
U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g
Chapter 1: Introduction

What is a computer program?

“A list of instructions, written in a specific programming
language (Java, C, Fortran, etc.), which a computer follows
in processing data, performing an operation, or solving a
logical problem. “

What is Software?

Computer programs

Configuration files used to set up these
programs

User documentation explaining how to use
the software

Support service

System documentation describing the
structure of the software

The Definition of Software

Hardware (Manufacturing) vs Software
(Development)

Software is engineered, not manufactured.

Once a hardware product has been manufactured, it is difficult or
impossible to modify. In contrast, software products are routinely
modified and upgraded.

In hardware, hiring more people allows you to accomplish more
work, but the same does not necessarily hold true in software
engineering.

Unlike hardware, software costs are concentrated in design rather
than production.

Software Deteriorates

Software does not wear-out, but it does deteriorate due to changes

Most software models a part of reality and reality evolves. If software does
not evolve with the reality that is being modeled, then it deteriorates

time

failure rate

Hardware

Design or
manufacturing

defects

Cumulative effects
of dust, vibration,

environmental maladies

time

failure rate

Software

Idealized curve

Actual curve
change

Increased failure rate
due to side effects

What are the attributes of good Software?

• Maintainability
– Software must (easily) evolvable to meet changing needs

• Dependability
– Software must be trustworthy (work with all data)

• Efficiency
– Software should not make wasteful use of system resources

• Usability
– Software must be usable by the users for which it was designed

The software should deliver the required functionality and performance

to the user and

should be maintainable, dependable, efficient and usable.

Where is Software?

The economies of ALL developed nations are

dependent on software.

More and more systems are software

controlled

• In computer systems
o Operating systems (eg: Windows,

Linux)
o End-user programs (eg:Photoshop,

dreamveawer)
o Compilers (eg: javac, pascal, gcc)

• Aircrafts, Space Shuttles (Eg: F16,
Discovery Space Shuttle)

• Cellular Phones (Eg: IOS, Android
etc.)

• Education (Eg: Distance Learning)
• Entertainment, Transportation
• Health systems, Military
• And many more….

Granularity of Software

Trivial: 1 month, 1 programmer, 500 LOC

Ex: Intro programming assignments

Very small: 3 months, 1 programmer, 2000 LOC,

Ex: Course project

Small: 1 year, 3 programmers, 50K LOC,

Ex: Mobile App

Medium: 3 years, 10s of programmers, 100K LOC

Ex: Optimizing compiler

Large: 5 years, 100s of programmers, 1M LOC,

Ex: MS Word, Excel

Very large: 10 years, 1000s of programmers, 10M LOC

Ex: Air traffic control, Telecommunications, space shuttle

What type of software?

Small single-developer projects can typically get by without

Software Engineering
– typically no deadlines, small budget (freeware), not safety-

critical

Software Engineering is especially required for
– Medium to large projects (50,000 lines of code and up)

– multiple subsystems

– teams of developers (often geographically dispersed)

– safety-critical systems (software that can kill people...)

What is Software Engineering?

20

Challenge: Dealing with complexity
and change

Software Engineering is a collection of techniques, methodologies
and tools that help with the production of

A high quality software system developed
with a given budget
before a given deadline
while change occurs

Computer Scientist vs Software Engineer

• Computer Scientist
– Proves theorems about algorithms, designs languages, defines

knowledge representation schemes

– Has infinite time…

• Engineer
– Develops a solution for an application-specific problem for a client

– Uses computers & languages, tools, techniques and methods

• Software Engineer
– Works in multiple application domains

– Has only 3(?) months...

– …while changes occurs in requirements and available technology

How successful have we been in Software
Engineering?

Perform tasks more quickly and effectively
– Word processing, spreadsheets, e-mail

Support advances in medicine, agriculture, transportation,

multimedia education, and most other industries

Many good stories

However, software is not without problems

If SW Engineering is so popular, why so many
SWE disasters?

• 1985: Therac-25(radiation theraphy) lethal radiation

overdose
– Reused SW from machine with HW interlock on machine

without it: SW bug => 3 died

• 1996: Ariane 5 rocket explosion
– 1996 => wasted $370M

– https://www.youtube.com/watch?v=gp_D8r-2hwk

• 1999: Mars Climate Orbiter disintegration
– SW used wrong units (pound-seconds vs. metric-seconds)

=> wasted $325M

• 2005: FBI Virtual Case File project abandoned
– give up after 5 years of work => wasted $170M14

http://www.youtube.com/watch?v=kYUrqdUyEpI
https://www.youtube.com/watch?v=gp_D8r-2hwk

ARIANE Flight 501

• Disintegration after 39 sec

• Caused by wrong data being sent to On
Board Computer

• Large correction for attitude deviation

• Software exception in Inertial Reference
System after 36 sec.

– Overflow in conversion of a variable from 64-
bit floating point to 16-bit signed integer

– Of 7 risky conversions, 4 were protected
– Reasoning: physically limited, or large margin

of safety
– In case of exception: report failure and shut

down

http://www.devtopics.com/20-famous-software-disasters-part-4/
http://en.wikipedia.org/wiki/List_of_software_bugs

Why Software Engineering ?

Software failure can be very serious
– Software controls safety critical systems

– Software protects sensitive data

– Software is involved in systems which handle money

Software Engineering has to
– Produce software which has a very low chance of faulting

– Be able to demonstrate/proof that software has very low

chance of fault

• Testing or program proving

Participants and Roles

• Developing software requires collaboration of many people with

different backgrounds and interests.

• All the persons involved in the software project are called

participants (stakeholders)

• The set of responsibilities in the project of a system are defined

as roles.

• A role is associated with a set of tasks assigned to a participant.

• Role is also called stakeholder

• The same participant can fulfill multiple roles.

• Example of roles?...

Case

Roles Example

Work Products

• Workproduct is an artifact that is produced during the

development, such as documentation of software

• Internal work product - work product that is defined for the

project’s internal use.

• Deliverable – work product that must be delivered to the client.
– Deliverable are usually defined prior to the start of the project and

specified in the contract

Examples?

Examples

Why is software development difficult?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Why is software development difficult?

 Change (in requirements & technology):

 What kind of changes?

 The “Entropy” of a software system increases with each change: Each
implemented change erodes the structure of the system which makes the
next change even more expensive (“Second Law of Software
Dynamics”).

 As time goes on, the cost to implement a change will be too high, and
the system will then be unable to support its intended task. This is true
of all systems, independent of their application domain or technological
base.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Why is software development difficult?

 The problem domain (also called application domain) is
difficult

 The solution domain is difficult

 The development process is difficult to manage

 Software offers extreme flexibility

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Dealing with Complexity

1. Abstraction

2. Decomposition

3. Hierarchy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

1. Abstraction

 Inherent human limitation to deal with complexity

 The 7 +- 2 phenomena

 Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

 12062156875

 Chunking: Group collection of objects

• Group collection of objects to reduce complexity

• 4 chunks:

• Country-code, city-code, phone-number, Office-
Part

 Ignore unessential details => Models

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Model

 A model is an abstraction of a system

 A system that no longer exists

 An existing system

 A future system to be built.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

We use Models to describe Software Systems

 Object model: What is the structure of the
system?

 Functional model: What are the functions of the
system?

 Dynamic model: How does the system react to
external events?

 System Model: Object model + functional model
+ dynamic model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Other models used to describe Software
System Development

 Task Model:

 PERT Chart: What are the dependencies between
tasks?

 Schedule: How can this be done within the time limit?

 Organization Chart: What are the roles in the
project?

 Issues Model:

 What are the open and closed issues?

⧫ What blocks me from continuing?

 What constraints were imposed by the client?

 What resolutions were made?

⧫ These lead to action items

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Interdependencies of the Models

System Model (Structure,

Functionality,

Dynamic Behavior)

Issue Model

(Proposals,

Arguments,

Resolutions)

Task Model

(Organization,

Activities

Schedule)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

The “Bermuda Triangle” of Modeling

System Models

Issue Model Task Models

PERT Chart
Gantt Chart

Org Chart

Constraints

Issues

Proposals

Arguments

Object Model

Functional

Model
Dynamic Model

class...

class...

class...
Code

Pro Con

Forward

Engineering

Reverse

Engineering

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

 A technique used to master complexity (“divide and conquer”)

 Functional decomposition

 The system is decomposed into modules

 Each module is a major processing step (function) in the application
domain

 Modules can be decomposed into smaller modules

 Object-oriented decomposition

 The system is decomposed into classes (“objects”)

 Each class is a major abstraction in the application domain

 Classes can be decomposed into smaller classes

Which decomposition is the right one?

2. Decomposition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

3. Hierarchy

 We got abstractions and decomposition

 This leads us to chunks (classes, objects) which we view with object
model

 Another way to deal with complexity is to provide simple
relationships between the chunks

 One of the most important relationships is hierarchy

 2 important hierarchies

 "Part of" hierarchy

 "Is-kind-of" hierarchy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Part of Hierarchy

http://www.conradbock.org/relation4.html

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Is-Kind-of Hierarchy (Taxonomy)

http://cs.lmu.edu/~ray/notes/devel/

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Software Engineering Concepts

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Software Lifecycle Activities ...and their models

Subsystems

Structured By

class...

class...

class...

Source
Code

Implemented
By

Solution
Domain
Objects

Realized By

System

Design

Object

Design

Implemen-

tation
Testing

Application
Domain
Objects

Expressed in
Terms Of

Test
Cases

?

Verified
By

class....?

Requirements

Elicitation

Use Case
Model

Analysis

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Software Lifecycle Activities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Summary

 Software engineering is a problem solving activity

 Developing quality software for a complex problem within a limited
time while things are changing

 There are many ways to deal with complexity

 Modeling, decomposition, abstraction, hierarchy

 Issue models: Show the negotiation aspects

 System models: Show the technical aspects

 Task models: Show the project management aspects

 Use patterns/styles: Reduce complexity even further

 Many ways to deal with change

 Tailor the software lifecycle to deal with changing project
conditions

 Use a nonlinear software lifecycle to deal with changing
requirements or changing technology

 Provide configuration management to deal with changing entities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Reminders

 Reading assignment

 Chapter 1 Introduction to Software Engineering

 Chapter 2 Modelling with UML

 Term Project

 Direct project related questions to your TA

 Choice of projects

