
U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g Chapter 4, Requirements
Elicitation

2Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline

• Motivation: Software Lifecycle

• Requirements elicitation challenges

• Problem statement

• Requirements specification

• Types of requirements

• Validating requirements

• Summary

3Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

A Typical Example
of Software Lifecycle Activities

System
Design

Detailed
Design

Implemen-
tation

Testing
Requirements
Elicitation

Analysis

4Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Software Lifecycle Activities

System
Design

Detailed
Design

Implemen-
tation

Testing
Requirements
Elicitation

Use Case
Model

Analysis

...and their models

5Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Software Lifecycle Activities

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Detailed
Design

Implemen-
tation

Testing
Requirements
Elicitation

Analysis

...and their models

6Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Software Lifecycle Activities

Sub-
systems

Structured
by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Detailed
Design

Implemen-
tation

Testing
Requirements
Elicitation

Analysis

...and their models

7Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Software Lifecycle Activities

Sub-
systems

Structured
by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Detailed
Design

Implemen-
tation

Testing
Requirements
Elicitation

Analysis

...and their models

8Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Software Lifecycle Activities

Sub-
systems

Structured
by

class...

class...

class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Use Case
Model

System
Design

Detailed
Design

Implemen-
tation

Testing
Requirements
Elicitation

Analysis

...and their models

9Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Software Lifecycle Activities

Sub-
systems

Structured
by

class...

class...

class...

Source
Code

Implemented by

Solution
Domain
Objects

Realized by

Application
Domain
Objects

Expressed in
terms of

Test
Cases

?

Verified
By

class....?
Use Case

Model

System
Design

Detailed
Design

Implemen-
tation

Testing
Requirements
Elicitation

Analysis

...and their models

10Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Software Lifecycle Activities

Application
Domain
Objects

Subsystems

class...

class...

class...

Solution
Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured By

Implemented
By

Realized By Verified
By

System
Design

Detailed
Design

Implemen-
tation

Testing

class....?

Requirements
Elicitation

Use Case
Model

Analysis

11Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Example: Hospital Management System

12Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

What is a requirement?

• A requirement is a feature that the system
must have or a constraint that it must satisfy to
be accepted by the client.

• a thing that is needed or wanted.

13Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Requirements Engineering

Requirements engineering aims at defining the requirements of
the system under construction. Requirements engineering includes
two main activities;

• requirements elicitation, which results in the specification of the
system that the client understands, and analysis, which results
in an analysis model that the developers can unambiguously
interpret.

Requirements elicitation is the more challenging of the two
because it

• requires the collaboration of several groups of participants with
different backgrounds.

• On the one hand, the client and the users are experts in their
domain and have a general idea of what the system should do,
but they often have little experience in software development.

• On the other hand, the developers have experience in building
systems, but often have little knowledge of the everyday
environment of the users.

14Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Requirements Process

:problem

statement

Requirements

elicitation

Analysis Model

Requirements

Specification

:dynamic model

:analysis object

model

Analysis

:nonfunctional

requirements

:functional

model

UML Activity Diagram

15Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Requirements Specification vs Analysis
Model

Both focus on the requirements from the user’s
view of the system

• The requirements specification uses natural
language (derived from the problem statement)

• The analysis model uses a formal or semi-formal
notation

• We use UML.

16Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

What does the Customer say?

Similarly, we often do not hear what the customers say, because we assume we

know what they say.

17Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

First step in identifying the Requirements:
System identification

• Two questions need to be answered:

1. How can we identify the purpose of a system?

2. What is inside, what is outside the system?

• These two questions are answered during
requirements elicitation and analysis

• Requirements elicitation:

• Definition of the system in terms understood by the
customer (“Requirements specification”)

• Analysis:

• Definition of the system in terms understood by the
developer (Technical specification, “Analysis
model”)

• Requirements Process: Contains the activities
Requirements Elicitation and Analysis.

18Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Scenarios

• Scenario: “A narrative description of what
people do and experience as they try to make
use of computer systems and applications” [M.
Carroll, Scenario-Based Design, Wiley, 1995]

• A concrete, focused, informal description of a
single feature of the system used by a single
actor.

• Scenario vs Use Case

• A scenario describes an example of a system in terms
of a serios of interactions between the user and the
system

• A use case is an abstraction that describes a class of
scenarios.

• Both of them are written in natural language, a form
that is understandable to the user

19Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Techniques to elicit Requirements

• Bridging the gap between end user and
developer:

• Questionnaires: Asking the end user a list of pre-
selected questions

• Task Analysis: Observing end users in their
operational environment

• Scenarios: Describe the use of the system as a series
of interactions between a concrete end user and the
system

• Use cases: Abstractions that describe a class of
scenarios.

20Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Scenario-Based Design

Scenarios can have many different uses during
the software lifecycle

• Requirements Elicitation: As-is scenario, visionary
scenario

• Client Acceptance Test: Evaluation scenario

• System Deployment: Training scenario

Scenario-Based Design: The use of scenarios in a
software lifecycle activity

• Scenario-based design is iterative

• Each scenario should be consisered as a work
document to be augmented and rearranged (“iterated
upon”) when the requirements, the client acceptance
criteria or the deployment situation changes.

21Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Scenario-based Design

• Focuses on concrete descriptions and particular
instances, not abstract generic ideas

• It is work driven not technology driven

• It is open-ended, it does not try to be complete

• It is informal, not formal and rigorous

• Is about envisioned outcomes, not about
specified outcomes.

22Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Types of Scenarios

• As-is scenario:

• Describes a current situation. Usually used in re-
engineering projects. The user describes the system

• Visionary scenario:

• Describes a future system. Usually used in greenfield
engineering and reengineering projects

• Can often not be done by the user or developer alone

• Evaluation scenario:

• Description of a user task against which the system is
to be evaluated.

• Training scenario:

• A description of the step by step instructions that guide
a novice user through a system

23Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

How do we find scenarios?

• Don’t expect the client to be verbal if the system
does not exist

• Client understands problem domain, not the solution
domain.

• Don’t wait for information even if the system
exists

• “What is obvious does not need to be said”

• Engage in a dialectic approach

• You help the client to formulate the requirements

• The client helps you to understand the requirements

• The requirements evolve while the scenarios are being
developed

24Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Heuristics for finding scenarios

• Ask yourself or the client the following questions:

• What are the primary tasks that the system needs to
perform?

• What data will the actor create, store, change, remove or
add in the system?

• What external changes does the system need to know
about?

• What changes or events will the actor of the system need
to be informed about?

• However, don’t rely on questions and
questionnaires alone

• Insist on task observation if the system already
exists (interface engineering or reengineering)

• Ask to speak to the end user, not just to the client

• Expect resistance and try to overcome it.

25Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Scenario example: Warehouse on Fire

• Bob, driving down main street in his patrol car notices
smoke coming out of a warehouse. His partner, Alice,
reports the emergency from her car.

• Alice enters the address of the building into her wearable
computer, a brief description of its location (i.e., north
west corner), and an emergency level.

• She confirms her input and waits for an acknowledgment.

• John, the dispatcher, is alerted to the emergency by a
beep of his workstation. He reviews the information
submitted by Alice and acknowledges the report. He
allocates a fire unit and sends the estimated arrival time
(ETA) to Alice.

• Alice received the acknowledgment and the ETA.

26Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Observations about Warehouse on Fire
Scenario

• Concrete scenario

• Describes a single instance of reporting a fire
incident.

• Does not describe all possible situations in
which a fire can be reported.

• Participating actors

• Bob, Alice and John

27Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

After the scenarios are formulated

• Find all the use cases in the scenario that
specify all instances of how to report a fire

• Example: “Report Emergency“ in the first paragraph of
the scenario is a candidate for a use case

• Describe each of these use cases in more detail

• Participating actors

• Describe the entry condition

• Describe the flow of events

• Describe the exit condition

• Describe exceptions

• Describe nonfunctional requirements

• Functional Modeling (see next lecture)

28Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Requirement Elicitation Activities

• Identifying Actors (Section 4.4.1)

• Identifying Scenarios (Section 4.4.2)

• Identifying Use Cases (Section 4.4.3)

• Refining Use Cases (Section 4.4.4)

• Identifying Relationships Among Actors and Use
Cases (Section 4.4.5)

• Identifying Initial Analysis Objects (Section
4.4.6)

• Identifying Nonfunctional Requirements (Section
4.4.7).

29Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

1. Questions for identifying actors

• Which user groups are supported by the system
to perform their work?

• Which user groups execute the system’s main
functions?

• Which user groups perform secondary functions,
such as maintenance and administration?

• With what external hardware or software system
will the system interact?

30Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

2. Questions for identifying scenarios

• What are the tasks that the actor wants the
system to perform?

• What information does the actor access? Who
creates that data? Can it be modified or
removed? By whom?

• Which external changes does the actor need to
inform the system about? How often? When?

• Which events does the system need to inform
the actor about? With what latency?

31Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

3. Use Cases

• Use cases should be named with verb phrases. The name of the use case should
indicate what the user is trying to accomplish (e.g., ReportEmergency,
OpenIncident).

• Actors should be named with noun phrases (e.g., FieldOfficer, Dispatcher, Victim).

• The boundary of the system should be clear. Steps accomplished by the actor and
steps accomplished by the system should be distinguished

• Use case steps in the flow of events should be phrased in the active voice. This
makes it explicit who accomplished the step.

• A use case should describe a complete user transaction (e.g., the
ReportEmergency use case describes all the steps between initiating the
emergency reporting and receiving an acknowledgment).

• Exceptions should be described separately.

• A use case should not describe the user interface of the system. This takes away
the focus from the actual steps accomplished by the user and is better addressed
with visual mock-ups (e.g., refer to the function, not the menu, the button).

• A use case should not exceed two or three pages in length. Otherwise, use include

32Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

4. Refining use cases

• First, refine a single scenario to understand the user’s assumptions
about the system. The user may be familiar with similar systems, in
which case, adopting specific user interface conventions would make
the system more usable.

• Next, define many not-very-detailed scenarios to define the scope of
the system. Validate with the user.

• Use mock-ups as visual support only; user interface design should
occur as a separate task after the functionality is sufficiently stable.

• Present the user with multiple and very different alternatives (as
opposed to extracting a single alternative from the user). Evaluating
different alternatives broadens the user’s horizon. Generating different
alternatives forces developers to “think outside the box.”

33Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

5. Identifying Relationships among actors
and Use Cases

• Use extend relationships for exceptional, optional,
or seldom-occurring behavior. An example of
seldom-occurring behavior is the breakdown of a
resource (e.g., a fire truck). An example of
optional behavior is the notification of nearby
resources responding to an unrelated incident.

• Use include relationships for behavior that is
shared across two or more use cases.

• However, use discretion when applying the above
two heuristics and do not overstructure the use
case model. A few longer use cases (e.g., two
pages long) are easier to understand and review
than many short ones (e.g., ten lines long).

34Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

6. Identifying Analysis Objects

• Terms that developers or users must clarify to
understand the use case

• Recurring nouns in the use cases (e.g., Incident)

• Real-world entities that the system must track
(e.g., FieldOfficer, Resource)

• Real-world processes that the system must
track (e.g., EmergencyOperationsPlan)

• Use cases (e.g., ReportEmergency)

• Data sources or sinks (e.g., Printer)

• Artifacts with which the user interacts (e.g.,
Station)

• Always use application domain terms.

35Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

7. Identify Non-Functional requirements

• More about it later…

36Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Requirements Elicitation: Difficulties and
Challenges

• Communicate accurately about the domain and
the system

• People with different backgrounds must collaborate to
bridge the gap between end users and developers

• Client and end users have application domain
knowledge

• Developers have solution domain knowledge

• Identify an appropriate system (Defining the
system boundary)

• Provide an unambiguous specification

• Leave out unintended features

37Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

From the News: London underground train
leaves station without driver!

Example of an Unintended Feature

• He left the driver door open

• He relied on the specification that said the train

does not move if at least one door is open

• The driver left his train to close the passenger
door

• When he shut the passenger door,
the train left the station without him
• The driver door was not treated

as a door in the source code!

What happened?
• A passenger door was stuck and did not close

38Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Types of Requirements

• Functional requirements

• Describe the interactions between the system and its
environment independent from the implementation

“An operator must be able to define a new game. “

• Nonfunctional requirements

• Aspects not directly related to functional behavior.

“The response time must be less than 1 second”

• Constraints

• Imposed by the client or the environment

• “The implementation language must be Java “

• Called “Pseudo requirements” in the text book.

39Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Functional vs. Nonfunctional Requirements

Functional Requirements

• Describe user tasks
that the system needs
to support

• Phrased as actions

“Advertise a new league”

“Schedule tournament”

“Notify an interest group”

Nonfunctional Requirements

• Describe properties of the
system or the domain

• Phrased as constraints or
negative assertions

“All user inputs should be
acknowledged within 1
second”

“A system crash should not
result in data loss”.

40Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Types of Nonfunctional Requirements

Quality requirements
Constraints or

Pseudo requirements

41Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Types of Nonfunctional Requirements

• Usability

• Reliability

• Robustness

• Safety

• Performance

• Response time

• Scalability

• Throughput

• Availability

• Supportability

• Adaptability

• Maintainability

Quality requirements
Constraints or

Pseudo requirements

42Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Types of Nonfunctional Requirements

• Usability

• Reliability

• Robustness

• Safety

• Performance

• Response time

• Scalability

• Throughput

• Availability

• Supportability

• Adaptability

• Maintainability

• Implementation

• Interface

• Operation

• Packaging

• Legal

• Licensing (GPL, LGPL)

• Certification

• Regulation

Quality requirements

Constraints or
Pseudo requirements

43Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Example

44Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

What should not be in the Requirements?

• System structure, implementation technology

• Development methodology

• Development environment

• Implementation language

• Reusability

• It is desirable that none of these above are
constrained by the client.

45Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Requirements Validation

Requirements validation is a quality assurance
step, usually performed after requirements
elicitation or after analysis

• Correctness:

• The requirements represent the client’s view

• Completeness:

• All possible scenarios, in which the system can be used,
are described

• Consistency:

• There are no requirements that contradict each other.

46Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Requirements Validation (2)

• Clarity:

• Requirements can only be interpreted in one way

• Realism:

• Requirements can be implemented and delivered

• Traceability:

• Each system behavior can be traced to a set of
functional requirements

• Problems with requirements validation:

• Requirements change quickly during requirements
elicitation

• Inconsistencies are easily added with each change

• Tool support is needed!

47Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

We can specify Requirements for
“Requirements Management”

• Functional requirements:

• Store the requirements in a shared repository

• Provide multi-user access to the requirements

• Automatically create a specification document
from the requirements

• Allow change management of the requirements

• Provide traceability of the requirements
throughout the artifacts of the system.

48Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Tools for Requirements Management (2)

DOORS (Telelogic)

• Multi-platform requirements management tool, for
teams working in the same geographical location.
DOORS XT for distributed teams

RequisitePro (IBM/Rational)

• Integration with MS Word

• Project-to-project comparisons via XML baselines

RD-Link (http://www.ring-zero.com)

• Provides traceability between RequisitePro & Telelogic
DOORS

Unicase (http://unicase.org)

• Research tool for the collaborative development of
system models

• Participants can be geographically distributed.

http://www.Telelogic
http://www-306.ibm.com/software/awdtools/reqpro/
http://www.ring-zero.com

49Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Different Types of Requirements Elicitation

• Greenfield Engineering

• Development starts from scratch, no prior system
exists, requirements come from end users and clients

• Triggered by user needs

• Re-engineering

• Re-design and/or re-implementation of an existing
system using newer technology

• Triggered by technology enabler

• Interface Engineering

• Provision of existing services in a new environment

• Triggered by technology enabler or new market needs

50Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Prioritizing requirements

• High priority

• Addressed during analysis, design, and implementation

• A high-priority feature must be demonstrated

• Medium priority

• Addressed during analysis and design

• Usually demonstrated in the second iteration

• Low priority

• Addressed only during analysis

• Illustrates how the system is going to be used in the
future with not yet available technology

51Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Requirements Analysis Document Template
1. Introduction

2. Current system

3. Proposed system

3.1 Overview

3.2 Functional requirements

3.3 Nonfunctional requirements

3.4 Constraints (“Pseudo requirements”)

3.5 System models

3.5.1 Scenarios

3.5.2 Use case model

3.5.3 Object model

3.5.3.1 Data dictionary

3.5.3.2 Class diagrams

3.5.4 Dynamic models

3.5.5 User interfae

4. Glossary

52Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Section 3.3 Nonfunctional Requirements

3.3.1 User interface and human factors

3.3.2 Documentation

3.3.3 Hardware considerations

3.3.4 Performance characteristics

3.3.5 Error handling and extreme conditions

3.3.6 System interfacing

3.3.7 Quality issues

3.3.8 System modifications

3.3.9 Physical environment

3.3.10 Security issues

3.3.11 Resources and management issues

53Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Nonfunctional Requirements
(Questions to overcome “Writers block”)

User interface and human factors

• What type of user will be using the system?

• Will more than one type of user be using the
system?

• What training will be required for each type of user?

• Is it important that the system is easy to learn?

• Should users be protected from making errors?

• What input/output devices are available

Documentation

• What kind of documentation is required?

• What audience is to be addressed by each
document?

54Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Nonfunctional Requirements (2)

Hardware considerations

• What hardware is the proposed system to be used on?

• What are the characteristics of the target hardware,
including memory size and auxiliary storage space?

Performance characteristics

• Are there speed, throughput, response time constraints
on the system?

• Are there size or capacity constraints on the data to be
processed by the system?

Error handling and extreme conditions

• How should the system respond to input errors?

• How should the system respond to extreme conditions?

55Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Nonfunctional Requirements (3)

System interfacing

• Is input coming from systems outside the proposed
system?

• Is output going to systems outside the proposed system?

• Are there restrictions on the format or medium that must
be used for input or output?

Quality issues

• What are the requirements for reliability?

• Must the system trap faults?

• What is the time for restarting the system after a failure?

• Is there an acceptable downtime per 24-hour period?

• Is it important that the system be portable?

56Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Nonfunctional Requirements (4)

System Modifications

• What parts of the system are likely to be modified?

• What sorts of modifications are expected?

Physical Environment

• Where will the target equipment operate?

• Is the target equipment in one or several locations?

• Will the environmental conditions be ordinary?

Security Issues

• Must access to data or the system be controlled?

• Is physical security an issue?

57Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

Nonfunctional Requirements (5)

Resources and Management Issues

• How often will the system be backed up?

• Who will be responsible for the back up?

• Who is responsible for system installation?

• Who will be responsible for system maintenance?

