
U
si

n
g
 U

M
L

, 
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g Chapter 2,
Modeling with UML



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  2

Overview: modeling with UML

 What is modeling?

 What is UML?

 Use case diagrams

 Class diagrams

 Sequence diagrams

 Activity diagrams



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  3

What is modeling?
 Modeling consists of building an 

abstraction of reality.

 Abstractions are simplifications 
because:

 They ignore irrelevant details and

 They only represent the relevant details.

 Focus only on relevant parts of the 
problem 

 What is relevant or irrelevant depends 
on the purpose of the model.

 ‘Throw away’ the details. 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  4

Why model software?

 Software is getting increasingly more complex

 Windows XP > 40 million lines of code

 A single programmer cannot manage this amount of code in its 
entirety.

 We need simpler representations for complex systems

 Modeling is a means for dealing with complexity



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  5

Why model software ?

Visualize software before its produced



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  6

Why model software ?

Code is not easily understandable by developers who did 

not write it



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  7

Why model software ?

Document the design decisions  & Communicate Ideas



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  8

Why model software ?

Provide template for guiding the software production 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  9

Example: House



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  10

Application vs Solution Domain

 Application Domain (Analysis):

 The environment in which the system is operating

 Solution Domain (Design, Implementation):

 The technologies used to build the system

 Modeling space of all possible systems

 Both domains contain abstractions that we can use for the 
construction of the system model.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  11

Object-oriented Modeling

Application Domain Solution Domain 

System  Model (Concepts) System Model (Concepts)

Aircraft TrafficController

FlightPlanAirport

MapDisplay

FlightPlanDatabase

Summary

Display

TrafficControl

TrafficControl

UML 

Package

(Analysis) (Design)



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  12

What is UML?

 The UML is a language for 

 visualizing 

 specifying 

 constructing 

 documenting 

the artifacts of a software-intense system

« The UML offers a standard way to write a system's blueprints, 
including conceptual things such as business processes and system 
functions as well as concrete things such as programming language 
statements, database schemas, and reusable software components.»



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  13

What is UML?

 UML (Unified Modeling Language)

 Nonproprietary standard for modeling software systems, OMG

 Convergence of notations used in object-oriented methods

⧫ OMT (James Rumbaugh and collegues)

⧫ Booch (Grady Booch) 

⧫ OOSE (Ivar Jacobson)

 Current Version: UML 2.5

 Information at the OMG portal http://www.uml.org/

 Commercial tools: Rational (IBM), Together (Borland), Visual Paradigm

 Open Source tools: ArgoUML, UMLet, Umbrello



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  14

Contributions to the UML



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  15

UML: First Pass

 You can model 80% of most problems by using about 20% 
UML

 We teach you those 20%

 80-20 rule: Pareto principle 
(http://en.wikipedia.org/wiki/Pareto_principle)

 80% of your profits come from 20% of your customers

 80% of your complaints come from 20% of your customers

 80% of your profits come from 20% of the time you spend

 80% of your sales come from 20% of your products

http://en.wikipedia.org/wiki/Pareto_principle


Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  16

UML First Pass

 Use case diagrams

 Describe the functional behavior of the system as seen by the user

 Class diagrams

 Describe the static structure of the system: Objects, attributes, 
associations

 Sequence diagrams

 Describe the dynamic behavior between objects of the system

 State diagrams

 Describe the dynamic behavior of an individual object



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  17

UML first pass: Use case diagrams

WatchUser

Actor

Use casePackage
Watch

Use case diagrams represent the functionality of the system

from user’s point of view

ReadTime

SetTime

ChangeBattery

WatchRepairPerson

System boundary



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  18

UML Core Conventions

 All UML Diagrams denote graphs of nodes and edges

 Nodes are entities and drawn as rectangles or ovals

 Rectangles denote classes or instances 

 Ovals  denote functions 

• Names of Classes are not underlined
• SimpleWatch

• Firefighter

• Names of Instances are underlined
• myWatch:SimpleWatch

• Joe:Firefighter

• An edge between two nodes denotes a relationship between 
the corresponding entities



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  19

UML first pass: Class diagrams

Class

Association

Multiplicity

Class diagrams represent the structure of the system

2

1 1

1

1

1

1

2

SimpleWatch

Display Battery TimePushButton



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  20

UML first pass: Class diagrams

1

2

push()

release()

1

1

blinkIdx

blinkSeconds()

blinkMinutes()

blinkHours()

stopBlinking()

refresh()

LCDDisplay Battery

Load

1

2

1

Time

Now

1

Watch

Operations

state

PushButton

Attribute

Class diagrams represent the structure of the system

Class

Association

Multiplicity



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  21

Message

UML first pass: Sequence diagram

:Time:Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system 

as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()

commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  22

UML first pass: Statechart diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting 

dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed
Increment

Minutes

Increment

Hours

Blink

Hours

Blink

Seconds

Blink

Minutes

Increment

Seconds

Stop

Blinking



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  23

Other UML Notations

UML provides many other notations, for example

 Deployment diagrams for modeling configurations 

 Useful for testing and for release management

 We introduce these and other notations as we go along in the 
lectures

 OCL: A language for constraining UML models



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  24

UML Basic Notation Summary

 UML provides a wide variety of notations for modeling many 
aspects of software systems

 Today we concentrated on a few notations:

 Functional model: Use case diagram

 Object model: Class diagram

 Dynamic model: Sequence diagrams, statechart



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  25

What should be done first? Coding or Modeling?

 It all depends….

 Forward Engineering

 Creation of code from a model

 Start with modeling

 Greenfield projects

 Reverse Engineering

 Creation of a model from existing code

 Interface or reengineering projects

 Roundtrip Engineering

 Move constantly between forward and reverse engineering

 Reengineering projects

 Useful when requirements, technology and schedule are changing 
frequently.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  26

UML Use Case Diagrams

Passenger

PurchaseTicket

Used during requirements elicitation and analysis 

to represent external behavior (“visible from the 

outside of the system”)

An actor represents a role; a type 
of user of the system

A use case represents a class of 
functionality provided by the system

Use case model:
The set of all use cases that 
completely describe the 
functionality of the  system



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  27

Actors

 A model for an external entity which 
interacts (communicates) with the system:

 User

 External system (Another system)

 Physical environment (e.g. Weather)

 Has unique name and an optional description

 Examples:

 Passenger: A person in the train

 GPS satellite: An external system that provides 
the system with  GPS coordinates.

Passenger

Name

Optional 

Description



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  28

Use Case

• A class of functionality provided by the 
system 

• Described textually, with a focus on the 
event flow between actor and system

• The textual use case description consists of 
6 parts:

1. Unique name

2. Participating actors

3. Entry conditions

4. Exit conditions

5. Flow of events

6. Special / quality requirements.

PurchaseTicket



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  29

Textual Use Case Description Example

1. Name: Purchase ticket

2. Participating actor: Passenger

3. Entry condition:

 Passenger stands in front of 
ticket distributor

 Passenger has sufficient 
money to purchase ticket

4. Exit condition:

 Passenger has ticket

5. Flow of events:

1. Passenger selects the number of 
zones to be traveled

2. Ticket Distributor 

displays the amount due

3. Passenger inserts money, at 
least the amount due

4. Ticket Distributor returns 
change

5. Ticket Distributor issues 
ticket

6. Special /quality requirements: 

The transactions should take no longer 
than a minute

Passenger
PurchaseTicket



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  30

Use Case Diagrams

 Use cases are written in natural language. This enables 
developers to use them for communicating with the client and 
the users, who generally do not have an extensive knowledge
of software engineering notations.

 Use case diagrams can include four types of relationships

 Communication

 Inclusion

 Extension

 and inheritance.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  31

Use case - Communication

• Communication relationships are 

depicted by a solid line between 

the actor and use case symbol



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  32

Uses Cases can be related: <<extends>>

<<extends>> models exceptional or 
seldom invoked cases

 Exceptional event flows are factored 
out of the main event flow for clarity

 Direction is to the extended use case 

 Can extend more than one use case.

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  33

The <<extend>> Relationship

 <<extend>> relationships model 
exceptional or seldom invoked cases

 The exceptional event flows are 
factored out of the main event flow for 
clarity

 The direction of an <<extend>>
relationship is to the extended use case 

 Use cases representing exceptional 
flows can extend more than one use 
case.

Student

DoHomework

Party

<<extend>>

Sleep

<<extend>>FetchLostSheet

<<extend>>

DrinkCoffee

<<extend>>



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  34

Uses Cases can be related: <<includes>>

<<includes>> represents common 
functionality needed in more than 
one use case

 Behavior factored out for reuse, not 
because it is an exception

 Direction is to the using use case 
(unlike  the direction of the 
<<extends>> relationship).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

<<includes>>

CollectMoney

<<includes>>

NoChange

<<extends>>

Cancel

<<extends>>

Cancel

<<extends>>



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  35

Uses Cases : inheritance

 One use case can specialize another more general one 
by adding more detail



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  36

Class Diagrams

 Represent the structure of the system

 Used

 during requirements analysis to model application domain 
concepts

 during object design to specify the detailed behavior and 
attributes of classes.

Table zone2price

Enumeration getZones()

Price getPrice(Zone)

TarifSchedule

* *

Trip

zone:Zone

Price: Price



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  37

Classes

 A class represents a concept

 A class encapsulates state (attributes) and behavior (operations)

 Each attribute has a type

 Each operation has a signature

 Class name is the only mandatory information

Table zone2price

Enumeration getZones()

Price getPrice(Zone)

TarifSchedule

zone2price

getZones()

getPrice()

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

Type



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  38

Associations

 Denote relationships between classes

 Multiplicity of an association end denotes how many objects the instance of 
a class can legitimately reference

Price

Zone
Enumeration getZones()

Price getPrice(Zone)

TarifSchedule TripLeg

* *



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  39

1-to-1 and 1-to-many Associations

1-to-1 association

1-to-many association

Polygon

draw()

Point

x: Integer

y: Integer

*

Country

name:String

Capital City

name:String

11

capital



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  40

Many-to-Many Associations 

StockExchange

Company

tickerSymbol**

Problem Statement: A stock exchange lists many companies. 

Each company is uniquely identified by a ticker symbol

From Problem Statement to Object Model:



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  41

Aggregation vs. Composition

 Aggregation (diamond): special case of association denoting a “consists-of” 
hierarchy

 The aggregate is the parent class, 
the components are the children classes

 Composition (solid diamond): strong form of aggregation.

 The life time of the component instances is controlled by the aggregate. That 
is, the parts don’t exist on their own (“the whole controls/destroys the 
parts”).  

Exhaust system

Muffler

diameter

Tailpipe

diameter

1 0..2

TicketMachine

ZoneButton

3



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  42

Inheritance

 Another special case of an association denoting a “kind-of” 
hierarchy 

 Simplifies analysis model by introducing a taxonomy

 Children classes inherit attributes and operations of parent 
class

Button

ZoneButtonCancelButton



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  43

Packages

 Organize UML models to increase their readability 

 Organize classes into subsystems  

 Any complex system can be decomposed into subsystems, 
where each subsystem is modeled as a package.

Account

CustomerBank



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  44

Object Modeling in Practice

Class Identification: Name of Class, Attributes and Methods

Is Foo the right name?

Foo

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  45

Object Modeling in Practice:  Brainstorming 

Foo

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()Is Foo the right name?

“Dada”

Amount

CustomerId

Deposit()
Withdraw()
GetBalance()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  46

Object Modeling in Practice: More classes

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name

CustomerId

Bank

Name

1) Find new classes
2) Review names, attributes and methods

AccountId



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  47

Object Modeling in Practice: Associations

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name

CustomerId

CustomerIdAccountId
AccountIdBank

Name

owns
*

1..*

*

1) Find new classes
2) Review names, attributes and methods

3) Find Associations between Classes
4) Label generic associations

5) Determine multiplicity of associations
6) Review associations



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  48

Practice Object Modeling: Find Taxonomies

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountId
AccountId

Customer

Name

CustomerId()

Bank

Name
*

owns
*

1..*



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  49

Practice Object Modeling: Simplify, Organize

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountId
AccountId

Show taxonomies separately

Use the 7+-2 heuristic



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  50

Sequence Diagrams

 Used during analysis

 to refine use case descriptions

 to find additional objects 
(“participating objects”)

 Used during system design 

 to refine subsystem interfaces

 Instances are represented by 
rectangles. Actors by sticky figures

 Lifelines are represented by dashed 
lines

 Messages are represented by arrows

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

TicketMachine
Passenger

Focus on 

control flow

Messages are

Operations on

participating Object

zone2price

selectZone()

insertCoins()

pickupChange()

pickUpTicket()

TicketMachine



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  51

Sequence Diagrams can also model the Flow of Data 

 Source of an arrow indicates activation which sent the message

 Horizontal dashed arrows indicate data flow, for example return results 
from a message

Passenger

selectZone()

ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  52

Sequence Diagrams: Iteration & Condition

 Iteration denoted by a * preceding the message name

 Condition denoted by Boolean expression in [ ] before message name

Passenger
ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

*



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  53

Creation and Destruction

 Creation denoted by a message arrow pointing to object

 Destruction denoted by an X mark at the end of the destruction activation

 In garbage collection environments, destruction can be used to denote the end 
of the useful life of an object.

Passenger
ChangeProcessor

Ticket

createTicket(selection)

free()

Creation of Ticket

Destruction of Ticket

print()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  54

Sequence Diagram Properties

 Behavior in terms of interactions

 How objects interact to get the job done

 Useful to identify or find missing objects

 Time consuming to build, but worth the investment

 Complement the class diagrams (which represent static 
structure)



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  55

Communication Diagram

 Depicts the same information as sequence diagrams



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  56

UML Statechart diagram

State

Initial state

Final state

Transition

Event

Represents behavior of a single object with interesting 
dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed
Increment

Minutes

Increment

Hours

Blink

Hours

Blink

Seconds

Blink

Minutes

Increment

Seconds

Stop

Blinking



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  57

UML state diagram - Chess



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  58

Activity Diagrams

 Useful to depict the workflow in a system (analogous to 
flowcharts)

 Activities are of the system, not the user!

 Example from: FRIEND (First Responder Interactive 
Emergency Navigational Database)

Handle
Incident

Document
Incident

Archive
Incident



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  59

Activity Diagrams allow to model Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Decision



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  60

Activity Diagrams can model Concurrency

 Synchronization of multiple independent activities 

 Splitting the flow of control into multiple threads

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

SynchronizationSplitting



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  61

Activity Diagrams: grouping

 May be grouped into swimlanes to denote object or subsystem 
that implements the activities.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  62

UML Summary

 Provides a wide variety of notations for representing many 
aspects of software development

 Powerful, but complex

 UML as a programming language

 Can be misused to generate unreadable models

 Can be misunderstood when using too many exotic features

 So far:

 Functional model: Use case diagram

 Object model: Class diagram

 Dynamic model: Sequence, State, and Activity diagrams



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  63

Another view on UML Diagrams



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  64

Midterm Exam

 Nov 5, 17:40



65

OO Analysis w/ UML

Ugur Dogrusoz Computer Eng Dept, Bilkent Univ

Problem Statement

Requirements 

Elicitation

Functional ModelNon-functional Req.

Analysis

Analysis Object Model Dynamic Model

Use Case 

Diagrams

System 

Design

State 

Diagrams

Sequence 

Diagrams

Class 

Diagrams

Activity 

Diagrams


