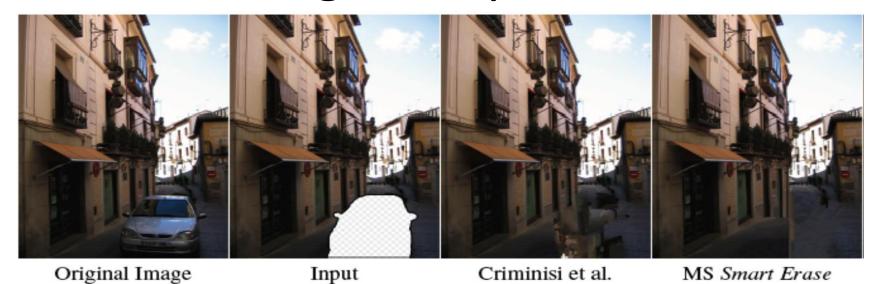
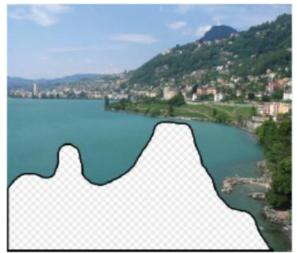


Figure 5. Geolocation performance across features. Percentage of test cases geolocated to within 200km for each feature. We compare geolocation by 1-NN vs. largest mean-shift mode.

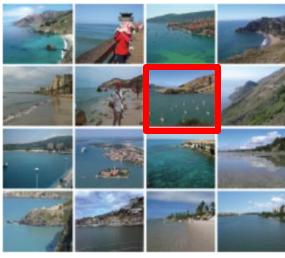
Image completion



Instead, generate proposals using millions of images



Input



16 nearest neighbors (gist+color matching)

Hays, Efros, 2007

Lots
Of
Images

006/L

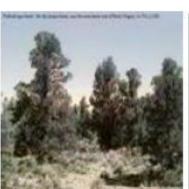
Lots Target Of **Images** 7,900 790,000

Lots Target Of **Images** 7,900 790,000 79,000,000

Automatic Colorization Result

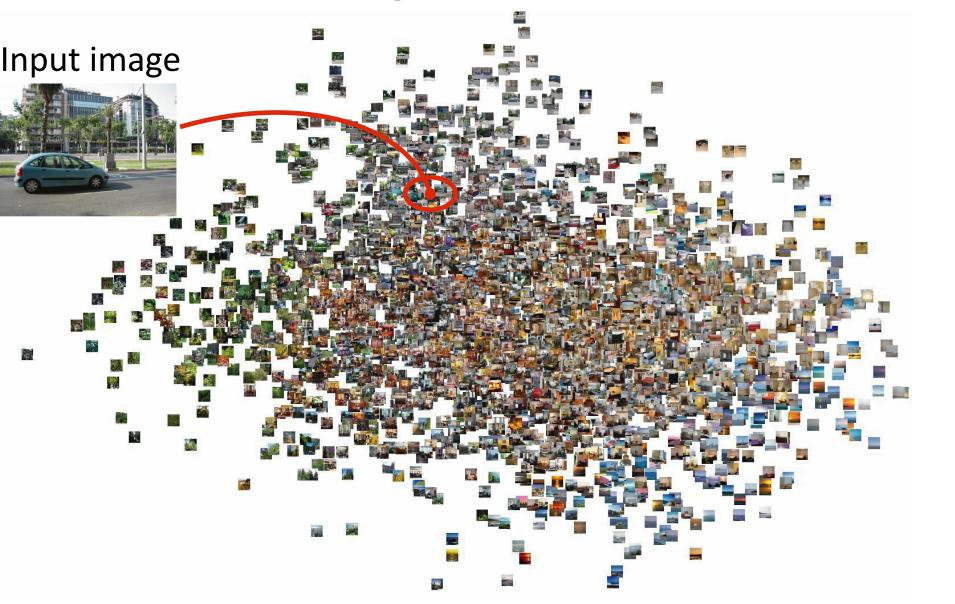
Grayscale input High resolution

Colorization of input using average





Nearest neighbors classification



Neighbors (SSD + warping) Target Average

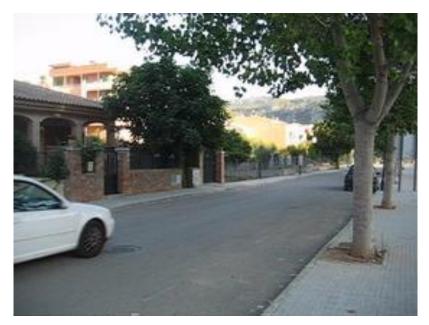
Predicting events

Predicting events

Query



Query Retrieved video



Query Retrieved video

Synthesized video C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008

Query Retrieved video

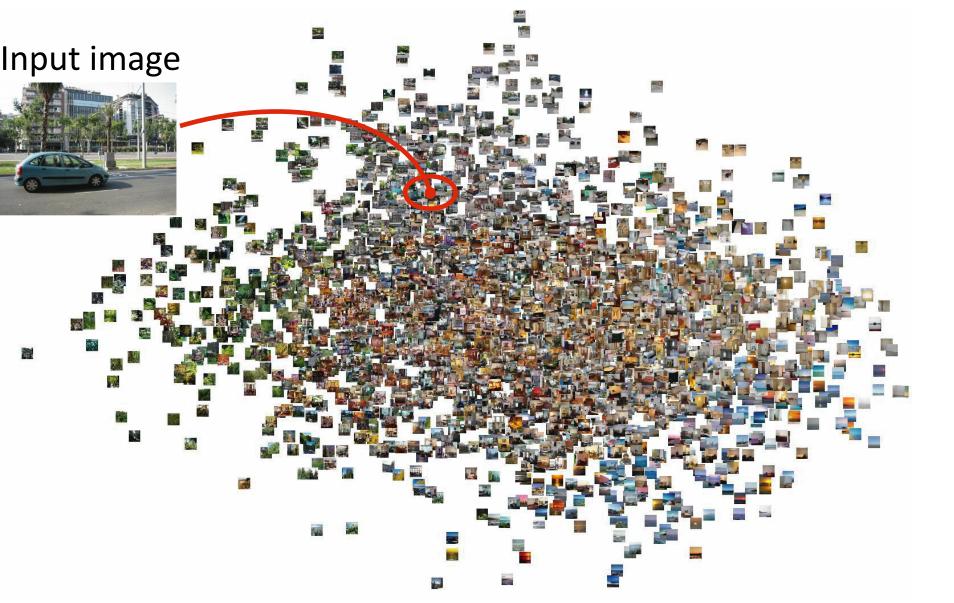
Query

Synthesized video C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008

Query Retrieved video

Synthesized video C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008

Dealing with millions of images



Powers of 10

Number of images on my hard drive:

104

Number of images seen during my first 10 years: 10⁸ (3 images/second * 60 * 60 * 16 * 365 * 10 = 630720000)

Number of images seen by all humanity:

 10^{20}

106,456,367,669 humans¹ * 60 years * 3 images/second * 60 * 60 * 16 * 365 = 1 from http://www.prb.org/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx

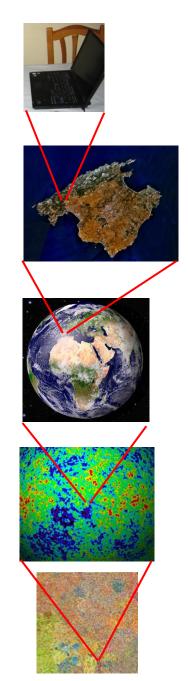
Number of all images in the universe:

 10^{243}

10⁸¹ atoms * 10⁸¹ * 10⁸¹ =

Number of all 32x32 images:

 10^{7373}



256 32*32*3~ 10⁷³⁷³

Binary codes for global scene representation

- Short codes allow for storing millions of images
- Efficient search: hamming distance (search millions of images in few microseconds)
- Internet scale experiments: compute nearest neighbors between all images in the internet

Binary codes for images

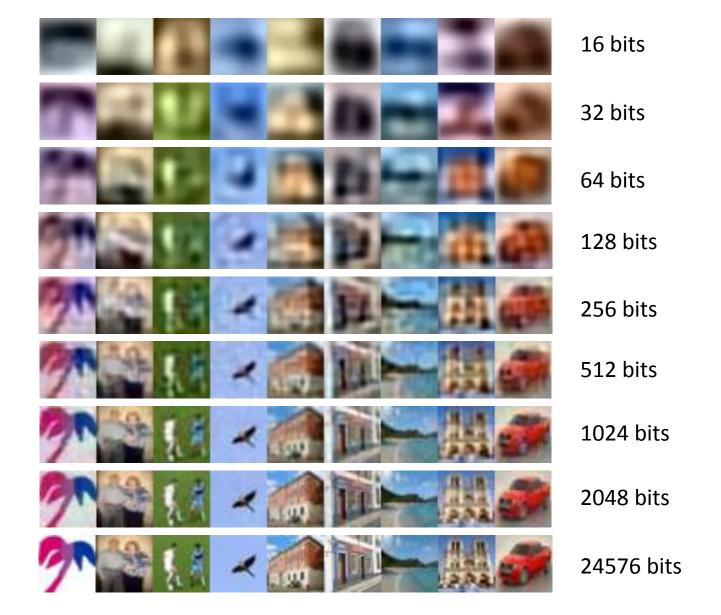
 Want images with similar content to have similar binary codes

- Use Hamming distance between codes
 - Number of bit flips

```
-E.g.: Ham_Dist(10001010,10001110)=1
Ham_Dist(10001010,11101110)=3
```

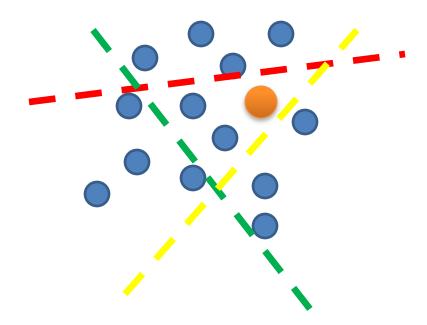
- Semantic Hashing [Salakhutdinov & Hinton, 2007]
 - Text documents

How many bits do we need?

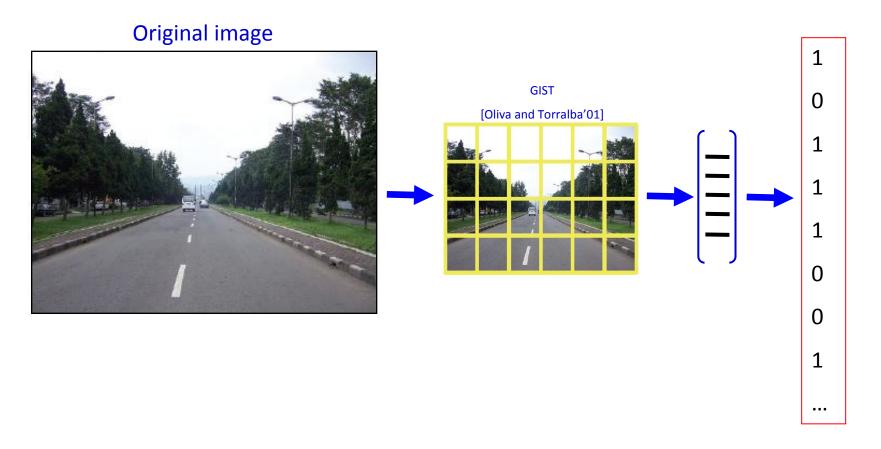


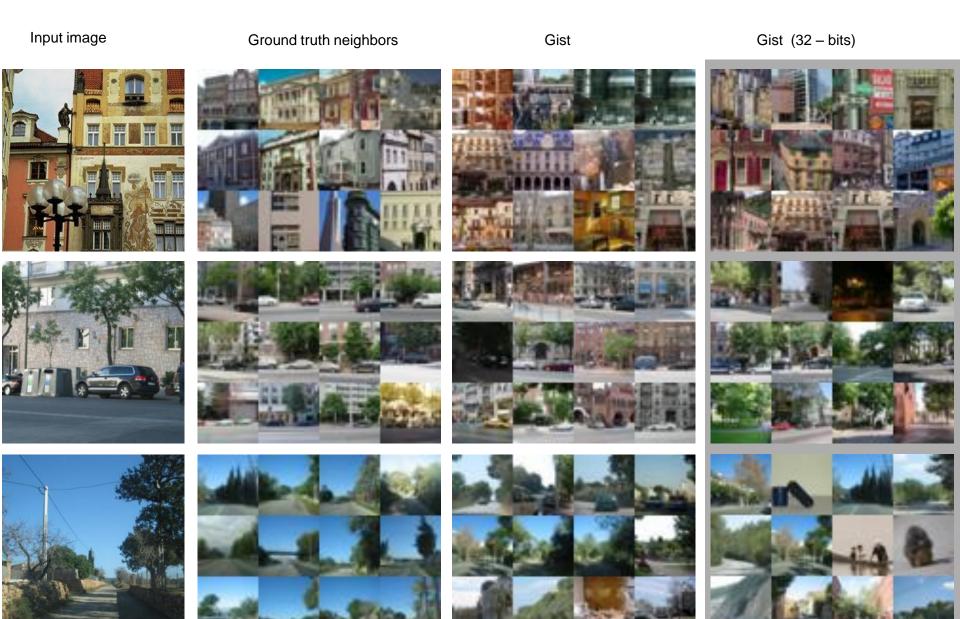
Locality Sensitive Hashing

- Gionis, A. & Indyk, P. & Motwani, R. (1999)
- Take random projections of data
- Quantize each projection with few bits



Compressing the gist descriptor





The 15-scenes benchmark

Oliva & Torralba, 2001 Fei Fei & Perona, 2005 Lazebnik, et al 2006

Office

Skyscrapers

Suburb

Building facade

Coast

Forest

Bedroom

Living room

Industrial

Street

Highway

Mountain

Open country

Kitchen

Store

Large Scale Scene Recognition

