
U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 5: Analysis,
Object Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Ambiguity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

An overview of OOSE development
activities and their products

Problem Statement

Requirements
Elicitation

Functional ModelNon-functional Req.

Analysis

Analysis Object Model Dynamic Model

Use Case
Diagrams

System
Design

State
Diagrams

Sequence
Diagrams

Class
Diagrams

Activity
Diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Analysis

When working with either the analysis object model or the dynamic model, it
is essential to remember that these models represent user-level concepts, not
actual software classes or components. For example, classes such as Database,
Subsystem, SessionManager, Network, should not appear in the analysis
model as the user is completely shielded from those concepts. Consequently,
analysis classes should be viewed as
high-level abstractions that will be realized in much more detail later.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Activities during Object Modeling

Main goal: Find important abstractions

• Steps during object modeling

1. Class identification

2. Find attributes

3. Find methods

4. Find associations between classes

• Order of steps

• Goal: get desired abstractions

• Order of steps secondary, only a heuristic

• What happens if we find wrong abstractions?

• We iterate and revise the model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Class Identification

Class identification is crucial to OO modeling

• Helps to identify important entities of a system

• Basic assumptions:

1. We can find classes for a new software system
(Forward Engineering)

2. We can identify classes in an existing system
(Reverse Engineering)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Class Identification is a Hard Problem

• One problem: Definition of system boundary:

• Which abstractions are outside, which abstractions are
inside the system boundary?

• Actors are outside the system

• Classes/Objects are inside the system.

• Another problem: Classes/Objects are not just
found by taking a picture of a scene or domain

• Application domain has to be analyzed

• Depending on purpose of system, different objects
might be found

• How can we identify purpose of a system?

• Scenarios and use cases => Functional model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Generalization vs Specialization

Generalization is the modeling activity that identifies abstract
concepts from lower-level ones. For example, assume we are
reverse-engineering an emergency management system and
discover screens for managing traffic accidents and fires. Noticing
common features among these three concepts, we create an
abstract concept called Emergency to describe the common (and
general) features of traffic accidents and fires.

Specialization is the activity that identifies more specific concepts
from a high-level one. For example, assume that we are building
an emergency management system from scratch a and that we
are discussing its functionality with the client. The client first
introduces us with theconcept of an incident, then describes three
types of Incidents: Disasters, which require the collaboration of
several agencies, Emergencies, which require immediate handling
but can be handled by a single agency, and LowPriorityIncidents,
that do not need to be handled if resources are required for other,
higher-priority Incidents

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Class Hierarchy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

There are different types of Objects

• Entity Objects

• Represent persistent information tracked by the system
(Application domain objects, also called “Business objects”)

• Objects representing system data, often from the domain
model.

• Boundary Objects

• Represent interaction between user and the system

• Objects that interface with system actors (e.g.
a user or external service). Windows, screens and menus
are examples of boundaries that interface with users.

• Control Objects

• Represent the control tasks performed by the system

• Objects that mediate between boundaries and entities. These
serve as the glue between boundary elements and entity
elements, implementing the logic required to manage the
various elements and their interactions.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Example: 2BWatch Modeling

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Object Boundary Objects

To distinguish different object types
in a model we can use the
UML Stereotype mechanism

Naming Object Types in UML

• UML provides stereotype mechanism to
introduce new types of modeling elements
• Drawn as a name enclosed by angled double-quotes (<<,

>>) and placed before name of a UML element (class,
method, attribute, …)

• Notation: <<String>>Name

<<Entity>>
Year <<Control>>

ChangeDate

<<Boundary>>
Button

<<Entitity>>
Month

<<Entity>>
Day

<<Boundary>>
LCDDisplay

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

UML is an Extensible Language

• Stereotypes allow you to extend vocabulary of UML so
that you can create new model elements, derived from
existing ones.

• Example:

• Stereotypes can also be used to classify method behavior such
as <<constructor>>, <<getter>> or <<setter>>

• Stereotypes can be represented with icons and
graphics:

• This can increase readability of UML diagrams.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Icons for Stereotypes

• One can use icons to identify a stereotype

• When the stereotype is applied to a UML model element, the
icon is displayed beside or above the name

Entity Object Control Object Boundary Object

Year ChangeDate Button

Actor

WatchUser

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Pros and Cons of Stereotype Graphics

• Advantages:

• UML diagrams may be easier to understand if they contain
graphics and icons for stereotypes

• This can increase the readability of the diagram, especially
if the client is not trained in UML

• And they are still UML diagrams!

• Disadvantages:

• If developers are unfamiliar with the symbols being used, it can
become much harder to understand what is going on

• Additional symbols add to the burden of learning to read the
diagrams.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Communication among objects

Four rules apply to their communication:

• Actors can only talk to boundary objects.

• Boundary objects can only talk to controllers
and actors.

• Entity objects can only talk to controllers.

• Controllers can talk to boundary objects and
entity objects, and to other controllers, but not
to actor

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Communication among Objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

What is the benefit of Object types?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Object Types allow us to deal with Change
• Having three types of objects

leads to models that are more
resilient to change

• Interface of a system changes more
likely than control

• The way the system is controlled
changes more likely than entities in
application domain

• Object types originated in
Smalltalk:

• Model, View, Controller (MVC)

Model <-> Entity Object

View <-> Boundary Object

Controller <-> Control Object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Finding Participating Objects in Use Cases

• Pick a use case and look at flow of events

• Do a textual analysis (noun-verb analysis)

• Nouns are candidates for objects/classes

• Verbs are candidates for operations

• This is also called Abbott’s Technique

• After objects/classes are found, identify their
types

• Identify real world entities that the system needs to
keep track of (FieldOfficer Entity Object)

• Identify real world procedures that the system needs
to keep track of (EmergencyPlan Control Object)

• Identify interface artifacts (PoliceStation Boundary
Object).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Mapping parts of speech to model
components (Abbot’s Technique)

Part of speech

Proper noun

Improper noun

Doing verb

being verb

having verb

modal verb

adjective

transitive verb

intransitive verb

UML model component

object

class

operation

inheritance

aggregation

constraint

attribute

operation

constraint, class,

association

Example

“Monopoly”

Toy

Buy, recommend

is-a

has an

must be

dangerous

enter

depends on

VideoGame

• The customer enters the store to buy
a toy. It has to be a toy that his
daughter likes and it must cost less
than 50 Euro. He tries a videogame,
which uses a data glove and a head-
mounted display. He likes it.

Generating a Class Diagram from Flow of Events

An assistant helps him. The suitability
of the game depends on the age of the
child. His daughter is only 3 years old.
The assistant recommends another
type of toy, namely a boardgame. The
customer buy the game and leaves
the store

customer enters

depends

store

Customer

?

enter()

Toy

Daughter

suitable

*

Store

enter()

Toy

buy()

toy

age

videogame
daughter

boardgame

Flow of events:

Toy

price

buy()

like()

buy

type of toy

BoardGame

Daughter

age

50 Euro

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Ways to find Objects

• Syntactical investigation with Abbot‘s technique:

• Flow of events in use cases

• Problem statement

• Use other knowledge sources:

• Application knowledge: End users and experts know
the abstractions of the application domain

• Solution knowledge: Abstractions in the solution
domain

• General world knowledge: Your generic knowledge and
intution

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Order of Activities for Object Identification

1. Formulate a few scenarios with help from an
end user or application domain expert

2. Extract use cases from scenarios, with help of
an application domain expert

3. Then proceed in parallel with following:

• Analyze flow of events in each use case
using Abbot's textual analysis technique

• Generate UML class diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Steps in Generating Class Diagrams

1. Class identification (textual analysis, domain
expert)

2. Identification of attributes and operations
(sometimes before classes are found!)

3. Identification of relations:

• Associations between classes

• Multiplicities

• Inheritance

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Who uses Class Diagrams?

• Purpose of class diagrams

• Description of static properties of a system

• Main users of class diagrams:

• Application domain expert

• uses class diagrams to model application domain
(including taxonomies)

• during requirements elicitation and analysis

• Developer

• uses class diagrams during development of a
system

• during analysis, system design, object design
and implementation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Who does not use Class Diagrams?

• The client and the end user are usually not
interested in class diagrams

• Clients focus more on project management issues

• End users are more interested in functionality of the
system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Developers have different Views on Class
Diagrams

• According to the development activity, a
developer plays different roles:

• Analyst

• System Designer

• Object Designer

• Implementor /Development Engineer

• Each of these roles has a different view about
class diagrams (object model).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

The View of the Analyst

• The analyst is interested

• in application classes: associations between classes are
relationships between abstractions in application
domain

• operations and attributes of application classes

• The analyst uses inheritance in the model to
reflect taxonomies in application domain

• Taxonomy: An is-a-hierarchy of abstractions in an
application domain

• The analyst is not interested

• In exact signature of operations

• in solution domain classes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

The View of the Designer
• The designer focuses on solution of problem

(i.e., solution domain)

• Associations between classes are now references
(pointers) between classes in solution domain

• The designer describes interface of subsystems
(system design) and classes (object design)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Goals of the Designer

• Design usability: interfaces are usable from as
many classes as possible within the system

• Design reusability: interfaces are designed in a
way that they can also be reused by other
(future) software systems

=> Class libraries

=> Frameworks

=> Design patterns

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

The View of the Implementor /Dev.
Engineer

• Class implementor

• Must realize interface of a class in a programming
language

• Interested in appropriate data structures (for
attributes) and algorithms (for operations)

• Class extender

• Interested in how to extend a class to solve a new
problem or to adapt to a change in application domain

• Class user

• Interested in signatures of class operations and
conditions, under which they can be invoked

• NOT interested in implementation of a class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Why distinguish Users of Class Diagrams?

• Models often don‘t distinguish between
application classes and solution classes

• Reason: Modeling languages like UML allow use of both
types of classes in same model

• “address book“, “array"

• Preferred: No solution classes in analysis model

• Many systems don‘t distinguish between
specification and implementation of a class

• Reason: Object-oriented programming languages allow
simultaneous use of specification and implementation
of a class

• Preferred: We distinguish between analysis model and
object design model. Analysis model does not contain
any implementation specification.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Analysis Model vs Object Design model

• Analysis model constructed during analysis
phase

• Main stake holders: End user, customer, analyst

• Class diagrams contain only application domain classes

• Object design model (sometimes also called
specification model) created during object
design phase

• Main stake holders: class specifiers, class
implementors, class users and class extenders

• Class diagrams contain application domain as well as
solution domain classes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Summary

• System modeling

• Functional + object + dynamic modeling

• Functional modeling

• From scenarios to use cases to objects

• Object modeling is the central activity

• Class identification is a major activity of object modeling

• Easy syntactic rules to find classes and objects (Abbot’s
Technique)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Summary

