C

c .2

7.%%
o W
— N Op
Q _C 0
O & v ()

he%

O+ Y

> O

N O

<

BAR[pue ‘suwidned ‘TN SUIsN)
SULIUISUTY 31BM}JOS PAUWILIO-1NIqO

The Activities of System Design

Define
design goals

Bernd Bruegge & Allen H. Dutoit

Define -ﬁch:

subsystems

. Define access
control policies

Select a

Implement
subsystems

Map subsystems
to hardware/
software platform
Manage
persistent data

global ﬁﬁ\\
control flow _,/}

L= Describe bounda;;\\

conditions _,//

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Hardware/software mapping
What is the hardware configuration of the system
How to map software (components) to hardware nodes?

Data Management
Which data should be persistent?
Where to store persistent data? How to access?

Access Control
Who can access which data? Can access control change
dynamically?
How is access control specified? ...
Control Flow
How does the system sequence operations?

Is the system event-driven? Can it handle more than one
user interaction? Etc.

Boundary Conditions
How is the system initialized?
How is it shut down?
How are exceptional cases detected?
Etc..

The Activities of System Design

Define
subsystems

Map subsystems
to hardware/
software platfor

Manage
persistent data

Define access
control policies

Select a
global
control Tlow

Describe boundar
conditions

Implement
subsystems

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Hardware and Software Mapping

This activity addresses two questions:
How shall we realize the subsystems: Hardware or Software?

How is the object model mapped on the chosen hardware &
software?

s Mapping Objects onto Reality: Processor, Memory, Input/Output
s Mapping Associations onto Reality: Connectivity

Much of the difficulty of designing a system comes from

meeting externally-imposed hardware and software
constraints.

Certain tasks have to be at specific locations|

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Real Life Example - Informal Notation

Team Foundation Team Foundation

Legend
) HTTR/HTTPS Client Tier Server Proxy
=~ = .NET Remoting g .
MSSQL/TCP 5
Team Foundation Application Tier ° Build Computers

-Appllcatlﬂn Tier R
'-&. Standby Server u

Team Foundation Data Tier

Database G -
Cluster

.,

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Deployment Diagram

* A deployment diagram serves to model the physical deployment of
software artefacts on deployment targets

- Illustrates the distribution of components at run-time.

« Deployment diagrams use nodes and connections to
depict the physical resources in the system

« Deployment diagrams are useful for showing a system

design after these system design decisions have been

made:

« Subsystem decomposition

« Concurrency

- Hardware/Software Mapping

Bernd Bruegge & Allen H. Dutoit

:Server

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Deployment Diagram

« A deployment diagram is a graph o”

nodes and connections

(“communication associations”)
- Nodes are shown as 3-D boxes

« Connections between nodes are
shown as solid lines

Node

 Nodes may contain components
Link

« Components can be connected between Nodes
“lollipops” and “grabbers”

« Components may contain objec
(indicating that the object is pa

of the component).

Node with

Deployed Artefact |
—
=| :WebServer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

UML Interfaces: Lollipops and Sockets

« A UML interface describes a group of operations
used or created by UML components.

- There are two types of interfaces: provided and
required interfaces.

« A provided interface is modeled using the lollipop
notation

« A required interface is modeled using the socket

notation. 4<

« A port specifies a distinct interaction point
between the component and its environment.

« Ports are depicted as small squares on the sides of
classifiers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Deployment Diagram Example

Dependency
(in a node)

A
O :HostMachine ~
O o
° % o MeetingDB:
:Scheduler [---- | Database

Dependency
between nodes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

ARENA Deployment Diagram

:UserMachine

:ArenaClient

=l

=

:MatchFrontEndPeer

:ServerMachine

2]
—| :ArenaServer
O |
2]
)) :Advertisement
Server

4

[N/ \

Bernd Bruegge & Allen H. Dutoit

~O—__ =]

:GamePeer

:ArenaStoraqeﬂ

Object-Oriented Software Engineering: Using UML, Patterns, and Java

10

Deployment Diagram - Example

<

myMac :Mac

I:::I :Safari

—

/
aPC:PC

e _
:UnixHost
N -.IZII:I :WebServer
*
A
Ve / \
y 4 ‘:Um’xHost

I:II:I :IExplorer

—

/
A 4 I:II:I -Database

—

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

11

Managing Persistent Data

Define
design goals

Bernd Bruegge & Allen H. Dutoit

Define _‘\V:

subsystems-J!/L:

Map subsystems
to hardware/
software platform

Manage
persistent data

Define access
control policies

Select a
global
control flow

Implement
subsystems

L= Describe bounda;;\\

conditions ,//

Object-Oriented Software Engineering: Using UML, Patterns, and Java

12

5. Data Management

« Some objects in the system model need to be persistent:

- Values for their attributes have a lifetime longer than a single
execution

- Without this capability, data would only exist in RAM, and
would be lost when this RAM loses power, such as on
computer shutdown.

- This is achieved in practice by storing the data in non-volatile
storage such as a hard drive or flash memory.

« A persistent object can be realized with one of the
following mechanisms:

« Filesystem:

- If the data are used by multiple readers but a single
writer

- Database:
- If the data are used by concurrent writers and readers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Data Management Questions

« When should you choose a file?

Are the data voluminous (bit maps)?

Do you have lots of raw data (core dump, event trace)?
Do you need to keep the data only for a short time?

Is the information density low (archival files,history logs)?

« When should you choose a database?

- Do the data require access at fine levels of details by
multiple users?

« Must the data be ported across multiple platforms
(heterogeneous systems)?

- Do multiple application programs access the data?
« Does the data management require a lot of infrastructure?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Issues to consider when selecting a
database

Storage space
- Database require about triple the storage space of actual data
Response time

- Mode databases are I/O or communication bound (distributed
databases). Response time is also affected by CPU time, locking
contention and delays from frequent screen displays

Locking modes

« Pessimistic locking: Lock before accessing object and release when
object access is complete

- Optimistic locking: Reads and writes may freely occur (high
concurrency!) When activity has been completed, database checks if
contention has occurred. If yes, all work has been lost.

Administration

- Large databases require specially trained support staff to set up security
policies, manage the disk space, prepare backups, monitor performance,
adjust tuning.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Mapping Object Models

« UML object models can be mapped to relational
databases

« The mapping:

- Each class is mapped to its own table
Each class attribute is mapped to a column in the table
An instance of a class represents a row in the table

One-to-many associations are implemented with a
buried foreign key

Many-to-many associations are mapped to their own
tables

« Methods are not mapped

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Define Access Control Policies

Define
design goals

Bernd Bruegge & Allen H. Dutoit

Define 1\‘E;

subsystems ‘//L:

Map subsystems
to hardware/
software platform

\‘/

Manage
persistent data

B
kl/

Define access
control policies

v
()

Select a
global
control flow

N
¢

Implement
subsystems

= Describe boundary
conditions

N
\/

Object-Oriented Software Engineering: Using UML, Patterns, and Java

6. Global Resource Handling

 Discusses access control

« Describes access rights for different classes of
actors

« Describes how object guard against
unauthorized access.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

18

Defining Access Control

« In multi-user systems different actors usually
have different access rights to different
functionality and data

« How do we model these accesses?

rnd Bruegge & Allen H. Dutoit

During analysis we model them by associating different
use cases with different actors

During system design we model them determining
which objects are shared among actors.

Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Access Matrix

« We model access on classes with an access matrix:

« The rows of the matrix represents the actors of the system
« The column represent classes whose access we want to

control

« Access Right: An entry in the access matrix. It lists
the operations that can be executed on instances of
the class by the actor.

Bernd Bruegge & Allen

Objects
Actors

Corporation

LocalBranch /

Access Right

Account

TYeller

/

postSaaliDebit()
postSsaliCredit()
examineBalance()

Manager

—— s e

examineBranchStats()

postS=allDebit()
postSmaliCrediz()
postlargeDebit()
postLargeCredit()
examineBalance()
examineMistory()

Analyst

examineGlobalsStats()

examineBranchStats O

|

Access Matrix Example

Access Rights

—

/‘/gue

@ Arena Tournament Match
\6perator <<create>>/ <<create>>
createUser() archive()
view ()

LeagueOwner |view () edit () <<create>> <<create>>
archive() end()
schedule()
view()

Player | view() view() applyFor() play()
applyForOwner() | subscribe() view() forfeit()
Spectator |view() view() view() view()
applyForPlayer() | subscribe() replay()

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

21

Access Control List Realization

Access Control

) m1l:Match
| am joe, List for m1 3/ -
| want to play in QBO
match m1l joe may play

alice may play

joe:Player

Gatekeeper checks
identification against
list and allows access.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Capability Realization

m1:Match

Here’s my ticket, I'd
like to play in
match m1

Gatekeeper checks if
ticket is valid and
allows access.

o o
Capability

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Rules Example

Often the number of actors and the
number of protected objects are too large
for either the capability or the access
control list representations.

In such cases rules can be used as a
compact representation of the global
access matrix

A firewall is a part of a computer system
or network that is designed to block
unauthorized access while permitting
authorized communications.

It is a device or set of devices configured
to permit, deny, encrypt, decrypt, or proxy
all (in and out) computer traffic between
different security domains based upon a
set of rules and other criteria.

Firewall

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Firewall Example

—
] Intranet host
PN q A
/ Y
¢ Internet \ S>> =<
= -~ _ —_ LI
Firewall
_.I' Web Server Mail Server
Internet host T 1\

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Firewall Example

Firewall access is defined in terms of a list of rules
The action of the matching rule dictates whether the

current action chould be filtered or not

Static access control vs. Dynamic access control

Toble 7-3 Simplificd exampie of packet fiiening rules for firewall of Figure 7-8.

Source Host Destination Host Destination Port Action
any® Web Server hup allow
any Mail Server smtp allow
Intranet host Web Server rsync allow
Intranet host Mail Server pop allow
Internet host Web Server sync deny
Internet host Mail Server pop deny
Internet host Intranet host any deny
any any any deny

& nny means sny one of Intranet host, Internet host, Web Server, or Mail Server.

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

26

Control Flow

Define
design goals

Bernd Bruegge & Allen H. Dutoit

Define ﬁ\\EE

subsystems

Map subsystems
to hardware/
software platform
Manage
persistent data

Define access
control policies

Select a
global
control flow

—_—

Implement
subsystems

Describe boundary
conditions

Object-Oriented Software Engineering: Using UML, Patterns, and Java

27

Control Flow

Control Flow is the sequencing of actions in the system

In OO systems, sequencing actions includes deciding which
operations should be executed and in which order

These decisions are based on external events generated by an
actor or on the passage of time

Control flow is a design issue

During Analysis control flow is not really an issue since we assume that
all objects are running simultaneously, executing operations any time
they need to execute them

During system design we need to take into account that not every object
can run on its own processor

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Control Flow
There are two basic control flow mechanisms:

Procedure-driven control
Control resides within program code.
Example: Main program calling procedures of subsystems.

Event-driven control

Main loop waits for an external event

Whenever an event becomes available it will be dispatched to
the appropriate object, based on information associated with the
event

Control resides within a dispatcher calling functions via
callbacks.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

29

Control Flow

Procedure-driven

Stream in, out;
String vierid, passwd;

/* Imitialization omitted */
out.printin("Login:™);
in.readIn{usemd);
out.printIn("Password:");
in.readn{passwd) ;
if (Isecurity, ch«h(uuﬁdJuM)J

out.printin(“Login fail

, system, exit(-1);
I* ...
Event-driven
do forever: ¢ the event loop

get an event from the input stream

if event type — EndOfEventStream :
quit # break out of event loop

if event type =—

call the appropx::.atc handler subroutine,
passing it event information as an argument

elif event type =— . 3
call the appropr1ate handler subroutine,
passing it event information as an argument

else: # handle an unrecognized type of event
ignore the event, or raise an exception

B e

‘

events

v

dispatcher

1

o '\
o 7\ g

!

handler 1

handler 2

handler n

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

30

Centralized vs Decentralized

Centralized Control: Much of

the dynamic behavior is l :
placed in a single object, |
usually the control object. It =ﬁ |
knows all the other objects ’u
|
|

=iu

Centralized Control Flow

and often uses them for direct : |
questions and commands. | |

Decentralized Control:

knows only a few of the other |

objects and knows which | |
objects can hel with a specific
behavior. | | |

The dynamic behavior is £

distributed. Each object] | | |

delegates some responsibility —*H | |

to other objects. Each object | _T :
|

Decentralized Control Flow

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Ceniralized vs. Decentralized Designs

« Centralized Design

« One control object or subsystem ("spider") controls
everything

« Pro: Change in the control structure is very easy

« Con: The single control object is a possible
performance bottleneck

« Decentralized Design

- Not a single object is in control, control is distributed;
That means, there is more than one control object

« Con: The responsibility is spread out
« Pro: Fits nicely into object-oriented development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

32

Centralized vs. Decentralized Designs (2)

« Should you use a centralized or decentralized
design?

« Take the sequence diagrams and control objects
from the analysis model

« Check the participation of the control objects in
the sequence diagrams

- If the sequence diagram looks like a fork =>
Centralized design

- If the sequence diagram looks like a stair =>
Decentralized design.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

8. Boundary Conditions

Most of the system design effort is concerned with
steady-state behavior. However the system design must
also address the initiation and finalization of the system.
This is addressed by a set of new use cases called
administration use cases

« Initialization
« Describe how the system is brought from a non-initialized
state to steady-state
« Termination
- Describe what resources are cleaned up and other systems
are notified upon termination
« Failure
- Possible failures: Bugs, errors, external problems

- Good system design foresees fatal failures and provides
mechanisms to deal with them.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Boundary Condition Questions

 Initialization
« What data need to be accessed at startup time?
« What services have to registered?
« What does the user interface do at start up time?

« Termination
« Are single subsystems allowed to terminate?

« Are subsystems notified if a single subsystem
terminates?

« How are updates communicated to the database?
e Failure

« How does the system behave when a node or
communication link fails?

« How does the system recover from failure?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

35

Modeling Boundary Conditions

 Boundary conditions are best modeled as use
cases with actors and objects

« We call them boundary use cases or
administrative use cases

« Actor: often the system administrator

« Interesting use cases:
- Start up of a subsystem
« Start up of the full system
« Termination of a subsystem

« Error in a subsystem or component, failure of a
subsystem or component.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

36

Example: Boundary Use Case for ARENA

« Let us assume, we identified the subsystem
AdvertisementServer during system design

« This server takes a big load during the holiday
season

« During hardware software mapping we decide to
dedicate a special node for this server

« For this node we define a new boundary use
Ccase ManageServer

« ManageServer includes all the functions

necessary to start up and shutdown the
AdvertisementServer.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

ManageServer Boundary Use Case

<<Linclude>
_7

-
-

PR StartServer

-

Server ~ <<include>
Administrator) === === >
~

~
ManageServer ~~ _ ShutdownServer

~
~

] N\
<<include>>

0

U

ConfigureServer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Summary

« System design activities:
- Hardware/Software mapping
- Persistent data management
- Global resource handling
- Software control selection
- Boundary conditions

« Each of these activities may affect the
subsystem decomposition

« Two new UML Notations

« UML Component Diagram: Showing compile time and
runtime dependencies between subsystems

« UML Deployment Diagram: Drawing the runtime
configuration of the system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

39

Documenting System Design

System Design Document

|. Introduction
.1 Purpose of the system
1.2 Design goals
.3 Defimtions, acronyms, and abbreviations
|.4 References
1.5 Overview

2. Current software architecture

3. Proposed software architecture
3.1 Overview
3.2 Subsystem decomposition
3.3 Hardware/software mapping
34 Persistent data management
3.5 Access control and security
3.6 Global software control
3.7 Boundary condiions

4. Subsystem services
Glossary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

40

Reviewing System Design

Like analysis, system design is an evolutionary and iterative activity.
Unlike analysis, there is no external agent, such as the client, to
review the successive iterations and ensure better quality.

The system design model is correct if the analysis model can be
mapped to the system design model.

« Can every subsystem be traced back to a use case or a
nonfunctional requirement?

« Can every use case be mapped to a set of subsystems?

« Can every design goal be traced back to a nonfunctional
requirement?

« Is every nonfunctional requirement addressed in the system
design model?

« Does each actor have an access policy?

« Is every access policy consistent with the nonfunctional security
requirement?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Reviewing System Design (Completeness)

« Have the boundary conditions been handled?

« Was there a walkthrough of the use cases to
identify missing functionality in the system
design?

« Have all use cases been examined and assigned
a control object?

« Have all aspects of system design (i.e.,
hardware allocation, persistent storage, access

« control, legacy code, boundary conditions) been
addressed?

« Do all subsystems have definitions?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

42

Reviewing System Design (Readability)

« Are subsystem names understandable?

« Do entities (e.g., subsystems, classes) with
similar names denote similar concepts?

« Are all entities described at the same level of
detail?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

43

