
U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 6
System Design:

Decomposing the
System

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Requirements Elicitation & Analysis

results in;

• Non-functional requirements and

constraints

• Use-case model (functional model)

• Object Model

• Dynamic model

The activities of System design;

• Identify design goals

• Design the initial subsystem

decomposition

• Refine the subsystem

decomposition to address design

goals

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Design is Difficult

• There are two ways of
constructing a software
design (Tony Hoare):

• One way is to make it so simple
that there are obviously no
deficiencies

• The other way is to make it so
complicated that there are no
obvious deficiencies.”

• Corollary (Jostein Gaarder):

• If our brain would be so simple
that we can understand it, we
would be too stupid to
understand it.

Sir Antony Hoare, *1934

- Quicksort

- Hoare logic for verification

- CSP (Communicating Sequential

Processes): modeling language

for concurrent processes (basis

for Occam).

Jostein Gardner, *1952, writer

Uses metafiction in his stories:

Fiction which uses the device of fiction

- Best known for: „Sophie‘s World“.

http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Occam_programming_language

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Why is Design so Difficult?

• Analysis: Focuses on the application domain

• Design: Focuses on the solution domain

• The solution domain is changing very rapidly

• Halftime knowledge in software engineering: About
3-5 years

➢Design knowledge is a moving target

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

The Scope of System Design

• Bridge the gap

• between a problem and
an system in a
manageable way

Problem

System

System
Design• How?

• Use Divide & Conquer:
1) Identify design goals
2) Model the new system

design as a set of
subsystems

3-8) Address the major
design goals.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

System Design: Eight Issues

System Design

2. Subsystem Decomposition

Layers vs Partitions

Coherence & Coupling

4. Hardware/

Software Mapping

Identification of Nodes

Special Purpose Systems

Buy vs Build

Network Connectivity

5. Persistent Data

Management

Storing Persistent

Objects

Filesystem vs Database

Access Control

ACL vs Capabilities

Security

6. Global Resource

Handlung

8. Boundary

Conditions

Initialization

Termination

Failure.

3. Identify Concurrency

Identification of

Parallelism

(Processes,

Threads)

7. Software

Control

Monolithic

Event-Driven

Conc. Processes

1. Identify Design Goals

Additional NFRs

Trade-offs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Overview

System Design I (This Lecture)

0. Overview of System Design

1. Design Goals

2. Subsystem Decomposition, Software Architecture

System Design II (Next Lecture)
3. Concurrency: Identification of parallelism

4. Hardware/Software Mapping:

Mapping subsystems to processors

5. Persistent Data Management: Storage for entity

objects

6. Global Resource Handling & Access Control:

Who can access what?)

7. Software Control: Who is in control?

8. Boundary Conditions: Administrative use cases.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Monolithic vs Event-

Driven vs Concurrent

Processes

7. Software

Control

2. System Decomposition

Layers vs Partitions

Coherence & Coupling

4. Hardware/

Software Mapping

Special Purpose Systems

Buy vs Build

Allocation of Resources

Network Connectivity

5. Data

Management

Persistent Objects

File system vs

Database

Access Control List

vs Capabilities

Security

6. Global Resource

Handling

8. Boundary

Conditions

Initialization

Termination

Failure

3. Concurrency

Identification of

Parallelism

1. Design Goals

Definition

Trade-offs

From Analysis to System Design

Nonfunctional

Requirements

Functional Model

Functional Model

Dynamic Model

Object Model

Dynamic Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Example of Design Goals

• Reliability

• Modifiability

• Maintainability

• Understandability

• Adaptability

• Reusability

• Efficiency

• Portability

• Traceability of requirements

• Fault tolerance

• Backward-compatibility

• Cost-effectiveness

• Robustness

• High-performance

Good documentation

Well-defined interfaces

User-friendliness

Reuse of components

Rapid development

Minimum number of errors

Readability

Ease of learning

Ease of remembering

Ease of use

Increased productivity

Low-cost

Flexibility

Design goals guide the decisions to be made by developers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Developer/

Maintainer

Minimum # of errors
Modifiability, Readability
Reusability, Adaptability

Well-defined interfaces

Stakeholders have different Design Goals

Reliability

Low cost
Increased productivity
Backward compatibility
Traceability of requirements
Rapid development
Flexibility

Client
(Customer)

Portability

Good documentation

Runtime

Efficiency

End
User

Functionality
User-friendliness
Usability
Ease of learning
Fault tolerant
Robustness

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Typical Design Trade-offs

• Functionality v. Usability

• Cost v. Robustness

• Efficiency v. Portability

• Rapid development v. Functionality

• Cost v. Reusability

• Backward Compatibility v. Readability

• Security vs Usability

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Subsystem Decomposition

• Subsystem

• Collection of classes, associations, operations, events and
constraints that are closely interrelated with each other

• The objects and classes from the object model are the
“seeds” for the subsystems

• In UML subsystems are modeled as packages

• A subsystem is characterized by the services it provides
to other subsystems

• Service

• A set of named operations that share a common purpose

• The origin (“seed”) for services are the use cases from
the functional model

• Services are defined during system design.

• Advantage of System Decomposition?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Tournament

Component

Management

User Management

Tournament

Statistics

User Directory

User Interface

Session

Management

Adds games, styles,

and expert rating

formulas

Stores user profiles

(contact info &

subscriptions)

Stores results of

archived

tournaments

Maintains state

during matches

Administers user

accounts

Advertisement

Manages

tournaments,promotions,

applications

Manages advertisement

banners & sponsorships

Example: Services
provided by the
ARENA Subsystems

Services

are described

by subsystem interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Conway’s Law

The structure of software reflects the
organizational structure that produced it

* https://en.wikipedia.org/wiki/Conway%27s_law

https://en.wikipedia.org/wiki/Conway's_law

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Conway’s Law –Example

• Consider a large system S that the
government wants to build. The
government hires Company X to build
system S. Say company X has three
engineering groups, E1, E2 and E3 that
participate in the project

• Conway’s law suggest that it is likely that
the resultant system will consist of 3 major
subsystems (S1,S2, and S3), each built by
one of the engineering groups.

• Further, the resultant interfaces among
subsystems (S1-S2, S1-S3, S2-S3) will
reflect the quality and nature of the real-
world interpersonal communications among
respective engineering groups (E1-E2, E1-
E3, E2-E3)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Packages

• A package in the Unified Modeling Language is
used to group elements (as subsystem).

• A package may contain other packages, thus
providing for a hierarchical organization of
packages.

• Pretty much all UML elements can be grouped
into packages.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Package Diagram

To simplify complex class
diagrams, you can group
classes into packages. A
package is a collection of
logically related UML elements.

A package diagram depicts
the dependencies between the
packages

The dotted arrows are
dependencies. One package
depends on another if changes
in the other could possibly
force changes in the first

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Subsystem Decomposition - Example

Accident Management System

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Coupling and Coherence of Subsystems

• Goal: Reduce system complexity while allowing
change

• Coherence measures dependency among classes

• High coherence: The classes in the subsystem perform
similar tasks and are related to each other via
associations

• Low coherence: Lots of miscellaneous and auxiliary
classes, no associations

• Coupling measures dependency among
subsystems

• High coupling: Changes to one subsystem will have high
impact on the other subsystem

• Low coupling: A change in one subsystem does not affect
any other subsystem

Good Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Coupling and Dependency

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

How to achieve high Coherence

• High coherence can be achieved if most of the
interaction is within subsystems, rather than
across subsystem boundaries

• Questions to ask:

• Does one subsystem always call another one for a
specific service?

• Yes: Consider moving them together into the same
subystem.

• Which of the subsystems call each other for services?

• Can this be avoided by restructuring the
subsystems or changing the subsystem interface?

• Can the subsystems even be hierarchically ordered (in
layers)?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Examples of Reducing the coupling of
subsystems

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Example of Reducing the couple of
subsystems

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Decision Tracking System

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Alternative System Decomposition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Subsystem Interfaces vs API

• Subsystem interface: Set of fully typed UML
operations

• Specifies the interaction and information flow from and
to subsystem boundaries, but not inside the subsystem

• Refinement of service, should be well-defined and small

• Subsystem interfaces are defined during object design

• Application programmer’s interface (API)

• The API is the specification of the subsystem interface in
a specific programming language

• APIs are defined during implementation

• The terms subsystem interface and API are often
confused with each other

• The term API should not be used during system design
and object design, but only during implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Example: Notification subsystem

• Service provided by Notification Subsystem

• LookupChannel()

• SubscribeToChannel()

• SendNotice()

• UnscubscribeFromChannel()

• Subsystem Interface of Notification Subsystem

• Set of fully typed UML operations

• API of Notification Subsystem

• Implementation in Java

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Properties of Subsystems: Layers and
Partitions

• A layer is a subsystem that provides a service to
another subsystem with the following
restrictions:

• A layer only depends on services from lower layers

• A layer has no knowledge of higher layers

• A layer can be divided horizontally into several
independent subsystems called partitions

• Partitions provide services to other partitions on the
same layer

• Partitions are also called “weakly coupled” subsystems.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

3-Layer Architectural Style

A 3-Layer Architectural Style is a hierarchy of 3 layers
usually called presentation, application and data layer

Data Layer

Presentation Layer

(Client Layer)

Application Layer

(Middleware,

Business Logic)

Existing SystemOperating System, Libraries

Appeared first in 1965, proposed by Dijkstra, in the design of the T.H.E. system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Relationships between Subsystems

• Two major types of Layer relationships

• Layer A “depends on” Layer B (compile time dependency)

• Example: Build dependencies (make, ant, maven)

• Layer A “calls” Layer B (runtime dependency)

• Example: A web browser calls a web server

• Can the client and server layers run on the same machine?

• Yes, they are layers, not processor nodes

• Mapping of layers to processors is decided during the
Software/hardware mapping!

• Partition relationship

• The subsystems have mutual knowledge about each other

• A calls services in B; B calls services in A (Peer-to-Peer)

• UML convention:

• Runtime dependencies are associations with dashed lines

• Compile time dependencies are associations with solid lines.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

F:SubsystemE:Subsystem G:Subsystem

D:SubsystemC:SubsystemB:Subsystem

A:Subsystem Layer 1

Layer 2

Layer 3

Example of a Subsystem Decomposition

Layer
Relationship
„depends on“

Partition
relationship

Layer
Relationship

„calls“

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Building Systems as a Set of Layers

A system is a hierarchy of layers, each using language
primitives offered by the lower layers

Layer 1

Layer 4

Layer 3

Layer 2

Existing SystemOperating System, Libraries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Closed Architecture (Opaque Layering)

• Each layer can only call
operations from layer
below

C1ass1

attr

op

C1ass3

attr

op

C1ass2

attr

op

C1assE

attr

op

C1assF

attr

op

C1assC

attr

op

C1assD

attr

op

Class A

attr

op

C1ass B

attr

op

Design goals:
Maintainability,
flexibility

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Opaque Layering in ARENA

ArenaServer

Notification

ArenaClient

UserManagement

AdvertisementManagement

GameManagement

ArenaStorage

TournamentManagement

Interface

Storage

Application Logic

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Open Architecture (Transparent Layering)

• Each layer can call
operations from any
layer below

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

Design goal:
Runtime efficiency

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Architectural Style vs Architecture

• Subsystem decomposition: Identification of
subsystems, services, and their association to
each other (hierarchical, peer-to-peer, etc)

• Architectural Style: A pattern for a subsystem
decomposition

• Software Architecture: Instance of an
architectural style.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Examples of Architectural Styles

• Client/Server

• Peer-To-Peer

• Repository

• Model/View/Controller

• Three-tier, Four-tier Architecture

• Service-Oriented Architecture (SOA)

• Pipes and Filters

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Client/Server Architectural Style

• One or many servers provide services to instances
of other subsystems, called clients

Client

Server

+service1()
+service2()

+serviceN()

**

requester provider

• Each client calls on the server, which performs
some service and returns the result

The clients know the interface of the server

The server does not need to know the interface
of the client

• The response in general is immediate

• End users interact only with the client.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Client/Server Architectures

• Well suited for distributed systems that manage
large amounts of data

• Often used in the design of database systems

• Front-end: User application (client)

• Back end: Database access and manipulation (server)

• Functions performed by client:

• Input from the user (Customized user interface)

• Front-end processing of input data

• Functions performed by the database server:

• Centralized data management

• Data integrity and database consistency

• Database security

Design Goals for Client/Server Architectures

Location-

Transparency

Server runs on many operating systems
and many networking environments

Server might itself be distributed, but
provides a single "logical" service to the
user

Client optimized for interactive display-
intensive tasks; Server optimized for
CPU-intensive operations

Server can handle large # of clients

User interface of client supports a
variety of end devices (PDA, Handy,
laptop, wearable computer)

Service Portability

High Performance

Reliability

Scalability

Flexibility

Server should be able to survive client

and communication problems.

A measure of success with which the

observed behavior of a system confirms to the

specification of its behavior (Chapter 11: Testing)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Problems with Client/Server Architectures

• Client/Server systems do not provide peer-to-
peer communication

• Peer-to-peer communication is often needed

• Example:

• Database must process queries from application and
should be able to send notifications to the application
when data have changed

application1:DBUser

database:DBMS

1. updateData

application2:DBUser
2. changeNotification

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Peer-to-Peer Architectural Style
Generalization of Client/Server Architectural Style

Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

Introduction a new abstraction: Peer
“ ”
How do we model this statement? With Inheritance?

Model-View-Controller Architectural Style

• Subsystems are classified into 3 different types

Model subsystem: Responsible for application domain
knowledge

View subsystem: Responsible for displaying application
domain objects to the user

Controller subsystem: Responsible for sequence of
interactions with the user and notifying views of changes in
the model

• Model: encapsulates core data and functionality; independent of specific output

representations or input behavior

• View: Display information to the user; obtains data from the model; multiple views

of the same model are possible.

• Controller: Receive input events which are translated to model and view services;

user interacts solely through controller

• Well suited for interactive systems, especially when multiple views of the same

model are needed.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Model-View-Controller Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Model-View-Controller Architectural Style

• Subsystems are classified into 3 different types

Model subsystem: Responsible for application domain
knowledge

subscriber
notifier

*

1

initiator

repository1*

View subsystem: Responsible for displaying application
domain objects to the user

Controller subsystem: Responsible for sequence of
interactions with the user and notifying views of changes in
the model

Model

Controller

View

Class Diagram

Better understanding with a Collaboration Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Example: Modeling the
Sequence of Events in MVC

:Controller

:Model1.0 Subscribe

4.0 User types new filename

7.0 Show updated views

:InfoView

5.0 Request name change in model

:FolderView

6.0 Notify subscribers

UML Collaboration Diagram

UML Class Diagram

3.0Subscribe

subscriber
notifier

*

1

initiator

repository1*

Model

Controller

View

3-Layer Architectural Style

A 3-Layer Architectural Style is a hierarchy of 3 layers
usually called presentation, application and data layer

Data Layer

Presentation Layer

(Client Layer)

Application Layer

(Middleware,

Business Logic)

Existing SystemOperating System, Libraries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

3-Layer-Architectural Style
3-Tier Architecture

Definition: 3-Layer Architectural Style

• An architectural style, where an application consists of 3
hierarchically ordered subsystems

• A user interface, middleware and a database system

• The middleware subsystem services data requests
between the user interface and the database subsystem

Definition: 3-Tier Architecture

• A software architecture where the 3 layers are allocated on 3
separate hardware nodes

• Note: Layer is a type (e.g. class, subsystem) and Tier
is an instance (e.g. object, hardware node)

• Layer and Tier are often used interchangeably.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Example of a 3-Layer Architectural Style

• Three-Layer architectural style are often used for the
development of Websites:

1. The Web Browser implements the user interface

2. The Web Server serves requests from the web browser

3. The Database manages and provides access to the persistent
data.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

MVC vs. 3-Tier Architectural Style

• The MVC architectural style is nonhierarchical (triangular):

• View subsystem sends updates to the Controller subsystem

• Controller subsystem updates the Model subsystem

• View subsystem is updated directly from the Model subsystem

• The 3-tier architectural style is hierarchical (linear):

• The presentation layer never communicates directly with the
data layer (opaque architecture)

• All communication must pass through the middleware layer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Summary

• System Design

• An activity that reduces the gap between the problem
and a solution

• Design Goals Definition

• Describes the important system qualities

• Defines the values against which options are evaluated

• Subsystem Decomposition

• Decomposes the overall system into manageable parts
by using the principles of cohesion and coherence

• Architectural Style

• A pattern of a typical subsystem decomposition

• Software architecture

• An instance of an architectural style

• Client Server, Peer-to-Peer, Model-View-Controller.

