
U
si

n
g
 U

M
L

, 
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g Chapter 8, Object 
Design

Introduction to Design 
Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 2

Learning Design Patterns 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 3

Example OO application

Joe works for a company 
that makes a highly 
successful duck pond 
simulation game, SimUDuck. 

The game can show a large 
variety of duck species 
swimming and making 
quacking sounds. The initial 
designers of the system 
used standard OO 
techniques and created one 
Duck superclass from which 
all other duck types inherit.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 4

Change Request Comes in

• In the last year, the company has 
been under increasing pressure from 
competitors... They need 
something really impressive to show 
at the upcoming shareholders 
meeting in Maui next week.

• The executives decided that flying 
ducks is just what the simulator 
needs to blow away the other duck 
sim competitors. And of course Joe’s 
manager told them it’ll be no 
problem for Joe to just whip 
something up in a week. “After all,” 
said Joe’s boss, “he’s an OO 
programmer... how hard can it be?”



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 5

Implementing Change Request



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 6

Problem

Joe failed to notice that 
not all subclasses of Duck 
should fly. When Joe added 
new behavior to the Duck 
superclass, he was also 
adding behavior that 
was not appropriate for 
some Duck subclasses. He 
now has flying inanimate 
objects in the SimUDuck
program.

A localized update to the 
code caused a nonlocal side 
effect (flying rubber ducks)!



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 7

Easy Fix?



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 8

Interfaces?

What do you think about this design?



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 9

Interfaces

We know that not all of the subclasses should 
have flying or quacking behavior, so inheritance 
isn’t the right answer. But while having the 
subclasses implement Flyable and/or Quackable 
solves part of the problem (no inappropriately 
flying rubber ducks), it completely destroys code 
reuse for those behaviors, so it just creates 
a differentmaintenance nightmare. And of course 
there might be more than one kind of flying 
behavior even among the ducks that do fly.

WHAT WOULD YOU DO IF YOU WERE JOE?



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 10

We have to deal with CHANGE



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 11

Design Principle



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 12

Separating behaviors



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 13

Separating Behaviours



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 14

Implementing Duck Behavior



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 15

Combining behaviors with the duck



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 16

The Big Picture



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 17

Implementation



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 18

Duck Class



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 19

Additional Design Heuristics

• Never use implementation inheritance, always use 
interface inheritance

• A subclass should never hide operations 
implemented  in a superclass

• If you are tempted to use implementation 
inheritance, use delegation instead



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 20

Learning Design Patterns 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 21

Strategy Pattern

• The Strategy Pattern defines a family of 
algorithms, encapsulates each one, and makes them 
interchangeable. Strategy lets the algorithm vary 
independently from clients that use it.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 22

Strategy Pattern

• Different algorithms exists for a specific task

• We can switch between the algorithms at run time

• Examples of tasks:

• Different collision strategies for objects in video games

• Parsing a set of tokens into an abstract syntax tree (Bottom up, 
top down)

• Sorting a list of customers (Bubble sort, mergesort, quicksort)

• Different algorithms will be appropriate at different 
times

• First build, testing the system, delivering the final product

• If we need a new algorithm, we can add it without 
disturbing the application or the other algorithms.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 23

Strategy Pattern

Context

ContextInterface()

Strategy
AlgorithmInterface

*

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current Context.

Policy



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 24

Using a Strategy Pattern to Decide between 
Algorithms at Runtime

Database

SelectSortAlgorithm()
Sort()

* SortInterface

Sort()

BubbleSort

Sort()

QuickSort

Sort()

MergeSort

Sort()

Policy
TimeIsImportant
SpaceIsImportant

Client



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 25

Supporting Multiple implementations of a 
Network Interface

NetworkInterface

open()

close()

send()

receive()

NetworkConnection

send()

receive()

setNetworkInterface()

Application

Ethernet

open()

close()

send()

receive()

WaveLAN

open()

close()

send()

receive()

UMTS

open()

close()

send()

receive()

LocationManager

Context =
{Mobile, Home, Office}



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 26

A Game:  Get-15

• Start with the nine numbers 1,2,3,4, 5, 6, 7, 8 and 9. 

• You and your opponent take alternate turns, each 
taking a number

• Each number can be taken only once: If you opponent 
has selected a number, you cannot also take it. 

• The first person to have any three numbers that total 
15 wins the game. 

• Example:
You: 

Opponent: 

1 5 83

6 9 27 Opponent
Wins!



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 27

Characteristics of Get-15

• Hard to play,

• The game is especially hard,  if you are not allowed 
to write anything done. 

• Why? 

• All the numbers need to be scanned to see if you have 
won/lost

• It is hard to see what the opponent will take if you take a 
certain number

• The choice of the number depends on all the previous 
numbers

• Not easy to devise an simple strategy



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 28

Another Game: Tic-Tac-Toe

Source: http://boulter.com/ttt/index.cgi

http://boulter.com/ttt/index.cgi


Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 29

A Draw Sitation



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 30

Strategy for determining a winning move



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 31

Winning Situations for Tic-Tac-Toe

Winning
Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 32

Tic-Tac-Toe is “Easy”

Why? Reduction of complexity through patterns and 
symmetries.

Patterns: Knowing the following three patterns, the 
player can anticipate the opponents move. 

Symmetries: 
The player needs to remember only these  three 
patterns to deal with 8 different game situations

The player needs to memorize only 3 opening 
moves and their responses.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 33

Get-15 and Tic-Tac-Toe are identical problems

• Any three numbers that solve the 15 problem also solve tic-tac-
toe.

• Any tic-tac-toe solution is also a solution the 15 problem

• To see the relationship between the two games, we simply 
arrange the 9 digits into the following pattern

8 1 6

3 5 7

4 9 2



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 34

8 1 6

3 5 7

4 9 2

1 5 83

6 9 27

You: 

Opponent: 

8 1 6

3 5 7

4 9 2



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 35

What is this?

1.Nf3 d5 2.c4 c6 3.b3 Bf5 4.g3 Nf6 5.Bg2 Nbd7 6.Bb2 e6 7.O-O Bd6 

8.d3 O-O 9.Nbd2 e5 10.cxd5 cxd5 11.Rc1 Qe7 12.Rc2 a5 13.a4 h6 

14.Qa1 Rfe8 15.Rfc1

This is a fianchetto!

In chess, the fianchetto (Italian: [fjaŋˈkɛtto] "little flank") is a pattern of 

development wherein a bishop is developed to the second rank of the 

adjacent knight fil

The fianchetto is a staple of many "hypermodern" openings, 
whose philosophy is to delay direct occupation of 
the center with the plan of undermining and destroying the 
opponent's central outpost.
The fianchetto  is one of the basic building-blocks of chess thinking.

https://en.wikipedia.org/wiki/Hypermodernism_(chess)
https://en.wikipedia.org/wiki/Chess_opening
https://en.wikipedia.org/wiki/Center_(chess)
https://en.wikipedia.org/wiki/Outpost_(chess)


Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 36

The diagram is from Reti-Lasker, New York 1924. We can see that 

Reti has allowed Lasker to occupy the centre but Rtei has 

fianchettoed both Bishops to hit back at this, and has even backed 

up his Bb2 with a Queen on a1!

Fianchetto (Reti-Lasker)



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 37

Observations

• Many problems recur. 

• Many problems have the same solution structure. 

• Exact solution is dependent on the context 

• A more experienced person can solve new problems 
faster and better. 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 38

Problem Solving - Expert



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 39

Making Patterns – Reusable 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 40

Discovering Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 41

Describing Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 42

Patterns are not designs

• Pattern is a template/blueprint 

• Must be instantiated 

• make design decisions 

• evaluate tradeoffs 

• combined with other patterns 

• Patterns are reusable abstractions providing 
solutions for recurring problems 

• Patterns are applied in mature engineering 

• Patterns can be applied at various abstractions levels 

• architectural 

• design 

• programming 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 43

Electrical Engineering Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 44

Mechanical Engineering Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 45

Chemical Engineering Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 46

Software Engineering Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 47

Categorization of Software Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 48

Software Architecture Patterns

Ex: Layers Pattern

Problem: A large system, 
which is characterized 
with a mix of low and high 
level issues, where high-
level operations rely on 
low-level issues:

Solution: Structure your 
system into an appropriate 
number of layers and 
place them on top of each 
other; 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 49

Software Design Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 51

Catalog of 23 Design Patterns



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 52

Adapter Pattern



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 53

Object Oriented Adapters

Can you think of a solution that doesn’t require YOU to write ANY 
additional code to integrate the new vendor classes? How about 
making the vendor supply the adapter class?



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 54

The Adapter Pattern Explained

① The client makes a request to the adapter by calling a method on it using the target interface.
② The adapter translates the request into one or more calls on the adaptee using the adaptee interface.
③ The client receives the results of the call and never knows there is an adapter doing the translation.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 55

Adapter Pattern 

ClientInterface

Request()

LegacyClass

ExistingRequest()

adaptee

Adapter

Request()

Client

Delegation
Inheritance

The adapter pattern uses inheritance as well as delegation:

- Interface inheritance is used to specify the interface of the Adapter class.

- Delegation is used to bind the Adapter and the Adaptee



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 56

Real life adapter in Java



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 57

Another Example 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 58

Watch a Movie

Pick out a DVD, relax, and get ready for movie magic. Oh, there’s just 
one thing—to watch the movie, you need to perform a few tasks:

① Turn on the popcorn popper

② Start the popper popping

③ Dim the lights

④ Put the screen down

⑤ Turn the projector on

⑥ Set the projector input to DVD

⑦ Put the projector on wide-screen mode

⑧ Turn the sound amplifier on

⑨ Set the amplifier to DVD input

⑩ Set the amplifier to surround sound

⑪ Set the amplifier volume to medium (5)

⑫ Turn the DVD player on

⑬ Start the DVD player playing



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 59

Watch a Movie



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 60

But there’s more...

When the movie is over, how do you turn everything 
off? Wouldn’t you have to do all of this over again, in 
reverse?

Wouldn’t it be as complex to listen to a CD or the 
radio?

If you decide to upgrade your system, you’re probably 
going to have to learn a slightly different procedure.

So what to do? The complexity of using your home 
theater is becoming apparent!



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 61

Façade 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 62



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 63

Watch a Movie (The easy way)



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 64

Façade Pattern

The Facade Pattern provides a unified interface to a 
set of interfaces in a subsystem. Facade defines a 
higher-level interface that makes the subsystem easier 
to use.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 65

Façade and Principle of Least Knowledge



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 66

Facade Pattern

• Provides a unified interface to a set of objects in a 
subsystem.

• A facade defines a higher-level interface that makes 
the subsystem easier to use (i.e. it abstracts out the 
gory details)

• Facades allow us to provide  a closed architecture



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 67

When should you use these Design Patterns?

• A façade should be offered by all subsystems in a 
software system who a services 

• The façade delegates requests to the appropriate components 
within the subsystem. The façade usually does not have to be 
changed, when the components are changed

• The adapter design pattern should be used to interface 
to existing components

• Example: A smart card software system should use an adapter 
for a smart card reader from a specific manufacturer 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 68

Realizing an Opaque Architecture with a 
Facade 

• The subsystem decides 
exactly how it is 
accessed. 

• No need to worry about 
misuse by callers

• If a façade is used the 
subsystem can be used 
in an early integration 
test  

• We need to write only a 
driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle  Subsystem API



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 69

Adapter / Façade Summary

• When you need to use an existing class and its interface is not 
the one you need, use an adapter.

• When you need to simplify and unify a large interface or 
complex set of interfaces, use a facade.

• An adapter changes an interface into one a client expects.

• A facade decouples a client from a complex subsystem.

• Implementing an adapter may require little work or a great 
deal of work depending on the size and complexity of the target 
interface.

• Implementing a facade requires that we compose the facade 
with its subsystem and use delegation to perform the work of 
the facade.

• You can implement more than one facade for a subsystem.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 70

What is common between these definitions?

• Definition Software System

• A software system consists of subsystems which are either 
other subsystems or collection of classes

• Definition Software Lifecycle:

• The software lifecycle consists of a set of development 
activities which are either other actitivies or collection of  
tasks



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 71

Introducing the Composite Pattern

• Models tree structures that represent part-whole 
hierarchies with arbitrary depth and width. 

• The Composite Pattern lets client treat individual 
objects and compositions of these  objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

*



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 72

Modeling a Software System with a Composite 
Pattern 

Software
System

Class
Subsystem children

*
User



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 73

Graphic Applications also use Composite 
Patterns

Client Graphic

Circle

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

• The Graphic Class represents both primitives (Line, Circle) 
and their containers (Picture)

*



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 74

Reducing the Complexity of Models 

• To communicate a complex model we use navigation 
and reduction of complexity

• We do not simply use a picture from the CASE tool and 
dump it in front of the user

• The key is to navigate through the model so the user can 
follow it

• We start with a very simple model

• Start with the key abstractions

• Then decorate the model with additional classes

• To reduce the complexity of the model further, we

• Look for inheritance (taxonomies)

• If the model is still too complex, we show subclasses on 
a separate slide

• Then we identify or introduce patterns in the model

• We make sure to use the name of the patterns.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 75

*

Resource

Participant

Fund

Equipment

Schedule

Task

*

Activity

con-

Facility

*

Staff

Department Team

produces

Work Set of Work

*

ProductProducts

*

Internal Project

Work

respon-

sumes

Package

Role

*

des-

*

cribes

Deliverable

sible
plays

for

Organi-
zation

Structure

**

depends

Work Product
Project Function

Project

Outcome Work
Organizational

Unit

Work 
Breakdown

Example: A Complex Model

Composite Patterns

TaxonomiesBasic Abstractions



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 76

Summary

• Composite, Adapter, Bridge, Façade, Proxy 
(Structural Patterns)

• Focus: Composing objects to form larger structures

• Realize new functionality  from old functionality, 

• Provide flexibility and extensibility

• Command, Observer, Strategy, Template 
(Behavioral Patterns)

• Focus: Algorithms and assignment of responsibilities to 
objects

• Avoid tight coupling to a particular solution

• Abstract Factory, Builder (Creational Patterns)

• Focus: Creation of complex objects

• Hide how complex objects are created and put together



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 77

Conclusion

Design patterns 

• provide solutions to common problems

• lead to extensible models and code

• can be used as is or as examples of interface inheritance 
and delegation

• apply the same principles to structure and to behavior

• Design patterns solve a lot of your software 
development problems

• Pattern-oriented development



U
si

n
g
 U

M
L

, 
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 8, Object Design:
Design Patterns II

U
si

n
g
 U

M
L

, 
P

a
tt

er
n
s,

 a
n
d
 J

a
va

O
b
je

ct
-O

ri
en

te
d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 79

Recall: Why reusable Designs?

A design…

…enables flexibility to change (reusability)

…minimizes the introduction of new problems when 
fixing old ones (maintainability)

…allows the delivery of more functionality after an 
initial delivery (extensibility).



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 80

Definitions

• Extensibility (Expandibility)

• A system is extensible, if new functional requirements can 
easily be added to the existing system 

• Customizability

• A system is customizable, if new nonfunctional requirements 
can be addressed in the existing system 

• Scalability 

• A system is scalable, if existing components can easily be 
multiplied in the system

• Reusability

• A system is reusable, if it can be used by another system 
without requiring major changes in the existing system 
model (design reuse)  or code base (code reuse).



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 81

Command Pattern: Motivation

• You want  to build a user interface 

• You want to provide menus

• You want to make the menus reusable across many 
applications

• The applications only know what has to be done when a 
command from the menu is selected 

• You don’t want to hardcode the menu commands for the 
various applications

• Such a user interface can easily be implemented 
with the Command Pattern.  



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 82

Command pattern

• Client (in this case a user interface builder) creates a ConcreteCommand and binds it to 
an action operation in Receiver 

• Client hands the ConcreteCommand over to the Invoker which stores it (for example in a 
menu)

• The Invoker has the responsibility to execute or undo a command (based on a string 
entered by the user)

Command

execute()

Receiver

action1()

action2()

Client

Invoker

ConcreteCommand1

execute()

«binds»

ConcreteCommand2

execute()

«binds»



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 83

Comments to the Command Pattern

• The Command abstract class declares the interface 
supported by all ConcreteCommands. 

• The client is a class in a user interface builder or in a 
class executing during startup  of the application to 
build the user interface. 

• The client creates concreteCommands and binds 
them to specific Receivers, this can be strings like 
“commit”, “execute”, “undo”. 

• So all user-visible commands are sub classes of the 
Command abstract class. 

• The invoker - the class in the application program 
offering the menu of commands or buttons - invokes 
theconcreteCommand based on the string entered 
and the binding between action and 
ConcreteCommand.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 84

Decouples boundary objects from control 
objects

• The command pattern can be nicely used to 
decouple boundary objects from control objects:  

• Boundary objects such as menu items and buttons, send 
messages to the command objects (I.e. the control objects) 

• Only the command objects modify entity objects

• When the user interface is changed (for example, a 
menu bar is replaced by a tool bar), only the 
boundary objects are modified.



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 85

Command Pattern  Applicability

• Parameterize clients with different requests

• Queue or log requests

• Support undoable operations

• Uses:

• Undo queues

• Database transaction buffering



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 86

Applying the Command Pattern to Command 
Sets 

GameBoard

«binds»

TicTacToeMove

execute()

ChessMove

execute()

Move

execute()

Match *

replay()

play()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 87

Applying the Command design pattern to  
Replay Matches in ARENA

replay()

«binds»

play()

TicTacToeMove

ChessMove

Move

execute()

Match
*

GameBoard

nextMove()

ReplayedMatch

previousMove()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 88

Abstract Factory Pattern Motivation

• Consider a user interface toolkit that supports 
multiple looks and feel standards for different 
operating systems:

• How can you write a single user interface and make it 
portable across the different look and feel standards for 
these window managers?

• Consider a facility management system for an 
intelligent house that supports different control 
systems:

• How can you write a single control system that is 
independent from the manufacturer?



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 89

Abstract Factory

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

AbstractFactory

CreateProductA
CreateProductB

Client

CreateProductA
CreateProductB

ConcreteFactory1

CreateProductA
CreateProductB

ConcreteFactory2



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 90

Applicability  for Abstract Factory Pattern

• Independence from Initialization or Representation

• Manufacturer Independence

• Constraints on related products

• Cope with upcoming change



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 91

Example: A Facility Management System for a House

LightBulb

EIBBulb LuxmateBulb

Blind

EIBBlind LuxmateBlind

IntelligentHouse HouseFactory

createBulb()

createBlind()

LuxmateFactoryEIBFactory

createBulb()

createBlind()

createBulb()

createBlind()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 92

Applying the Abstract Factory Pattern to 
Games

Game

Match

TTTMatch ChessMatch

ChessTicTacToe

createMatch()

createStats()

Statistics

TTTStats ChessStats

Tournament

createMatch()

createStatistics()

createMatch()

createStats()



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 93

Builder Pattern Motivation

• The construction of a complex object is common 
across several representations

• Example

• Converting a document to a number of different formats

• the steps for writing out a document are the same

• the specifics of each step depend on the format

• Approach

• The construction algorithm is specified by a single class (the 
“director”)

• The abstract steps of the algorithm (one for each part) are 
specified by an interface (the “builder”)

• Each representation provides a concrete implementation of the 
interface (the “concrete builders”)



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 94

Builder Pattern

Construct()

Director

For all objects in  Structure {
Builder->BuildPart()

}

BuildPart()

Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilderA

Represen-
tation A



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 95

Applicability of Builder Pattern

• The creation of a complex product must be 
independent of the particular parts that make up the 
product

• The creation process must allow different 
representations for the object that is constructed. 



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 96

Example: Converting an RTF Document into 
different representations

Parse()

RTFReader

while (t = GetNextToken()) {
switch t.Type {

CHAR: Builder->ConvertCharacter(t)
FONT: Builder->ConvertFontChange(t)
PARA: Builder->ConvertParagraph(t) }

}

AsciiText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

Builder

TeXText HTMLText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetASCIIText()

AsciiConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetTeXText()

TexConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetHTMLText()

HTMLConverter



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 97

Comparison: Abstract Factory vs Builder

• Abstract Factory

• Focuses on product family 

• Does not hide the creation process

• Builder

• The underlying product needs to be constructed as part of 
the system, but the creation is very complex

• The construction of the complex product changes from time 
to time

• Hides the creation process from the user

• Abstract Factory and Builder work well together for a 
family of multiple complex products



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 98

Clues in Nonfunctional Requirements for the 
Use of Design Patterns

• Text: “manufacturer independent”, 
“device independent”, 
“must support a family of products”

=> Abstract Factory Pattern

• Text: “must interface with an existing object”

=> Adapter Pattern

• Text: “must interface to several systems, some   
of them to be developed in the future”, 

“ an early prototype must be demonstrated”

=>Bridge  Pattern

• Text: “must interface to existing set of objects”

=> Façade Pattern



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 99

Clues in Nonfunctional Requirements for  use of 
Design Patterns (2)

• Text: “complex structure”,
“must have variable depth and width” 

=> Composite Pattern

• Text: “must be location transparent”

=> Proxy  Pattern

• Text: “must be extensible”, 
“must be scalable” 

=> Observer Pattern

• Text: “must provide a policy independent from 
the mechanism”

=> Strategy Pattern



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 100

Summary

• Composite, Adapter, Bridge, Façade, Proxy 
(Structural Patterns)

• Focus: Composing objects to form larger structures

• Realize new functionality  from old functionality, 

• Provide flexibility and extensibility

• Command, Observer, Strategy, Template 
(Behavioral Patterns)

• Focus: Algorithms and assignment of responsibilities to 
objects

• Avoid tight coupling to a particular solution

• Abstract Factory, Builder (Creational Patterns)

• Focus: Creation of complex objects

• Hide how complex objects are created and put together



Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java                 101

Conclusion

Design patterns 

• provide solutions to common problems

• lead to extensible models and code

• can be used as is or as examples of interface inheritance 
and delegation

• apply the same principles to structure and to behavior

• Design patterns solve a lot of your software 
development problems

• Pattern-oriented development


