
U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 7
System Design:

Addressing Design
Goals

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

The Activities of System Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

The Activities of System Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Hardware and Software Mapping

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Real Life Example – Informal Notation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

• A deployment diagram serves to model the physical deployment of
software artefacts on deployment targets

• Illustrates the distribution of components at run-time.

• Deployment diagrams use nodes and connections to
depict the physical resources in the system

• Deployment diagrams are useful for showing a system
design after these system design decisions have been
made:

• Subsystem decomposition

• Concurrency

• Hardware/Software Mapping

Deployment Diagram

:PC :Server

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

• A deployment diagram is a graph of
nodes and connections
(“communication associations”)

• Nodes are shown as 3-D boxes

• Connections between nodes are
shown as solid lines

• Nodes may contain components

• Components can be connected by
“lollipops” and “grabbers”

• Components may contain objects
(indicating that the object is part
of the component).

Deployment Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

UML Interfaces: Lollipops and Sockets

• A UML interface describes a group of operations
used or created by UML components.

• There are two types of interfaces: provided and
required interfaces.

• A provided interface is modeled using the lollipop
notation

• A required interface is modeled using the socket
notation.

• A port specifies a distinct interaction point
between the component and its environment.

• Ports are depicted as small squares on the sides of
classifiers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Deployment Diagram Example

Dependency

(between nodes)

Dependency

(in a node)UML Node

UML

Interface

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

ARENA Deployment Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Deployment Diagram - Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Managing Persistent Data

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

5. Data Management

• Some objects in the system model need to be persistent:

• Values for their attributes have a lifetime longer than a single
execution

• Without this capability, data would only exist in RAM, and
would be lost when this RAM loses power, such as on
computer shutdown.

• This is achieved in practice by storing the data in non-volatile
storage such as a hard drive or flash memory.

• A persistent object can be realized with one of the
following mechanisms:

• Filesystem:

• If the data are used by multiple readers but a single
writer

• Database:

• If the data are used by concurrent writers and readers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Data Management Questions

• When should you choose a file?

• Are the data voluminous (bit maps)?

• Do you have lots of raw data (core dump, event trace)?

• Do you need to keep the data only for a short time?

• Is the information density low (archival files,history logs)?

• When should you choose a database?

• Do the data require access at fine levels of details by
multiple users?

• Must the data be ported across multiple platforms
(heterogeneous systems)?

• Do multiple application programs access the data?

• Does the data management require a lot of infrastructure?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Issues to consider when selecting a
database

• Storage space

• Database require about triple the storage space of actual data

• Response time

• Mode databases are I/O or communication bound (distributed
databases). Response time is also affected by CPU time, locking
contention and delays from frequent screen displays

• Locking modes

• Pessimistic locking: Lock before accessing object and release when
object access is complete

• Optimistic locking: Reads and writes may freely occur (high
concurrency!) When activity has been completed, database checks if
contention has occurred. If yes, all work has been lost.

• Administration
• Large databases require specially trained support staff to set up security

policies, manage the disk space, prepare backups, monitor performance,
adjust tuning.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Mapping Object Models

• UML object models can be mapped to relational
databases

• The mapping:

• Each class is mapped to its own table

• Each class attribute is mapped to a column in the table

• An instance of a class represents a row in the table

• One-to-many associations are implemented with a
buried foreign key

• Many-to-many associations are mapped to their own
tables

• Methods are not mapped

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Define Access Control Policies

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

6. Global Resource Handling

• Discusses access control

• Describes access rights for different classes of
actors

• Describes how object guard against
unauthorized access.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Defining Access Control

• In multi-user systems different actors usually
have different access rights to different
functionality and data

• How do we model these accesses?

• During analysis we model them by associating different
use cases with different actors

• During system design we model them determining
which objects are shared among actors.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Access Matrix

• We model access on classes with an access matrix:

• The rows of the matrix represents the actors of the system

• The column represent classes whose access we want to
control

• Access Right: An entry in the access matrix. It lists
the operations that can be executed on instances of
the class by the actor.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Access Matrix Example

Arena League

Operator

LeagueOwner

Player

Spectator

Tournament

<<create>>

archive()

schedule()

view()

applyFor()

view()

view()

<<create>>

createUser()

view ()

view ()

view()

applyForPlayer()

view()

applyForOwner()

<<create>>

archive()

view()

subscribe()

view()

subscribe()

edit ()

Match

<<create>>

end()

play()

forfeit()

view()

replay()

Actors

Classes Access Rights

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Access Control List Realization

joe:Player

m1:Match

joe may play

alice may play

I am joe,

I want to play in

match m1

Gatekeeper checks

identification against

list and allows access.

Access Control

List for m1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Capability Realization

joe:Player

m1:Match

Capability

Here’s my ticket, I’d

like to play in

match m1

Gatekeeper checks if

ticket is valid and

allows access.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Rules Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Firewall Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Firewall Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Control Flow

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Control Flow

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Control Flow

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Control Flow

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Centralized vs Decentralized

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Centralized vs. Decentralized Designs

• Centralized Design

• One control object or subsystem ("spider") controls
everything

• Pro: Change in the control structure is very easy

• Con: The single control object is a possible
performance bottleneck

• Decentralized Design

• Not a single object is in control, control is distributed;
That means, there is more than one control object

• Con: The responsibility is spread out

• Pro: Fits nicely into object-oriented development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Centralized vs. Decentralized Designs (2)

• Should you use a centralized or decentralized
design?

• Take the sequence diagrams and control objects
from the analysis model

• Check the participation of the control objects in
the sequence diagrams

• If the sequence diagram looks like a fork =>
Centralized design

• If the sequence diagram looks like a stair =>
Decentralized design.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

8. Boundary Conditions

Most of the system design effort is concerned with
steady-state behavior. However the system design must
also address the initiation and finalization of the system.
This is addressed by a set of new use cases called
administration use cases

• Initialization

• Describe how the system is brought from a non-initialized
state to steady-state

• Termination

• Describe what resources are cleaned up and other systems
are notified upon termination

• Failure

• Possible failures: Bugs, errors, external problems

• Good system design foresees fatal failures and provides
mechanisms to deal with them.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Boundary Condition Questions

• Initialization

• What data need to be accessed at startup time?

• What services have to registered?

• What does the user interface do at start up time?

• Termination

• Are single subsystems allowed to terminate?

• Are subsystems notified if a single subsystem
terminates?

• How are updates communicated to the database?

• Failure

• How does the system behave when a node or
communication link fails?

• How does the system recover from failure?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Modeling Boundary Conditions

• Boundary conditions are best modeled as use
cases with actors and objects

• We call them boundary use cases or
administrative use cases

• Actor: often the system administrator

• Interesting use cases:

• Start up of a subsystem

• Start up of the full system

• Termination of a subsystem

• Error in a subsystem or component, failure of a
subsystem or component.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Example: Boundary Use Case for ARENA

• Let us assume, we identified the subsystem
AdvertisementServer during system design

• This server takes a big load during the holiday
season

• During hardware software mapping we decide to
dedicate a special node for this server

• For this node we define a new boundary use
case ManageServer

• ManageServer includes all the functions
necessary to start up and shutdown the
AdvertisementServer.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

ManageServer Boundary Use Case

Server

Administrator

ManageServer

StartServer

ShutdownServer

ConfigureServer

<<include>>

<<include>>

<<include>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Summary

• System design activities:

• Hardware/Software mapping

• Persistent data management

• Global resource handling

• Software control selection

• Boundary conditions

• Each of these activities may affect the
subsystem decomposition

• Two new UML Notations

• UML Component Diagram: Showing compile time and
runtime dependencies between subsystems

• UML Deployment Diagram: Drawing the runtime
configuration of the system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Documenting System Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Reviewing System Design

Like analysis, system design is an evolutionary and iterative activity.
Unlike analysis, there is no external agent, such as the client, to
review the successive iterations and ensure better quality.

The system design model is correct if the analysis model can be
mapped to the system design model.

• Can every subsystem be traced back to a use case or a
nonfunctional requirement?

• Can every use case be mapped to a set of subsystems?

• Can every design goal be traced back to a nonfunctional
requirement?

• Is every nonfunctional requirement addressed in the system
design model?

• Does each actor have an access policy?

• Is every access policy consistent with the nonfunctional security
requirement?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Reviewing System Design (Completeness)

• Have the boundary conditions been handled?

• Was there a walkthrough of the use cases to
identify missing functionality in the system
design?

• Have all use cases been examined and assigned
a control object?

• Have all aspects of system design (i.e.,
hardware allocation, persistent storage, access

• control, legacy code, boundary conditions) been
addressed?

• Do all subsystems have definitions?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Reviewing System Design (Readability)

• Are subsystem names understandable?

• Do entities (e.g., subsystems, classes) with
similar names denote similar concepts?

• Are all entities described at the same level of
detail?

