
U
si

n
g
 U

M
L

,
P

a
tt

er
n

s,
 a

n
d

 J
a
v
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 5, Analysis:
Dynamic Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

An overview of OOSE development
activities and their products

Problem Statement

Requirements
Elicitation

Functional ModelNon-functional Req.

Analysis

Analysis Object Model Dynamic Model

Use Case
Diagrams

System
Design

State
Diagrams

Sequence
Diagrams

Class
Diagrams

Activity
Diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Dynamic Modeling

• Describe components of the system that have
interesting dynamic behavior, using

• State diagrams: One state diagram per class with
interesting dynamic behavior

• Sequence diagrams: For interaction between classes

• Activity diagrams: Model (complex) logic (business
rules) captured by a use case

• Purpose:

• Detect and supply operations for the object model.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

How do we detect Operations?

• Look for interacting objects and extract their
“protocol”

• Look for objects with interesting behavior on
their own

• Good starting point: Flow of events in a use
case description

• From flow of events, proceed to the sequence
diagram to find participating objects.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Sequence Diagram

• A Sequence diagram ties uses cases with objects

• Shows how the behavior of a use case is
distributed among its objects

• Use cases (ends users) vs Sequence diagrams
(developers)

• A graphical description of objects participating in
a use case using a DAG notation

• Heuristic for finding participating objects:

• An event always has a sender and a receiver

• Find them for each event => These are the objects
participating in the use case.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Representing Objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Heuristics for Sequence Diagram

• Layout:
• 1st column: actor of use case

• 2nd column: a boundary object

• 3rd column: control object managing rest of use case

• Creation of objects:

• Create control objects at beginning of event flow

• Control objects create boundary and entity objects

• Access of objects:

• Entity objects can be accessed by control objects

• Entity objects should not access boundary or control objects.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Report Emergency

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

:Tournament
«new»

ARENA Sequence Diagram: Create Tournament

League

Owner

:TournamentInterface

Boundary

newTournament

(league)

:Announce

Tournament

Control

«new»

setName(name)

setMaxPlayers

(maxp)

commit()
createTournament

(name, maxp)

checkMax

Tournament()

create

Tournament

(name, maxp)

:Arena :League

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

What else can we get out of Sequence
Diagrams?

• Sequence diagrams are derived from use cases

• The structure of the sequence diagram helps us
to determine how decentralized the system is

• We distinguish two structures for sequence
diagrams

• Fork Diagrams and Stair Diagrams (Ivar Jacobsen)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Control

Object

Fork Diagram

• The dynamic behavior is placed in a single
object, usually a control object

• It knows all the other objects and often uses them for
direct questions and commands

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Stair Diagram

• The dynamic behavior is distributed. Each object
delegates responsibility to other objects

• Each object knows only a few of the other objects and
knows which objects can help with a specific behavior

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Fork or Stair?

• Object-oriented supporters claim that the stair
structure is better

• Modeling Advice:

• Choose the stair - a decentralized control structure - if

• The operations have a strong connection

• The operations will always be performed in the
same order

• Choose the fork - a centralized control structure - if

• The operations can change order

• New operations are expected to be added as a
result of new requirements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

UML Statechart diagram

State

Initial state

Final state

Transition

Event

Represents behavior of a single object with interesting
dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed
Increment

Minutes

Increment

Hours

Blink

Hours

Blink

Seconds

Blink

Minutes

Increment

Seconds

Stop

Blinking

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Backgammon

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Activity Diagrams

• An activity diagram is useful to depict the
workflow in a system

Handle
Incident

Document
Incident

Archive
Incident

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Activity Diagrams allow to model Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Decision

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Activity Diagrams can model Concurrency

• Synchronization of multiple activities

• Splitting flow of control into multiple threads

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

SynchronizationSplitting

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Activity Diagrams: Grouping of Activities

• Activities may be grouped into swimlanes to
denote the object or subsystem that implements
the activities.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Practical Tips for Dynamic Modeling

• Construct dynamic models only for (avoid
“analysis paralysis”):

• Classes with significant dynamic behavior and

• Use cases that are non-trivial

• Consider only relevant attributes

• Use abstraction if necessary

• Look at granularity of application when deciding
on actions and activities

• Reduce notational clutter

• Try to put actions into super-state boxes (look for
identical actions on events leading to the same state).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Checklist for a Requirements Review

• Is the model correct?

• Represents client’s view of the system?

• Is the model complete?

• Every scenario described?

• Is the model consistent?

• Has components that contradict?

• Is the model unambiguous?

• Describes one system, not many?

• Is the model realistic?

• Can be implemented?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Examples for syntactical Problems

• Different spellings in different UML diagrams

• Omissions in diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Attributes

Operations

League

Attributes

Operations

Tournament

Attributes

Operations

Player

Attributes

Operations

Match

Attributes

Operations

LeagueOwner
1 *

* *

Attributes

Operations

Tournament_

Boundary

Attributes

makeTournament

(name, maxp)

Announce_

Tournament_

Control

Different spellings in different UML diagrams

UML Sequence Diagram UML Class Diagram

createTournament

(name, maxp)

Different spellings
in different models

for the same operation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Checklist for a Requirements Review (2)

• Syntactical check of models

• Consistent naming of classes, attributes, methods in
different subsystems

• Dangling associations (“pointing to nowhere”)

• Doubly-defined classes

• Missing classes (mentioned in one model but not defined
anywhere)

• Classes with same name but different meanings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Requirements Analysis Document Template
1. Introduction

2. Current system

3. Proposed system

3.1 Overview

3.2 Functional requirements

3.3 Nonfunctional requirements

3.4 Constraints (“Pseudo requirements”)

3.5 System models

3.5.1 Scenarios

3.5.2 Use case model

3.5.3 Object model

3.5.3.1 Data dictionary

3.5.3.2 Class diagrams

3.5.4 Dynamic models

3.5.5 User interfae

4. Glossary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Section 3.5 System Model

3.5.1 Scenarios

- As-is scenarios, visionary scenarios

3.5.2 Use case model
- Actors and use cases

3.5.3 Object model
- Data dictionary

- Class diagrams (classes, associations, attributes and operations)

3.5.4 Dynamic model
- State diagrams for classes with significant dynamic

behavior

- Sequence diagrams for collaborating objects (protocol)

- Activity diagrams for complex business rules/logic

3.5.5 User Interface
- Navigational Paths, Screen mockups

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

1. What are the transformations?

Create scenarios and use case diagrams

- Talk to client, observe, get historical records

2. What is the structure of the system?

Create class diagrams

- Identify objects. Associations between them? Their multiplicity?

- What are the attributes of objects? Operations on objects?

• 3. What is its behavior?

Create sequence diagrams

- Identify senders and receivers

- Show sequence of events exchanged between objects

- Identify event dependencies and event concurrency

Create state diagrams

- Only for the dynamically interesting objects

Create activity diagrams

Requirements Analysis Questions

Dynamic Modeling

Functional Modeling

Object Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Summary

• In this lecture, we reviewed construction of the
dynamic model from use case and object
models. In particular, we described:

• Sequence and state diagrams for identifying new
classes and operations

• Activity diagrams for describing complex business
rules/logic inside operations

• In addition, we described requirements analysis
document and its components.

