2ol g

-

BAR[pUB ‘swdned “TIN[) SuIs)
SULIAUISUT d18M}JOS PIIIUILID-INIqO

Learning Design Patterns

OREILLY"

‘Head First
Design Pattern

A Brain-Friendly Guide

) - Learn why everything
Avoid those m ‘ your friends know about
embarrassing | - ¥y Factory pattern is

probably =
wrong oy

.

AL,
b

» Y Load the patterns
Discover the secrets that ;na.tter gtl’%lght
of the Patterns Guru into your brain

See why Jim'’s
love life improved
when he cut down
his inheritance

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

Desion Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Cover art © 1994 M.C. Escher / Cordon Art - Baarn - Holland. Al rights reserved

Foreword by Grady Booch

. : F
Eric Freeman & Elisabeth Robson e
with Kathy Sierra & Bert Bates ‘
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

>
g
@)
@D
©)
-
2
m
w
o
m
—<
)
-
®)
N
m
w
R
©)
Z
>
=
@
©)
=
)
=
=
Z
(@)
w
m
-
m
w

Example OO application

Joe works for a company
that makes a highly
successful duck pond
simulation game, SimUDuck.
The game can show a large
variety of duck species
swimming and making
quacking sounds. The initial
designers of the system
used standard OO
techniques and created one
Duck superclass from which
all other duck types inherit.

Bernd Bruegge & Allen H. Dutoit

A” dutks ﬁuatk and swim. The
superclass takes cave of the S~

im?]tmcn{’,a{;lon tode.

/

\

N . s

I

Duck

quack()
swim()
display()

/f OTHER duck-like methods...

The d\svla\/() method is
sbstract, sinte all duek
subtypes look diffevent.

Eath dutk subtype /

s vcsv‘aons\\o\c MallardDuck

RedheadDuck

for \mv\"““{‘“‘% ——> | display(){

layt
ks own disy low & I/ looks like a mallard }

pehavior ¥

display() {
I/ looks like a redhead }

\ooks on Lhe steeen

Object-Oriented Software Engineering: Using UML, Patterns, and Java

E dutks
es @
LO{,S O; O'&,\'\Cl\f’c\i%vck L\ass,

A rx\r\c‘f“k Qr o

Change Request Comes in

« In the last year, the company has
been under increasing pressure from
competitors... They need
something really impressive to show
at the upcoming shareholders
meeting in Maui next week.

« The executives decided that flying
ducks is just what the simulator ,ﬁ
needs to blow away the other duck -
sim competitors. And of course Joe’s
manager told them it'll be no
problem for Joe to just whip
something up in a week. “After all,”
said Joe’s boss, “he’s an OO
programmer... how hard can it be?”

I just need toadd a
fly() method in the Duck class
and then all the ducks will inherit

it. Now’s my time to really show my
true OO genius.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Implementing Change Request

Joe, I'm at the shareholder's
meeting. They just gave a demo and

there were rubber duckies flying around

Duck the screen. Was this your idea of a joke?
quack() You might want to spend some time on
swim() Monster.com...
display() L Jot adc\cd-

SSCS P, Wha
e LR
e /I OTHER duck-like methods...
MallardDuck RedheadDuck O'ther Dutk tyFes
display() { display() {

Il looks like a mallard }

!/ looks like a redhead }

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Problem

Joe failed to notice that

not all subclasses of Duck Duck
should fly. When Joe added e g

new behavior to the Duck W\f}j}c e diplay)
superclass, he was also Ul :tj;fffa‘f» S

adding behavior that '-,Lt,\»f;g-,t
was not appropriate for e
some Duck subclasses. He

. . i MallardDuck | RedheadDuck RubberDuck
now has flying inanimate Y o "
) b J e CtS | N t h e S | m U D uc k I/ looks like a mallard Il looks like a redhead [overridden to Squeak
} } }
program. display) {
Il'looks like a rubberduck
A localized update to the }

code caused a nonlocal side
effect (flying rubber ducks)!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Easy Fix?

I could always just
override the fly() method
in rubber duck, the way

T am with the quack()

But then what happens when
we add wooden decoy ducks
to the program? They aren't

supposed to fly or quack...

m RubberDuck
2=

quack() {/ squeak}
display() { // rubber duck }

fiy() {
Il override to do nothing

}

DecoyDuck

quack() {
/I override to do nothing
}

display() { // decoy duck}

Heve's another tlass in {T,hc
hievarehy notice {:hat, like iy { | |
RubbchuC\(, it doesn £ gly, Il override to do nothmg

but it also doesn t o\uack. }

AT

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Interfaces?

I could take the fly() out of the Duck
superclass, and make a Flyable() interface
with a fly() method. That way, only the ducks
that are supposed to fly will implement that
interface and have a fly() method... and I might
as well make a Quackable, too, since not all
ducks can quack.

Duck

swim()
display()
// OTHER duck-like methods...

Quackable

| Mallan-'dDuck RedheadDuck Rt}bberDuck DecoyDuck

display() display() display() display()
fiy() fiy() quack()
quack() quack() i

What do you think about this design?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Interfaces

We know that not all of the subclasses should
have flying or quacking behavior, so inheritance
isn’t the right answer. But while having the
subclasses implement Flyable and/or Quackable
solves part of the problem (no inappropriately
flying rubber ducks), it completely destroys code
reuse for those behaviors, so it just creates

a different maintenance nightmare. And of course
there might be more than one kind of flying
behavior even among the ducks that do fly.

That is, like, the dumbest idea
you've come up with. Can you say,
“duplicate code”? If you thought having
to override a few methods was bad, how
are you gonna feel when you need to make
a little change to the flying behavior... in all
48 of the flying Duck subclasses?!

WHAT WOULD YOU DO IF YOU WERE JOE?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

We have to deal with CHANGE

The one constant in software development

Okay, what’s the one thing vou can always count on in software
development?

No matter where you work, what vou're building, or what language vou are
programming in, what's the one true constant that will be with yvou always?

JOVAHD

(use a mirror to see the answer)

No matter how well vou design an application, over time an application must
grow and change or it will die.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

10

Design Principle

DESIGN PRINCIPLE

Identify the aspects of your application that vary and separatfe them from what stays the
SAME.

The first of many design principles. We'll spend more fime on these throughout the
book.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Separating behaviors

is still the
The Dutk ¢lass s sti
su ; celass of all ducks, but we | .
b lin out the Q\‘{ and ‘\“a“’k \/arious be alvn
are Yu 6 _t{: {hCm \hto] ¢h "m?\canﬂ£‘°“5 are
behaviors and Pu) Now Q;Ym% and qﬁcknng ead o e \eve.
another tlass strutture. # b thei- owm st of tlasses. going
. \0¢®
OUCk C\oﬁr’ F’ylng Be\\ﬁ\l\

<>“"c“‘6

Q""Cki ng BeW

Duck Behaviors

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

12

Separating Behaviours

I don't see why you
have to use an interface for
FlyBehavior. You can do the
same thing with an abstract
superclass. Isn't the whole point
to use polymorphism?

DESIGN PRINCIPLE

Program to an interface, not an implementation.

=<interface=>
FlyBehavior

fiy()

~

FlyWithWings FlyNoWay

fly() { fiy() {
il implements duck flying Il do nothing - can't fly!

} }

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Implementing Duck Behavior

Came Jch"mg here for the Yack

o T behavior; we have an intertate
o By e o that e chdes 3 kD
that a ™9 , z d method that needs to be
All new £|\/|n5 tlasses &us nes imPICmcn{:cd-

{0 implement the (:ly methed. /
<<interface>> <<interface>>
FlyBehavior QuackBehavior
fiy() : ackl)
NV Sy
FlyWithWings FlyNoWay Quack . Sql;eak . MuteQuack
ﬂYQ { ' fy(){ quack() { quack() { quack() {
/limplements duck flying /f do nothing - can't flyl /f implements duck quacking || #/ rubber duckie squeak !l do nothing - can't quack!
} } }
@uacks ¢ T
hat
h ak.
rcally quack Quatks that sque Ruatks that make

no sound at all

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Combining behaviors with the duck

Instante vaviables hold a vefevente

The behavior vaviables are £ 3 s?cci(:ic 170 " -

detlared as the behavior
\) FlyBehavior flyBehavior P

QuackBehavior quackBehavior

nethods veplace
These methods vey performQuack()

ENO and aua\ck“/i swin()
display()
\ performFly()

{/ OTHER duck-like methods...

Duck Behaviors

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

The Big Picture

Client makes use of an |
encapsulated family of a\g.onjchms
‘(:or both Q\\llng and O\uaCkmg-

Client Duck
FlyBehavior flyBehavior
QuackBehavior quackBehavior

swm()

display()

performQuack()
performFly{)
setFlyBehavior()
setQuackBehavior()

[f OTHER duck-kke methods.

Encapsulated fly behavior

Think of eath
ok of behaviors

as a family
FlyWithWings FlyNoWay 4 S.
Ol Y 3\5“'&'“

I implements duck flying 1/ do nothing - can't fiy!
’ \ F—_/

MallardDuck

RedheadDuck

RubberDuck

DecoyDuck

display) {
I1looks like @ makard)

display() {
{'looks ke a redhead }

display() {
i looks like a rubberduck }

| displayl) (

I looks like a decoy duck)

ijsulated quack behavior

Squeak MuteQuack

quack() {
I/ rybber duckie squeak

quack() {
i do nothing - can't quack!

LCTIIU DIUTYYT & ANITIHT 1. ULwUIL UHJTULTUIITIILTU ouIlwwal © Liiyniccililily. Udlily viviL, rauciliin, ariu vava \

Implementation

NOTE

‘With this design, other tvpes of objects can rense our fly and quack behaviors
because these behaviors are no longer hidden away in our Duck classes!

And we can add new behaviors without modifving anv of our existing behavior
classes or touching any of the Duck classes that use flving behaviors.

So we get the benefit of REUSE without all the baggage that comes along with

inheritance.
Ehin that

public class Duck { Each Dutk has 9 chig::;vf:v S’:’szgaﬁ'

QuackBehavior quackBehavior; < \m?\cantS Lhe Quat

e Rather than handling H‘; :\;aibc

public void performQuack () { behavior ‘{i:fk, :::a?‘:: Lo {'),\-\c ob)gt,’c

: quackBehavior.quack() ; é'/ %’:%fr%i b t\uackBC*‘ avioh
}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Duck Class

public abstract class Duck { £
Detlare two verevente

FlyBehavior flyBehavior; <_/ vaviables Qor the bchaV'\i\’
QuackBehavior quackBehavior; inkevFace types All due
public Duck() { subelasses (in the same

: ?aCkagc) inhevit these.

public abstract void display() ;

public void performFly () {

flyBehavior.fly () i—— Delegate to the behavior ¢lass.
}

public void performQuack () {
quackBehavior.quack() ;
}

public void swim() {
System.out.println("All ducks float, even decoys!");
}
} public interface FlyBehavior ({ ‘
public void £ly() ; The interface that all FlzmS
} behavior tlasses implement.

public class FlyWithWings implements FlyBehavior {

public void £fly() { behavior im‘;\gmcn{‘,at-loh

Flying

System.out.println("I'm flying!!"); Lor dutks that DO ﬂ‘f"
}
}
public class FlyNoWay implements FlyBehavior {)
public void £fly() { EIY'“S behavior implementation
System.out.println("I can't £ly"); or ducks that do NOT ‘cl‘/ (like
) rubber dutks and decoy ducks)

}
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Additional Design Heuristics

 Never use implementation inheritance, always use
interface inheritance

« A subclass should never hide operations
implemented in a superclass

« If you are tempted to use implementation
inheritance, use delegation instead

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Learning Design Patterns

OREILLY"

‘Head First
Design Pattern

A Brain-Friendly Guide

) - Learn why everything
Avoid those m ‘ your friends know about
embarrassing | - ¥y Factory pattern is

probably =
wrong oy

.

AL,
b

» Y Load the patterns
Discover the secrets that ;na.tter gtl’%lght
of the Patterns Guru into your brain

See why Jim'’s
love life improved
when he cut down
his inheritance

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

Desion Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Cover art © 1994 M.C. Escher / Cordon Art - Baarn - Holland. Al rights reserved

Foreword by Grady Booch

. : F
Eric Freeman & Elisabeth Robson e
with Kathy Sierra & Bert Bates ‘
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

>
g
@)
@D
©)
-
2
m
w
o
m
—<
)
-
®)
N
m
w
R
©)
Z
>
=
@
©)
=
)
=
=
Z
(@)
w
m
-
m
w

Strategy Pattern

« The Strategy Pattern defines a family of
algorithms, encapsulates each one, and makes them

interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Client makes use of an .
cnl::?sula{cd «Caml\/ of a\gor\{hms Encapsulated fly behavior

for both ﬂymg and quatking | w

<<interface>>
FlyBehavior

Think of eath
cek of behaviors

Client ; . / 35 3 Family of
FlyBehavior flyBehavior | FlyWithWings
uackBehavior quackl i

FlyNoWay B

QuackBehavior quackBehavior w1 I e | a\ﬁov‘ﬂ‘ms'
e | I implements duck flyng 1/ do nothing - can't fiy!

swim()

display()) } F——/
| perormQuack()

perormFly{)

setFlyBehavior()

selFlyBehavi) Encapsulated quack behavior
setQuackBehavior()
i OTHER duck-tke methods.

Quac

Mc
Bernd Bruegge & Allen H. Dutoit

Strategy Pattern

Different algorithms exists for a specific task
« We can switch between the algorithms at run time

Examples of tasks:
 Different collision strategies for objects in video games

- Parsing a set of tokens into an abstract syntax tree (Bottom up,
top down)

- Sorting a list of customers (Bubble sort, mergesort, quicksort)

Different algorithms will be appropriate at different
times
 First build, testing the system, delivering the final product

If we need a new algorithm, we can add it without
disturbing the application or the other algorithms.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Strategy Pattern

7 Policy
s
s
s
s
e
Context ¥
> > Strategy
ContextInterface() AlgorithmlInterface
I

ConcreteStrategy A ConcreteStrategyB ConcreteStrategyC
AlgorithmInterface() AlgorithmInterface() AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current Context.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Using a Strategy Pattern to Decide between
Algorithms at Runtime

Client

SortInterface

Sort()

A

BubbleSort

QuickSort

MergeSort

Sort()

Sort()

Sort()

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

24

Supporting Multiple implementations of a
Network Interface

Context =

{Mobile, Home, Office}
—__

LocationManager
/,

Application L,
NetworkConnection NetworkInterface
open()
send() close()
receive() sendO
setNetworkInterface() receive()

/N

Ethernet WavelLAN UMTS
open() open() open()
close() close() close()
send() send() send()
receive() receive() receive()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

A Game: Get-15

« Start with the nine numbers 1,2,3,4, 5, 6, 7, 8 and 9.

 You and your opponent take alternate turns, each
taking a number

« Each number can be taken only once: If you opponent
has selected a number, you cannot also take it.

« The first person to have any three numbers that total
15 wins the game.

« Example:
You:

1 5 3 8
Opponent: ‘ 9 ‘ ‘

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Opponent
Wins!

Characteristics of Get-15

« Hard to play,

« The game is especially hard, if you are not allowed
to write anything done.

« Why?

« All the numbers need to be scanned to see if you have
won/lost

« It is hard to see what the opponent will take if you take a
certain number

« The choice of the number depends on all the previous
numbers

- Not easy to devise an simple strategy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Another Game: Tic-Tac-Toe

YOU ARE O

Source: http://boulter.com/ttt/index.cgi

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

http://boulter.com/ttt/index.cgi

A Draw Sitation

Bernd Bruegge & Allen H. Dutoit

YOU ARE

>
O 1Q/[%|0

Object-Oriented Software Engineering: Using UML, Patterns, and Java

29

Strategy for determining a winning move

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

30

Winning Situations for Tic-Tac-Toe

Winning
Patterns

O o,

0 i
NI 2
| /1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patte

Tic-Tac-Toe is “Easy”
Why? Reduction of complexity through patterns and
symmetries.

Patterns: Knowing the following three patterns, the
player can anticipate the opponents move.

Symmetries:
The player needs to remember only these three
patterns to deal with 8 different game situations

The player needs to memorize only 3 opening
moves and their responses.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Get-15 and Tic-Tac-Toe are identical problems

« Any three numbers that solve the 15 problem also solve tic-tac-
toe.

« Any tic-tac-toe solution is also a solution the 15 problem

« To see the relationship between the two games, we simply
arrange the 9 digits into the following pattern

8| 1| 6

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

) You
+Opponent:

8 || 1

3 || 5

()

41 9

®

Bernd Bruegge & Allen H. Dutoit

o
-
4

%/\>

I

Object-Oriented Software Engineering: Using UML, Patterns, and Java

34

What is this?

1.N13 dS 2.c4 ¢6 3.b3 B1S 4.g3 N16 S.Bg2 Nbd7 6.Bb2 e¢6 7.0-O Bd6
8.d3 O-0 9.Nbd2 e5 10.cxd5 cxd5 11.Rel Qe7 12.Rc2 as 13.a4 h6
14.Qal Rfe8 15.Rfcl

This is a fianchetto!

In chess, the fianchetto (Italian: [fjan ketto] "little flank") 1s a pattern of
development wherein a bishop 1s developed to the second rank of the
adjacent knight fil

The fianchetto is a staple of many "hypermodern” openings,
whose philosophy is to delay direct occupation of

the center with the plan of undermining and destroying the
opponent's central outpost.

The fianchetto 1s one of the basic building-blocks of chess thinking.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

https://en.wikipedia.org/wiki/Hypermodernism_(chess)
https://en.wikipedia.org/wiki/Chess_opening
https://en.wikipedia.org/wiki/Center_(chess)
https://en.wikipedia.org/wiki/Outpost_(chess)

Fianchetto (Reti-Lasker)

The diagram 1s from Reti-Lasker, New York 1924. We can see that
Reti has allowed Lasker to occupy t ntre but Rtei has

ﬁanchettdyed both Bishops to hit back at this;and has even backed
up his Bb2 with a Queen on al!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Observations

Many problems recur.
Many problems have the same solution structure.
Exact solution is dependent on the context

A more experienced person can solve new problems
faster and better.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Problem Solving - Expert

Knows many problems. I have seen this
. problem before.... It
Knows solutions to these requires this solution...
Oh, this is a bit different
problems. (different context) let
recalls generic solution when me see h"‘;’;’ I can adapt

encountering new problems
Knows various different contexts

Knows how to apply this
knowledge

In short: Expert knows many
patterns...

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

38

Making Patterns — Reusable

Engineers should aim to capture this valuable pattern

knowledge
and make this reusable in a catalog

so that other engineers/designers can (re)use these

patterns to
build systems
faster and with quality

AN

Pattern Base

~_ A

~_

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

39

Discovering Paiterns

= Problem 1= Problem 2 § Problem 3
Problems l

Solution
(Structure)

-

Context

Pattern

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Describing Patterns

Name
meaningful name
Problem
statement of the intent/goal
Context
preconditions and the pattern’s applicability

Forces
description of relevant forces and constraints This Is the

Solution
a structure patte m

Example
sample application of the pattern \/

Consequences
state of the system after applying the pattern @ @\

Rationale 7 ﬁ
Related Patterns P \
static and dynamic relations to other patterns / \ ~

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Patterns are not designs

Pattern is a template/blueprint

Must be instantiated
« make design decisions
- evaluate tradeoffs

combined with other patterns

Patterns are reusable abstractions providing
solutions for recurring problems

Patterns are applied in mature engineering

Patterns can be applied at various abstractions levels
 architectural

- design

e programming

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Electrical Engineering Paiterns

SOLVED PROBLEMS IN

ELECTRIC
CIRCUITS

Problem

pattern catalog
(example)

H—

Solution
(Template)

push pull amplifier

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Mechanical Engineering Patterns

MARKS?

STANDARD

HANDBOOK
FOR
MECHANICAL
PrObIem ’ ENGINEERS
N

EUGENE A. AVALLONE
THEODORE BAUMEISTER In

pattern catalog
(example)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Solution
(Template)

44

Chemical Engineering Patterns

PERRY’S
CHEMICAL
ENGINEERS

Problem HANDBOOK

pattern catalog
(example)

- Solution
i (Template)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Software Engineering Patterns

PATTERN-ORIENTED
SOFTWARE PATTERN-ORIENTED
ARCHITECTURE SOFTWARE
ARCHITECTURE

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

pattrn catalogs
(examples)

Solution
(Template)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Categorization of Software Patterns

Architectural Patterns (Styles)

Design Patterns
provides schemes for refining the architecture.

Programming Patterns (Idioms)

provides schemes for mapping the design to a specific
programming language

(Other: Organizational, Analysis, Ul Design etc.)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Software Architecture Patterns

Ex: Layers Pattern

Problem: A large system,
which is characterized
with a mix of low and high
level issues, where high-
level operations rely on
low-level issues:

Solution: Structure your
system into an appropriate
number of layers and
place them on top of each
other;

Bernd Bruegge & Allen H. Dutoit

express a fundamental structural
organization schemes for software
systems.

provide a set of predefined subsystems
specify their responsibilities
and include rules and guidelines for

organizing the relationships between

them

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

B nied tre ey

LSt |
\ Vst

Object-Oriented Software Engineering: Using UML, Patterns, and Java

48

—

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE
CIITINE rettesss ler Gonearrent
204 Rataorkad Ohjacts

PATTERN-ORIENTED
SOFTWARE

ARCHITECTURE
(Ve R

....... p

Software Design Paiterns

Design Patterns: Elements of Reusable Object-
Oriented Software, Gamma et al., 1995

A design pattern provides a scheme for refining the
architectural entities of a software system. It
describes commonly recurring structure of
communicating components that solves a general

v Pe T O
design problem within a particular context. Design Patterns

EIemenEs of Reusable
Cibject-Crrishited Software

Erich Ganimia
RichardHelm
Falph Jobhnsan

23 object-oriented design patterns Jorn sl
Design pattern community Y
http://hillside.net/patterns/
PLOP conferences/workshops

Fanisecoil by Giray Booch

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

THE 23 GANG OF FOUR DESIGN

Abstract Factory

Adapter

Bridge

Builder

Chain of Responsibility

Command

Composite

Decorator

Facade
Factory Method
Flyweight
Interpreter
Iterator
Mediator
Memento

Prototype

PATTERNS

S | Proxy

B | Observer

C | Singleton
B | State
B | Strategy

B | Template Method

B | Visitor

Adapter Pattern

British Wall Qutlet

Bernd Bruegge & Allen H. Dutoit

AC Power Adapter

Standard AC Plug

The US laptop expects
another interfate.

The adapter tonverts one
intevfate into another.

Object-Oriented Software Engineering: Using UML, Patterns, and Java

52

Object Oriented Adapters

Your Adapter Vendor

Your Vendor o 0
Existing Class g(l:the:? > > >) Ats
System >

) 4 itten
it h Ve wWyitu
C Their interface doesnt mateh the one You The adapter implements the

your tode against- This 't going o Wk And talks to the vendor interface

mﬁcnfac: our tlasses ex et t.
\/ pet {o servite Your rca\ucsis

Your Adapter | Vendor
Existing Class
System >

P A

No tode thanges. New tode No tode thanges.

Can you think of a solution that doesn’t require YOU to write ANY
additional code to integrate the new vendor classes? How about
making the vendor supply the adapter class?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

The Adapter Pattern Explained

Adaptee
edRe
request() “a“s\at
The Client is implemented
against the target interface.
Adapter
Adaptee
get inte® interface
\
= The Adapter implements the Turkey was the
target interface and holds an S adaptee intevface
instance of the Adaptee. \ enked
kev WRICT v
T\)‘fvcgaiiii -"\{Cr; aCC) D \AC
the

(D The client makes a request to the adapter by calling a method on it using the target interface.
@ The adapter translates the request into one or more calls on the adaptee using the adaptee interface
@) The client receives the results of the call and never knows there is an adapter doing the translation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Adapter Pattern

Client
EEEEN ClientInterface LegacyClass
Request() ExistingRequest()
[Inheritance Adapter ,
Delegation

Request()

The adapter pattern uses inheritance as well as delegation:
- Interface inheritance is used to specify the interface of the Adapter class.
- Delegation is used to bind the Adapter and the Adaptee

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Real life adapter in Java

Vow new tode still 35{5

{0 use [tevators, even < 2

if there's veally an
Ehum:ra{ian uhdc'rthIJt.h-

Enumeraﬂohi{:va{nr —
is the adapter.

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

q.{lnterface}} wcj'rt mﬂklhg 'tlﬁc Ehumffaﬁﬂni
Iterator in Your old code look like
hasNex{() lterators for Your new tode.
next() A elass
remove() '.m?lcmcn{:ing
Eht E_num:ra%l.ﬂ'ﬁ
[inberbace s e
, | adaptee.
Enumerationliterator P {Eﬁlmtrﬁg?;t?:r?
hasNext() hasMoreElements()
next() nextElement()
removel)

56

Another Example

—> Amplifier

tuner

Tuner

| amplifier

on()
off()
setAm()
setFm()

toString()

setFrequency()

dvdPlayer
—| cdPlayer

on()

off()

setCd()

selDvd()
setStereoSound()
setSurroundSoud()
setTuner()
setVolume()
toString()

SR CdPlayer

DvdPlayer

amplifier

PopcornPopper

Bernd Bruegge & Allen H. Dutoit

amplifier

on()
off()
eject()
pause()
play()
play()
stop()
toString()

on()

off()

eject()

pause()

play()

play()
setSurroundAudio()

setTwoChannelAudio()
stop()
toString()

Projector

dvdPlayer

TheaterLights

on()
off()
dim()
toString()

Object-Oriented Software Engineering: Using UML, Patterns, and Java

on()
off()
tvMode()

wideScreenMode()
toString()

That’s a lot of
tlasses, a lot

0‘(: intevactions,
and a biq set
o‘F in{:cr?:at.cs to

learn and use.

57

Watch a Movie

Pick out a DVD, relax, and get ready for movie magic. Oh, there’s just
one thing—to watch the movie, you need to perform a few tasks:

D Turn on the popcorn popper

@ Start the popper popping

® Dim the lights

@ Put the screen down

® Turn the projector on

® Set the projector input to DVD

@ Put the projector on wide-screen mode
Turn the sound amplifier on

© Set the amplifier to DVD input

Set the amplifier to surround sound

() Set the amplifier volume to medium (5)
@ Turn the DVD player on

@3 Start the DVD player playing

I'm already exhausted
and all I've done is turn
everything on!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 58

Watch a Movie

Cix d‘“cnv&. tlasses

'mvo\vcd‘

LN

Bernd Bruegge & Allen H. Dutoit

Turn on the poptorn popper and
start popying--

popper.on() ;
popper.pop () ;

lights.dim(10) ;

screen.down() ;

projector.on() ;

projector.setInput (dvd) ;

Dim the ‘lgh{,s to 10%...

o

Put the streen down...
L

A Turn on the Yro\’)cc{’p\r and ?u{: it in

wide streen mode tor the movie-..

projector.wideScreenMode () ;

amp.

amp

dvd

the amp, set it 1o DVD,

on) b Turn on

setDvd (dvd) ; \au{ ik in survound sound mode and
' ' set the volume to 7
. setSurroundSound() ;

.setVolume (5) ;

onf); R Turn on the DvD ?laycr'.- ,
, and FENN’L‘{, ?\ay the movie

.play (movie) ;

Object-Oriented Software Engineering: Using UML, Patterns, and Java 59

But there’s more...

When the movie is over, how do you turn everything
off? Wouldn't you have to do all of this over again, in
reverse?

Wouldn't it be as complex to listen to a CD or the
radio?

If you decide to upgrade your system, you’'re probably
going to have to learn a slightly different procedure.

So what to do? The complexity of using your home
theater is becoming apparent!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 60

Facade

W, A elient of the
atChMO‘vieO [_ swhsystem facade

(1] Okay, time to create a
facade for the home
theater system, To do this

e The Facade class treats
the home theater

components as a

we create a new class The Fazade subsystem, and calls @ Your client code now calls
HomeTheaterFacade, on the subsystem methods on the home theater
which exposes a fewh toimplement its Facade, not on the subsystem.
simpleMmc§h865 suchas watchMovie() method. So now to watch a movie we just
watchMovieil WL,

call one method, watchMovie(),
and it communicates \«_filh the
lights, DVD player, projector,
amplifier, screen, and popcorn
maker for us.

T've got to have
my low-level access!

The Facade still leaves the subsystem
accessible to be used directly. If you
need the advanced functionality

f the subsystem cl.
- dent of o r ystem classes, they are
i:: ;:2::: High Schol available for your use,

AV Stience Clob

The whsptem e 2
Fatade 1 simpliEyird

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61

public class HomeTheaterFacade {
Amplifier amp;
Tuner tuner; é:)/’f_ﬁ\

DvdPlayer dvd;

CdPlayer cd;

Projector projector;

TheaterLights lights;

Screen screen;

PopcornPopper popper;

public HomeTheaterFacade (Amplifier
Tuner tuner,
DvdPlayer dvd,
CdPlayer cd,
Projector projector,
Screen screen,
TheaterLights lights,
PopcornFPopper popper)

this.amp = amp;

this.tuner = tuner;
this.dvd = dvd;

this.cd = cd;
this.projector = projector;
this.screen = screen;
this.lights = lights;
this.popper = popper;

// other methods here

Bernd Bruegge & Allen H. Dutoit

B,

Here's the tomposition; Lhese
are all the Lom?onen&s of the
subsystem we are going +o use.

The facade is passed a
velevente to eath tomponent
of the su'os\!sﬁcw in its
consbruttor. The facade
Ehen assigns each to the

torresponding instance variable.

{

We're Just about 4o ill these i

public void endMovie() {

public void watchMovie (String movie) {

System.out.println("Get ready to watch a movie...");
popper.on() ;
popper.pop () ;
lights.dim(10) ;

watthMovie(d follows the same sequente

had 4o do by hand before, but wraps
/—\ '_:fu; ina hand;j method that does all
the work. Notite that for each task we

are dclcgﬂ:ing the rcs?ons‘n'oilil{‘r +o the
torresponding Comf‘o’n:n{: in the SLI'DSYS{:M.

screen.down() ;
projector.on() ;
projector.wideScreenMode () ;
amp.on() ;

amp . setDvd (dvd) ;

amp . setSurroundSound () ;

amp . setVolume (5) ;

dvd.on() ;

dvd.play (movie) ;

ﬁ Find endMoviel) takes cave

of shutting everything down
for us. A!‘}ain, eath task is
delegated to the appropriate
tomponent in the subsystem.

System.out.println("Shutting movie theater down...");
popper.off() ;

lights.on() ;

screen.up() ;

projector.off () ;

amp.off () ;

dvd.stop() ;

dvd.eject () ;

dvd.off () ;

Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Waich a Movie (The easy way)

Heve we've C\rcaﬁng the Com?onCh*{:s
public class HomeTheaterTestDrive { righ{ i the Lest dvive. Norma“\/ the
public static void main(String[] args) { tlient is given 3 facade; it doesnt have
to tonstrutt one itself.

// instantiate components here

HomeTheaterFacade homeTheater = <~ First you instantiate
the Fatade with all the

new HomeTheaterFacade (amp, tuner, dvd, cd,
tomponents in the subsystem.

projector, screen, lights, popper) ;

homeTheater.watchMovie ("Raiders of the Lost Ark") ;

homeTheater.endMovie() ; Use the simplificd in*{:cr-‘:acc to
Fiest start the movie wp, and
then shut it down.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 63

Facade Patitern

The Facade Pattern provides a unified interface to a
set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier
to use

U r.i*picd m{crﬁa(.c

/_\ ‘

ient whose Client ‘ Facade that is easier to use

Y

Happy ¢
Job~yﬁt betame

easier betaust of -

bhe fatade \\\\\\\
subsystem classes

.bg SJ(,C""
Movre CO"‘Y"C* ol

g

///

—N
_ et
e

T |

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64

Facade and Principle of Least Knowledge

This client only

friend: the

e

*;‘35 ?F\w:a&cv?atadc n 00
i camming having only on¢

Client o

Leiend is 3 600D thing'

The HomeTheaterFatade
manages all those subsystem

tomponents Lor the tlient. S OTSwIa HomeTheaterFacade 0000~

[t keeps the tlient simple watchMovie()]
endMovie()

and flexible
listenToCd()
endCd()
listenToRadio()
endRadio()

s
¢ the home
We tan upoyad v without

*‘,\'\68&,04‘ tomypon .
akfecting the tlient

DvdPlayer

— |5

+o kee subs\/s{ms
?;ht:\\,ng o {\Yc Printiple of Least :
Ynowledge as well. 1€ this gets oo : e }
tom?\c% and too many Qr\cnds ave :

= TheaterLights
intermi ling, we tan \vxb’odutc ’ :
|a:;r{lo:sa\ a?cadcs 4o form layers i e -

O£ Subs\fﬁans.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65

Facade Pattern

Provides a unified interface to a set of objects in a
subsystem.

A facade defines a higher-level interface that makes
the subsystem easier to use (i.e. it abstracts out the
gory details)

A4

.‘_______‘—\.

5 7

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 66

When should you use these Design Patterns?

« A facade should be offered by all subsystems in a
software system who a services

- The facade delegates requests to the appropriate components
within the subsystem. The facade usually does not have to be
changed, when the components are changed

« The adapter design pattern should be used to interface
to existing components

« Example: A smart card software system should use an adapter
for a smart card reader from a specific manufacturer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 67

Realizing an Opaque Architecture with a
Facade

_ VIP Subsystem
« The subsystem decides :

exactly how it is
accessed.

\ [\ A
 No need to worry about
misuse by callers

It a fagade IS used the Vehicle Subsystem API
subsystem can be used

in an early integration

test Seatl—— Card
« We need to write only a
driver
AIM SA/RT

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68

Adapter / Facade Summary

« When you need to use an existing class and its interface is not
the one you need, use an adapter.

« When you need to simplify and unify a large interface or
complex set of interfaces, use a facade.

« An adapter changes an interface into one a client expects.
« A facade decouples a client from a complex subsystem.

« Implementing an adapter may require little work or a great
deal of work depending on the size and complexity of the target
interface.

« Implementing a facade requires that we compose the facade
with its subsystem and use delegation to perform the work of
the facade.

« You can implement more than one facade for a subsystem.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 69

What is common between these definitions?

« Definition Software System

« A software system consists of subsystems which are either
other subsystems or collection of classes

« Definition Software Lifecycle:

« The software lifecycle consists of a set of development
activities which are either other actitivies or collection of
tasks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 70

Infroducing the Composite Pattern

« Models tree structures that represent part-whole
hierarchies with arbitrary depth and width.

« The Composite Pattern lets client treat individual
objects and compositions of these objects uniformly

Client Component

/\

Composite

Leaf

Operation) Children

Operation() AddComponent
RemoveComponent()
GetChild()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 71

Modeling a Software System with a Composite
Pattern

3
User Software
System
Class
Subsystem children

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 72

Graphic Applications also use Composite

Patterns

* The Graphic Class represents both primitives (Line, Circle)

and their containers (Picture)

Bernd Bruegge & Allen H. Dutoit

3
Client Graphic
. Picture
Line Circle

Draw()
Draw() Draw() Add(Graphic g)
RemoveGraphic)

GetChild(int)

Object-Oriented Software Engineering: Using UML, Patterns, and Java

<

Children

73

Reducing the Complexity of Models

« To communicate a complex model we use navigation
and reduction of complexity

« We do not simply use a picture from the CASE tool and
dump it in front of the user

- The key is to navigate through the model so the user can
follow it

« We start with a very simple model
- Start with the key abstractions
- Then decorate the model with additional classes

« To reduce the complexity of the model further, we
« Look for inheritance (taxonomies)

« If the model is still too complex, we show subclasses on
a separate slide

« Then we identify or introduce patterns in the model
« We make sure to use the name of the patterns.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 74

Example: A Complex Model

Basic AbStl‘iL(:fm Dmies
\ Equipmen
Project
* Facilitﬂ
Resource Fund
* o) .
ork rgani
Breakdow
des- Wor
\ | Adule Str?c r coib
— * |
* \\\\f sume *
raducgs Organi zational
Ta—] Work espon/ nit
L STRE lays
; A depend g_fio play A
| Réle
|
[set of Wor Work
Products roduct — <> Activyty|l| Task PartidpantfStaf§<>—

Internal Project _ _ 4
Department|| Team
Work Produ;L Delive rabl Project Functio P

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 75

Summary

« Composite, Adapter, Bridge, Facade, Proxy
(Structural Patterns)
« Focus: Composing objects to form larger structures
« Realize new functionality from old functionality,
« Provide flexibility and extensibility

« Command, Observer, Strategy, Template
(Behavioral Patterns)

« Focus: Algorithms and assignment of responsibilities to
objects

« Avoid tight coupling to a particular solution

« Abstract Factory, Builder (Creational Patterns)
« Focus: Creation of complex objects
« Hide how complex objects are created and put together

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 76

Conclusion

Design patterns
« provide solutions to common problems
- lead to extensible models and code

- can be used as is or as examples of interface inheritance
and delegation

- apply the same principles to structure and to behavior

« Design patterns solve a lot of your software
development problems

- Pattern-oriented development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 77

pAD pUBM YRS e AN a0
SULIAHIBH 2B AYIASIDPIRIEIIFNIHO

Recall: Why reusable Designs?

A design...
...enables flexibility to change (reusability)

...minimizes the introduction of new problems when
fixing old ones (maintainability)

...allows the delivery of more functionality after an
initial delivery (extensibility).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 79

Definitions

Extensibility (Expandibility)

- A system is extensible, if new functional requirements can
easily be added to the existing system

Customizability

- A system is customizable, if new nonfunctional requirements
can be addressed in the existing system

Scalability

- A system is scalable, if existing components can easily be
multiplied in the system

Reusability

- A system is reusable, if it can be used by another system
without requiring major changes in the existing system
model (design reuse) or code base (code reuse).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 80

Command Pattern: Motivation

 You want to build a user interface

« You want to provide menus

 You want to make the menus reusable across many
applications

- The applications only know what has to be done when a
command from the menu is selected

« You don’t want to hardcode the menu commands for the
various applications

« Such a user interface can easily be implemented
with the Command Pattern.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 81

Command pattern

Command

Invoker

execute ()

Client A

Receiver «binds» | concreteCommandl
actionl () i execute ()
action2 «b1nds»

O ConcreteCommand2

execute ()

« Client (in this case a user interface builder) creates a ConcreteCommand and binds it to
an action operation in Receiver

« Client hands the ConcreteCommand over to the Invoker which stores it (for example in a
menu)

« The Invoker has the responsibility to execute or undo a command (based on a string
entered by the user)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 82

Comments to the Command Pattern

« The Command abstract class declares the interface
supported by all ConcreteCommands.

« The client is a class in a user interface builder or in a
class executing during startup of the application to
build the user interface.

« The client creates concreteCommands and binds
them to specific Receivers, this can be strings like

“commit”, “execute”, “undo”.

« So all user-visible commands are sub classes of the
Command abstract class.

« The invoker - the class in the application program
offering the menu of commands or buttons - invokes
theconcreteCommand based on the string entered
and the binding between action and
ConcreteCommand.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 83

Decouples boundary objects from control
objects

« The command pattern can be nicely used to
decouple boundary objects from control objects:

- Boundary objects such as menu items and buttons, send
messages to the command objects (I.e. the control objects)

- Only the command objects modify entity objects

« When the user interface is changed (for example, a
menu bar is replaced by a tool bar), only the
boundary objects are modified.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 84

Command Paitern Applicability

Parameterize clients with different requests
Queue or log requests
Support undoable operations

Uses:
- Undo queues
- Database transaction buffering

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

85

Applying the Command Pattern to Command
Sets

0

Match Move
Elg¥§§() execute()A
«binds»
GameBoard 7 TicTacToeMove
execute()
ChessMove
execute()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 86

Applying the Command design patiern to
Replay Matches in ARENA

ReplayedMatch

nextMove ()
previousMove()

Match > Move
play()
replay () EXECUtECA
«binds»

GameBoard

Bernd Bruegge & Allen H. Dutoit

TicTacToeMove

ChessMove

Object-Oriented Software Engineering: Using UML, Patterns, and Java

87

Abstract Factory Pattern Motivation

« Consider a user interface toolkit that supports
multiple looks and feel standards for different
operating systems:

« How can you write a single user interface and make it

portable across the different look and feel standards for
these window managers?

« Consider a facility management system for an
intelligent house that supports different control
systems:

« How can you write a single control system that is
independent from the manufacturer?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 88

Abstract Factory

AbstractFactory AbstractProductA
Client CreateProductA *
CreateProductB
L ProductA1l ProductA2 ¢

A
|
|
__________________________ 1

ConcreteFactoryr | | . AbstractProductB
|
CreateProductA |

CreateProductB : /k
|
V
ProductB1 ProductB2
0
ConcreteFactory2 | - 1
CreateProductA Initiation Assocation:
CreateProductB Class ConcreteFactory?2 initiates the
Bernd Bruegge & Allen H. DutGrt UnJecrurtermea Softw

associated classes ProductB2 and ProductA2

Applicability for Absiract Factory Pattern

Independence from Initialization or Representation
Manufacturer Independence

Constraints on related products

Cope with upcoming change

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 90

Example: A Facility Management System for a House

IntelligentHouse > HouseFactory

createBulb()
createBlind()

. EIBFactory |————— 0 LuxmateFactory [—]
| — == |
| createBu]bé) r | createBUIbé) |
| createB1ind() | | createB11nd() |
I
| | | |
I | I l I
I BN . | | . |
| LightBulb I | Blind |
B | A
I | I I
A4 \'4 A4 \ 4
EIBBulb LuxmateBulb EIBB11ind LuxmateB1ind

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 91

Applying the Absiract Factory Pattern to

Games

Tournament |—————= > Game

[

| | createMatch()

] createStatistics()

] JA\

| |

| |] N _ |

|| B TicTacToe 1 Chess]
I — I

| | | createMatch8 B | createMatch8 I

| | | createStats | | createStats |

| | I

| — ot —————— T——F——=" |

P L ' |
I I I

L — _| > Match : | Statistics |
S— - S
| | | |
A4 v \4 \ 4
TTTMatch ChessMatch TTTStats ChessStats

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 92

Builder Pattern Motivation

« The construction of a complex object is common
across several representations

« Example

- Converting a document to a number of different formats
« the steps for writing out a document are the same
« the specifics of each step depend on the format
« Approach

- The construction algorithm is specified by a single class (the
“director”)

- The abstract steps of the algorithm (one for each part) are
specified by an interface (the “builder”)

- Each representation provides a concrete implementation of the
interface (the “concrete builders”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 93

Builder Pattern

Represen-
tation B

Director A~ Builder
Construct() | |~ BuildPart()
\N
For all objects in Structure {
Builder->BuildPart()
}
ConcreteBuilderB
BuildPart()
GetResult()
ConcreteBuilderA
BuildPart()
GetResult() Represen-
tation A

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

94

Applicability of Builder Pattern

« The creation of a complex product must be

independent of the particular parts that make up the
product

 The creation process must allow different
representations for the object that is constructed.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 95

Example: Converting an RTF Document into
different representations

Builder
RTFReader N ConvertCharacter()
Parse() he ConvertFontChange()
ConvertParagraph()
. \N
while (t = GetNextToken()) {
switch t.Type {
CHAR: Builder->ConvertCharacter(t)
FONT: Builder->ConvertFontChange(t)
PARA: Builder->ConvertParagraph(t) }
} /
|
TexConverter AsciiConverter HTMLConverter
ConvertCharacter() ConvertCharacter() ConvertCharacter()
ConvertFontChan e() ConvertFontChanﬁe() ConvertFontChan
ConvertParagra %) ConvertParagra ConvertParagrap
GetTeXText(GetASCII ext() GetHTML ext()

AN

HTMLText

Bernd Bruegge & Allen H. Oriented Software Engineerin

TeXText _ _ { AsciiText

Comparison: Absiract Factory vs Builder

« Abstract Factory
- Focuses on product family
- Does not hide the creation process

« Builder

- The underlying product needs to be constructed as part of
the system, but the creation is very complex

- The construction of the complex product changes from time
to time

- Hides the creation process from the user

« Abstract Factory and Builder work well together for a
family of multiple complex products

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 97

Clues in Nonfunctional Requirements for the
Use of Design Patterns

« Text: "manufacturer independent”,
“device independent”,
“must support a family of products”

=> Abstract Factory Pattern
« Text: “must interface with an existing object”
=> Adapter Pattern

« Text: "must interface to several systems, some
of them to be developed in the future”,
" an early prototype must be demonstrated”

=>Bridge Pattern
« Text: “must interface to existing set of objects”
=> Facade Pattern

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 98

Clues in Nonfunctional Requirements for use of
Design Patterns (2)

Text: “complex structure”,
“must have variable depth and width”

=> Composite Pattern
Text: “must be location transparent”
=> Proxy Pattern

Text: "must be extensible”,
“must be scalable”

=> QObserver Pattern

Text: "must provide a policy independent from
the mechanism”

=> Strategy Pattern

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 99

Summary

« Composite, Adapter, Bridge, Facade, Proxy
(Structural Patterns)
« Focus: Composing objects to form larger structures
« Realize new functionality from old functionality,
« Provide flexibility and extensibility

« Command, Observer, Strategy, Template
(Behavioral Patterns)

« Focus: Algorithms and assignment of responsibilities to
objects

« Avoid tight coupling to a particular solution

« Abstract Factory, Builder (Creational Patterns)
« Focus: Creation of complex objects
« Hide how complex objects are created and put together

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 100

Conclusion

Design patterns
« provide solutions to common problems
- lead to extensible models and code

- can be used as is or as examples of interface inheritance
and delegation

- apply the same principles to structure and to behavior

« Design patterns solve a lot of your software
development problems

- Pattern-oriented development

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 101

