
U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 8, Object Design:
Reuse and Patterns

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Object Design

• Purpose of object design:

• Prepare for the implementation of the system model
based on design decisions

• Transform the system model (optimize it)

• Investigate alternative ways to implement the
system model

• Use design goals: minimize execution time, memory
and other measures of cost.

• Object design serves as the basis of
implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Object design Activities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Terminology: Naming of Design Activities

Methodology: Object-oriented software engineering (OOSE)

• System Design

• Decomposition into subsystems, etc

• Object Design

• Data structures and algorithms chosen

• Implementation

• Implementation language is chosen

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Design means “Closing the Gap”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Typical Activities

• Full definition of associations

• Full definition of classes

• Choosing algorithms and data structures

• Identifying possibilities of reuse

• Optimization

• Increase of inheritance

• Decision on control

• Packaging

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Object Design consists of 4 Activities

1. Reuse: Identification of existing solutions

• Use of inheritance

• Selecting Off-the-shelf components and
additional solution objects

• Design patterns, class libraries and framework

2. Interface specification

• Describes precisely each class interface

3. Object model restructuring

• Transforms the object design model to
improve its understandability and extensibility

4. Object model optimization

• Transforms the object design model to address
performance criteria such as response
time or memory utilization.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Object Design Activities

Specifying constraints

Specifying types &

signatures

Identifying patterns

Adjusting patterns

Identifying missing

attributes & operations

Specifying visibility

Specification

Specifying exceptions

Reuse

Identifying components

Adjusting components

Select Subsystem

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

One Way to do Object Design

1. Identify the missing components in the design gap
2. Make a build or buy decision to obtain the missing

component

=> Component-Based Software Engineering:

The design gap is filled with available
components (“0 % coding”).

• Special Case: COTS-Development

• COTS: Commercial-off-the-Shelf

• The design gap is completely filled with commercial-
off-the-shelf-components.

=> Design with standard components.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Identification of new Objects during Object
Design

Incident

Report

Requirements Analysis
(Language of Application

Domain)

Object Design
(Language of Solution

Domain)

Incident

Report

Text box Menu Scrollbar

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Modeling of the Real World

• Modeling of the real world leads to a system
that reflects today’s realities but not necessarily
tomorrow’s.

• There is a need for reusable and flexible designs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Reuse of Code

• I have a list, but my customer would like to have
a stack

• The list offers the operations Insert(), Find(), Delete()

• The stack needs the operations Push(), Pop() and Top()

• Can I reuse the existing list?

• I am an employee in a company that builds cars
with expensive car stereo systems

• Can I reuse the existing car software in a home stero
system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Reuse of existing classes

• I have an implementation for a list of elements
of Typ int

• Can I reuse this list to build

• a list of customers

• a spare parts catalog

• a flight reservation schedule?

• I have developed a class “Addressbook” in
another project

• Can I add it as a subsystem to my e-mail program
which I purchased from a vendor (replacing the
vendor-supplied addressbook)?

• Can I reuse this class in the billing software of my
dealer management system?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Customization: Build Custom Objects

• Problem: Close the object design gap

• Develop new functionality

• Main goal:

• Reuse knowledge from previous experience

• Reuse functionality already available

• Composition (also called Black Box Reuse)

• New functionality is obtained by aggregation

• The new object with more functionality is an
aggregation of existing objects

• Inheritance (also called White-box Reuse)

• New functionality is obtained by inheritance

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Why Inheritance?

1. Organization (during analysis):

• Inheritance helps us with the construction of
taxonomies to deal with the application domain

• when talking the customer and application domain
experts we usually find already existing
taxonomies

2. Reuse (during object design):

• Inheritance helps us to reuse models and code to deal
with the solution domain

• when talking to developers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Inheritance can be used during Modeling
as well as during Implementation

• Starting Point is always the requirements
analysis phase:

• We start with use cases

• We identify existing objects (“class identification“)

• We investigate the relationship between these objects;
“Identification of associations“:

• general associations

• aggregations

• inheritance associations.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Example of Inheritance

Superclass:

drive()

brake()

accelerate()

Car

playMusic()
ejectCD()

resumeMusic()
pauseMusic()

LuxuryCar

Subclass:
public class LuxuryCar extends Car
{

public void playMusic() {…}

public void ejectCD() {…}

public void resumeMusic() {…}

public void pauseMusic() {…}

}

public class Car {

public void drive() {…}

public void brake() {…}

public void accelerate() {…}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Inheritance comes in many Flavors

Inheritance is used in four ways:

• Specialization

• Generalization

• Specification Inheritance

• Implementation Inheritance.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Discovering Inheritance

• To “discover“ inheritance associations, we can
proceed in two ways, which we call
specialization and generalization

• Generalization: the discovery of an inheritance
relationship between two classes, where the sub
class is discovered first.

• Specialization: the discovery of an inheritance
relationship between two classes, where the
super class is discovered first.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Generalization

• First we find the subclass, then the super class

• This type of discovery occurs often in science
and engineering:
• Biology: First we find individual animals (Elephant,

Lion, Tiger), then we discover that these animals have
common properties (mammals).

• Engineering: What are the common properties of cars
and airplanes?

Generalization Example: Modeling a
Coffee Machine

totalReceipts
numberOfCups
coffeeMix

collectMoney()
makeChange()
heatWater()

dispenseBeverage()
addSugar()

addCreamer()

CoffeeMachine

VendingMachine

Generalization:
The class CoffeeMachine is
discovered first, then the class
SodaMachine, then the
superclass

VendingMachine

totalReceipts

cansOfBeer

cansOfCola

collectMoney()

makeChange()

chill()

dispenseBeverage()

SodaMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Restructuring of Attributes and Operations
is often a Consequence of Generalization

totalReceipts

collectMoney()
makeChange()
dispenseBeverage()

VendingMachine

numberOfCups
coffeeMix

heatWater()

addSugar()
addCreamer()

CoffeeMachine

cansOfBeer

cansOfCola

chill()

SodaMachine

totalReceipts
numberOfCups
coffeeMix

collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine

totalReceipts

cansOfBeer

cansOfCola

collectMoney()

makeChange()

chill()

dispenseBeverage()

SodaMachine

Called Remodeling if done on

the model level;

Called Refactoring if done on

the source code level.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

An Example of a Specialization

numberOfCups
coffeeMix

heatWater()
addSugar()
addCreamer()

CoffeeMachine

totalReceipts

collectMoney()
makeChange()
dispenseBeverage()

VendingMachine

cansOfBeer
cansOfCola

chill()

SodaMachine

bagsofChips
numberOfCandyBars

dispenseSnack()

CandyMachine

CandyMachine is a new
product and designed as a sub
class of the superclass
VendingMachine

A change of names might now
be useful: dispenseItem()
instead of

dispenseBeverage()
and
dispenseSnack()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Example of a Specialization (2)

numberOfCups
coffeeMix

heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

totalReceipts

collectMoney()
makeChange()
dispenseItem()

VendingMaschine

cansOfBeer
cansOfCola

chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars

dispenseItem()

CandyMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Meta-Model for Inheritance

Inheritance

Specification

Inheritance

Implementation

Inheritance

Inheritance

for ReuseTaxonomy

Inheritance

detected by

generalization

Inheritance

detected by

specialization

Analysis

activity

Object

Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

For Reuse: Implementation Inheritance and
Specification Inheritance

• Implementation inheritance

• Also called class inheritance

• The use of inheritance for the sole purpose of reusing code is
called implementation inheritance

• Goal:

• Extend an applications’ functionality by reusing functionality
from the super class

• Inherit from an existing class with some or all operations
already implemented

• Specification Inheritance

• Also called subtyping, the classification of concepts into type

• hierarchies is called specification inheritance

• Goal:

• Inherit from a specification

• The specification is an abstract class with all operations
specified, but not yet implemented.

Problem with implementation inheritance:

• The inherited operations might exhibit unwanted behavior.

• Example: What happens if the Stack user calls Remove()
instead of Pop()?

Example:

• I have a List class, I need a
Stack class

• How about subclassing the
Stack class from the List
class and implementing
Push(), Pop(), Top() with
Add() and Remove()?

Add()

Remove()

List

Push()
Pop()

Stack

Top()

“Already
implemented”

Example for Implementation Inheritance

• A very similar class is already implemented that
does almost the same as the desired class
implementation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Delegation instead of Implementation
Inheritance
• Inheritance: Extending a Base class by a new

operation or overriding an operation.

• Delegation: Catching an operation and sending it
to another object.

• Which of the following models is better?

+Add()
+Remove()

List

Stack

+Push()

+Pop()

+Top()

+Push()

+Pop()

+Top()

Stack

Add()
Remove()

List

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

delegates to Client Receiver Delegate
calls

Delegation

• Delegation is a way of making composition as
powerful for reuse as inheritance

• In delegation two objects are involved in
handling a request from a Client

•The Receiver object delegates operations to
the Delegate object
•The Receiver object makes sure, that the
Client does not misuse the Delegate object.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Comparison: Delegation vs Implementation
Inheritance

• Delegation

☺ Flexibility: Any object can be replaced at run time by
another one (as long as it has the same type

☹ Inefficiency: Objects are encapsulated.

• Inheritance

☺ Straightforward to use

☺ Supported by many programming languages

☺ Easy to implement new functionality

☹ Inheritance exposes a subclass to the details of its
parent class

☹ Any change in the parent class implementation forces
the subclass to change (which requires recompilation of
both)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Comparison: Delegation v. Inheritance

• Code-Reuse can be done by delegation as well
as inheritance

• Delegation

• Flexibility: Any object can be replaced at run time by
another one

• Inefficiency: Objects are encapsulated

• Inheritance

• Straightforward to use

• Supported by many programming languages

• Easy to implement new functionality

• Exposes a subclass to details of its super class

• Change in the parent class requires recompilation of
the subclass.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Abstract Methods and Abstract Classes

• Abstract method:

• A method with a signature but without an
implementation (also called abstract operation)

• Abstract class:

• A class which contains at least one abstract method is
called abstract class

• Interface: An abstract class which has only
abstract methods

• An interface is primarily used for the specification of
a system or subsystem. The implementation is
provided by a subclass or by other mechanisms.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Example of an Abstract Method

totalReceipts

collectMoney()
makeChange()
dispenseItem()

VendingMaschine

numberOfCups
coffeeMix

heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

cansOfBeer
cansOfCola

chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars

dispenseItem()

CandyMachine

dispenseItem()

dispenseItem() must be

implemented in each subclass.

We do this by specifying the

operation as abstract. Abstract

operations are written in UML

in italics.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Rewriteable Methods and Strict Inheritance

• Rewriteable Method: A method which allow a
reimplementation.

• In Java methods are rewriteable by default, i.e. there
is no special keyword.

• Strict inheritance

• The subclass can only add new methods to the
superclass, it cannot over write them

• If a method cannot be overwritten in a Java program,
it must be prefixed with the keyword final.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Strict Inheritance

Superclass:

drive()

brake()

accelerate()

Car

playMusic()
ejectCD()

resumeMusic()
pauseMusic()

LuxuryCar

Subclass:
public class LuxuryCar extends Car
{

public void playMusic() {…}

public void ejectCD() {…}

public void resumeMusic() {…}

public void pauseMusic() {…}

}

public class Car {

public final void drive() {…}

public final void brake() {…}

public final void accelerate()
{…}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Bad Use of Overwriting Methods

One can overwrite the operations of a superclass with
completely new meanings.

Example:
Public class SuperClass {

public int add (int a, int b) { return a+b; }

public int subtract (int a, int b) { return a-b; }

}

Public class SubClass extends SuperClass {

public int add (int a, int b) { return a-b; }

public int subtract (int a, int b) { return a+b; }

}

• We have redefined addition as subtraction and subtraction
as addition!!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Bad Use of Implementation Inheritance

• We have delivered a car with software that allows to
operate an on-board stereo system

• A customer wants to have software for a cheap stereo
system to be sold by a discount store chain

• Dialog between project manager and developer:

• Project Manager:

• „Reuse the existing car software. Don‘t change this
software, make sure there are no hidden surprises. There
is no additional budget, deliver tomorrow!“

• Developer:

• „OK, we can easily create a subclass BoomBox inheriting
the operations from the existing Car software“

• „And we overwrite all method implementations from Car
that have nothing to do with playing music with empty
bodies!“

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

What we have and what we want

musicSystem

playMusic()

ejectCD()

resumeMusic()

pauseMusic()

BoomBox

engine

windows

musicSystem

brake()

accelerate()

playMusic()

ejectCD()

resumeMusic()

pauseMusic()

Auto

New Abstraction!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

What we do to save money and time

Existing Class:
public class Auto {

public void drive() {…}

public void brake() {…}

public void accelerate() {…}

public void playMusic() {…}

public void ejectCD() {…}

public void resumeMusic() {…}

public void pauseMusic() {…}

}

Boombox:
public class Boombox
extends Auto {

public void drive() {};

public void brake() {};

public void accelerate()
{};

}

engine

windows

musicSystem

brake()

accelerate()

playMusic()

ejectCD()

resumeMusic()

pauseMusic()

Auto

musicSystem

playMusic()

ejectCD()

resumeMusic()

pauseMusic()

BoomBox

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Contraction

• Contraction: Implementations of methods in
the super class are overwritten with empty
bodies in the subclass to make the super class
operations “invisible“

• Contraction is a special type of inheritance

• It should be avoided at all costs, but is used
often.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Contraction must be avoided by all Means

A contracted subclass delivers the desired
functionality expected by the client, but:

• The interface contains operations that make no sense for
this class

• What is the meaning of the operation brake() for a
BoomBox?

The subclass does not fit into the taxonomy

A BoomBox is not a special form of Auto

• The subclass violates Liskov's Substitution Principle:

• I cannot replace Auto with BoomBox to drive to work.

• LSP: If an object of type S can be substituted in all
the places where an object of type T is
expected,then S is a subtype of T.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Revised Metamodel for Inheritance

Inheritance

Specification

Inheritance

Implementation

Inheritance

Inheritance

for ReuseTaxonomy

Inheritance

detected by

generalization

Inheritance

detected by

specialization

Analysis

activity

Object

Design

Strict

Inheritance
Contraction

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Summary

• Object design closes the gap between the
requirements and the machine

• Object design adds details to the requirements
analysis and makes implementation decisions

• Object design activities include:

✓ Identification of Reuse

✓ Identification of Inheritance and Delegation
opportunities

✓ Component selection

• Interface specification (Next lecture)

• Object model restructuring

• Object model optimization

• Object design is documented in the Object
Design Document (ODD).

Lectures on Mapping
Models to Code

