Object-Oriented Software Engineering Jsing UML, Patterns, and Java

Chapter 5, Analysis: Dynamic Modeling

An overview of OOSE development activities and their products

Dynamic Modeling

- Describe components of the system that have interesting dynamic behavior, using
 - State diagrams: One state diagram per class with interesting dynamic behavior
 - Sequence diagrams: For interaction between classes
 - Activity diagrams: Model (complex) logic (business rules) captured by a use case
- Purpose:
 - Detect and supply operations for the object model.

How do we detect Operations?

- Look for interacting objects and extract their "protocol"
- Look for objects with interesting behavior on their own
- Good starting point: Flow of events in a use case description
- From flow of events, proceed to the sequence diagram to find participating objects.

Sequence Diagram

- A Sequence diagram ties uses cases with objects
- Shows how the behavior of a use case is distributed among its objects
- Use cases (ends users) vs Sequence diagrams (developers)
- A graphical description of objects participating in a use case using a DAG notation
- Heuristic for finding participating objects:
 - An event always has a sender and a receiver
 - Find them for each event => These are the objects participating in the use case.

Representing Objects

squares with object type, optionally preceded by object name and colon

write object's name if it clarifies the diagram

Heuristics for Sequence Diagram

• Layout:

- 1st column: actor of use case
- 2nd column: a boundary object
- 3rd column: control object managing rest of use case

• Creation of objects:

- Create control objects at beginning of event flow
- Control objects create boundary and entity objects

• Access of objects:

- Entity objects can be accessed by control objects
- Entity objects should not access boundary or control objects.

Report Emergency

ARENA Sequence Diagram: Create Tournament

What else can we get out of Sequence Diagrams?

- Sequence diagrams are derived from use cases
- The structure of the sequence diagram helps us to determine how decentralized the system is
- We distinguish two structures for sequence diagrams
 - Fork Diagrams and Stair Diagrams (Ivar Jacobsen)

Fork Diagram

- The dynamic behavior is placed in a single object, usually a control object
 - It knows all the other objects and often uses them for direct questions and commands

Stair Diagram

- The dynamic behavior is distributed. Each object delegates responsibility to other objects
 - Each object knows only a few of the other objects and knows which objects can help with a specific behavior

Fork or Stair?

- Object-oriented supporters claim that the stair structure is better
- Modeling Advice:
 - Choose the stair a decentralized control structure if
 - The operations have a strong connection
 - The operations will always be performed in the same order
 - Choose the fork a centralized control structure if
 - The operations can change order
 - New operations are expected to be added as a result of new requirements.

dynamic behavior.

Backgammon

Activity Diagrams

 An activity diagram is useful to depict the workflow in a system

Activity Diagrams can model Concurrency

- Synchronization of multiple activities
- Splitting flow of control into multiple threads

Activity Diagrams: Grouping of Activities

 Activities may be grouped into swimlanes to denote the object or subsystem that implements the activities.

Practical Tips for Dynamic Modeling

- Construct dynamic models only for (avoid "analysis paralysis"):
 - Classes with significant dynamic behavior and
 - Use cases that are non-trivial
- Consider only relevant attributes
 - Use abstraction if necessary
- Look at granularity of application when deciding on actions and activities
- Reduce notational clutter
 - Try to put actions into super-state boxes (look for identical actions on events leading to the same state).

Checklist for a Requirements Review

- Is the model correct?
 - Represents client's view of the system?
- Is the model complete?
 - Every scenario described?
- Is the model consistent?
 - Has components that contradict?
- Is the model unambiguous?
 - Describes one system, not many?
- Is the model realistic?
 - Can be implemented?

Examples for syntactical Problems

- Different spellings in different UML diagrams
- Omissions in diagrams

Different spellings in different UML diagrams

UML Sequence Diagram

UML Class Diagram

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Checklist for a Requirements Review (2)

- Syntactical check of models
 - Consistent naming of classes, attributes, methods in different subsystems
 - Dangling associations ("pointing to nowhere")
 - Doubly-defined classes
 - Missing classes (mentioned in one model but not defined anywhere)
 - Classes with same name but different meanings

Requirements Analysis Document Template

- 1. Introduction
- 2. Current system
- 3. Proposed system
 - 3.1 Overview
 - 3.2 Functional requirements
 - 3.3 Nonfunctional requirements
 - 3.4 Constraints ("Pseudo requirements")
 - 3.5 System models
 - 3.5.1 Scenarios
 - 3.5.2 Use case model
 - 3.5.3 Object model
 - 3.5.3.1 Data dictionary
 - 3.5.3.2 Class diagrams
 - 3.5.4 Dynamic models
 - 3.5.5 User interfae
- 4. Glossary

Section 3.5 System Model

- 3.5.1 Scenarios
 - As-is scenarios, visionary scenarios
- 3.5.2 Use case model
 - Actors and use cases
- 3.5.3 Object model
 - Data dictionary
 - Class diagrams (classes, associations, attributes and operations)
- 3.5.4 Dynamic model
 - State diagrams for classes with significant dynamic behavior
 - Sequence diagrams for collaborating objects (protocol)
 - Activity diagrams for complex business rules/logic
- 3.5.5 User Interface
 - Navigational Paths, Screen mockups

2 0

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Requirements Analysis Questions

1. What are the transformations?

Create scenarios and use case diagrams

- Talk to client, observe, get historical records
- 2. What is the structure of the system?
 - Create class diagrams
 - Identify objects. Associations between them? Their multiplicity?
 - What are the attributes of objects? Operations on objects?
- 3. What is its behavior?
 - Create sequence diagrams
 - Identify senders and receivers
 - Show sequence of events exchanged between objects
 - Identify event dependencies and event concurrency

Create state diagrams

- Only for the dynamically interesting objects

Create activity diagrams

Functional Modeling

Summary

- In this lecture, we reviewed construction of the dynamic model from use case and object models. In particular, we described:
 - Sequence and state diagrams for identifying new classes and operations
 - Activity diagrams for describing complex business rules/logic inside operations
- In addition, we described requirements analysis document and its components.