
U
si

n
g
 U

M
L

,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 9,
Object Design:

Specifying
Interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Lecture Plan

• Specifying Interfaces (Chapter 9)

• Object Design Activities Visibilities and Information
Hiding, Contracts

• Mapping Models to Java Code (Chapter 10)

• Optimizations to address performance requirements

• Implementation of class model components

• Realization of associations

• Realization of contracts

• Mapping Models to Relational Schema (Ch 10.4.4)

• Realizing entity objects

• Mapping the object model to a storage schema

• Mapping class diagrams to tables.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Requirements Analysis vs. Object Design

• Requirements Analysis: The functional model
and the dynamic model deliver operations for
the object model

• Object Design: Decide where to put these
operations in the object model

• Object design is the process of

• adding details to the requirements analysis

• making implementation decisions

• Thus, object design serves as the basis of
implementation

• The object designer can choose among different ways
to implement the system model obtained during
requirements analysis.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Object Design: Closing the Final Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requirements gap

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Object Design

As the focus of system design was on identifying large chunks of
work that could be assigned to individual teams or developers, the
focus of object design is on specifying the boundaries between
objects. At this stage in the project, a large number of developers

concurrently refines and changes many objects and their
interfaces. The pressure to deliver is increasing and the
opportunity to introduce new, complex faults into the design is still
there. The focus of interface specification is for developers to
communicate clearly and precisely about increasingly lower-level
details of the system.

The interface specification activities of object design include

• identifying missing attributes and operations

• specifying type signatures and visibility

• specifying invariants

• specifying preconditions and postconditions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Object Design Challenge

The large number of objects and developers, the
high rate of change, and the concurrent number
of decisions made during object design make
object design much more complex than analysis
or system design.

This represents a management challenge, as
many important decisions tend to be resolved
independently and are not communicated to the
rest of the project.

Object design requires much information to be
made available among the developers so that
decisions can be made consistent with decisions
made by other developers and consistent with

design goals

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Developers play 3 different Roles during
Object Design of a Class

Developer Class Implementor

Class User

Class Extender

Call the Class

Realize the Class

(Implement it)

Refine the Class

(Implement a

subclass)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Class user versus Class Extender

Game

TicTacToe Chess

League

Tournament

1

*

The developer responsible
for the implementation of

League is a class user of Game

The developer responsible for
the implementation of TicTacToe

is a class extender of Game

The Developer responsible
for the implementation of

Game is a class implementor

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Specifying Interfaces

• Requirements analysis activities

• Identify attributes and operations without specifying
their types or their parameters

• Object design activities

• Add visibility information

• Add type signature information

• Add contracts.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Add Visibility Information

Class user (“Public”): +

• Public attributes/operation can be accessed by any class

Class implementor (“Private”): -

• Private attributes and operations can be accessed only by
the class in which they are defined

• They cannot be accessed by subclasses or other classes

Class extender (“Protected”): #

• Protected attributes/operations can be accessed by the
class in which they are defined and by any descendent of
the class.

Developer

Call Class

Class Extender

Class Implementor

Class User

Realize Class

Refine Class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Visibility

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Implementation of UML Visibility in Java

public Tournament(League l, int maxNumPlayers)

public int getMaxNumPlayers() {…};

public List getPlayers() {…};

public void acceptPlayer(Player p) {…};

public void removePlayer(Player p) {…};

public boolean isPlayerAccepted(Player p) {…};

Tournament

- maxNumPlayers: int

+ acceptPlayer(p:Player)

+ removePlayer(p:Player)

+ getMaxNumPlayers():int

+ getPlayers(): List

+ isPlayerAccepted(p:Player):boolean

public class Tournament {

private int maxNumPlayers;

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Information Hiding Heuristics

• Carefully define the public interface for classes
as well as subsystems

• For subsystems use a façade design pattern if possible

• Always apply the “Need to know” principle:

• Only if somebody needs to access the information,
make it publicly possible

• Provide only well defined channels, so you always
know the access

• The fewer details a class user has to know

• the easier the class can be changed

• the less likely they will be affected by any changes in
the class implementation

• Trade-off: Information hiding vs. efficiency

• Accessing a private attribute might be too slow.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Information Hiding Design Principles

• Only the operations of a class are allowed to
manipulate its attributes

• Access attributes only via operations

• Do not apply an operation to the result of
another operation

• Write a new operation that combines the two
operations.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)

+get(key:Object):Object

+remove(key:Object)

+containsKey(key:Object):boolean

+size():int

-numElements:int

Hashtable

put()

get()

remove()

containsKey()

size()

numElements:int

Attributes and operations
without visibility and

type information are ok during
requirementsanalysis

During object design, we
decide that the hash
table can handle any
type of keys, not only

Strings.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Outline of Today’s Lecture

• Object Design Activities

• Visibilities

• Information Hiding

• Contracts

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Contract

• Contract: A lawful agreement between two parties
in which both parties accept obligations and on
which both parties can found their rights

• The remedy for breach of a contract is usually an award of
money to the injured party

• Object-oriented contract: Describes the services
that are provided by an object if certain conditions
are fulfilled

• services = “obligations”, conditions = “rights”

• The remedy for breach of an OO-contract is the generation
of an exception.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Modeling Constraints with Contracts

• Example of constraints in Arena:

• An already registered player cannot be registered again

• The number of players in a tournament should not be
more than maxNumPlayers

• One can only remove players that have been registered

• These constraints cannot be modeled in UML

• We model them with contracts

• Contracts can be written in OCL.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Object-Oriented Contract

• An object-oriented contract describes the
services that are provided by an object. For each
service, it specifically describes two things:

• The conditions under which the service will be provided

• A specification of the result of the service

• Examples:

• A letter posted before 18:00 will be delivered on the next
working day to any address in Germany

• For the price of 4 Euros a letter with a maximum weight
of 80 grams will be delivered anywhere in the USA within
4 hours of pickup.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Object-Oriented Contract

• An object-oriented contract describes the
services that are provided by an object. For
each service, it specifically describes two things:

• The conditions under which the service will be provided

• A specification of the result of the service that is
provided.

• Examples:

• A letter posted before 18:00 will be delivered on the
next working day to any address in Germany.

• For the price of 4 Euros a letter with a maximum
weight of 80 grams will be delivered anywhere in
Germany within 4 hours of pickup.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Modeling OO-Contracts

• Natural Language

• Mathematical Notation

• Models and contracts:

• A language for the formulation of constraints with the
formal strength of the mathematical notation and the
easiness of natural language:

 UML + OCL (Object Constraint Language)

• Uses the abstractions of the UML model

• OCL is based on predicate calculus

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Contracts and Formal Specification
• Contracts enable the caller and the provider to

share the same assumptions about the class

• A contract is an exact specification of the interface
of an object

• A contract include three types of constraints:

• Invariant:

• A predicate that is always true for all instances of a
class

• Precondition (“rights”):

• Must be true before an operation is invoked

• Postcondition (“obligation”):

• Must be true after an operation is invoked.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Formal Specification

• A contract is called a formal specification, if the
invariants, rights and obligations in the contract
are unambiguous.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Expressing Constraints in UML Models

• A constraint can also be depicted as a note
attached to the constrained UML element by a
dependency relationship.

HashTable

put(key,entry:Object)

get(key):Object

remove(key:Object)

containsKey(key:Object):boolean

size():int

numElements:int

<<invariant>>
numElements >= 0<<precondition>>

!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
!containsKey(key)

<<postcondition>>
get(key) == entry

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Why not use Contracts already in
Requirements Analysis?

• Many constraints represent domain level
information

• Why not use them in requirements analysis?

• Constraints increase the precision of requirements

• Constraints can yield more questions for the end user

• Constraints can clarify the relationships among several
objects

• Constraints are sometimes used during
requirements analysis, however there are trade
offs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Requirements vs. Object Design Trade-offs

• Communication among stakeholders

• Can the client understand formal constraints?

• Level of detail vs. rate of requirements change

• Is it worth precisely specifying a concept
that will change?

• Level of detail vs. elicitation effort

• Is it worth the time interviewing the end user

• Will these constraints be discovered during object
design anyway?

• Testing constraints

• If tests are generated early, do they require this level
of precision?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

OCL Simple Predicates

Example:

context Tournament inv:

self.getMaxNumPlayers() > 0

In English:

“The maximum number of players in any tournament
should be a positive number.”

Notes:

• “self” denotes all instances of “Tournament”

• OCL uses the same dot notation as Java.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

OCL Preconditions

Example:

context Tournament::acceptPlayer(p) pre:

not self.isPlayerAccepted(p)

In English:

“The acceptPlayer(p) operation can only be invoked if
player p has not yet been accepted in the tournament.”

Notes:

• The context of a precondtion is an operation

• isPlayerAccepted(p) is an operation defined by the
class Tournament

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

OCL Postconditions

Example:

context Tournament::acceptPlayer(p) post:

self.getNumPlayers() =

self@pre.getNumPlayers() + 1

In English:

“The number of accepted player in a tournament
increases by one after the completion of
acceptPlayer()”

Notes:

• self@pre denotes the state of the tournament before
the invocation of the operation.

• Self denotes the state of the tournament after the
completion of the operation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

OCL Contract for acceptPlayer() in
Tournament

context Tournament::acceptPlayer(p) pre:

not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:

getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:

isPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:

getNumPlayers() = @pre.getNumPlayers() + 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

OCL Contract for removePlayer() in
Tournament

context Tournament::removePlayer(p) pre:

isPlayerAccepted(p)

context Tournament::removePlayer(p) post:

not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:

getNumPlayers() = @pre.getNumPlayers() - 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Example

• The age of a person is not negative.

• A person is younger than its parents.

• After a birthday, a person becomes one year older.

• A Person has 2 parents at max.

• Only an adult can be owner of a car.

• The first registration of a car can not be before it is built.

• Every Person that has a car has at least one car which is younger
than the Person.

• Nobody can be his/her own parent.

• There's at least one Person which owns a car.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

context Person inv: self.age >=0

context Person inv: self.parents->forAll(p|p.age>self.age)

context Person::hasBirthday() post:
self.age=self.age@pre+1

context Person inv: self.parents->size()<=2

context Person::getsChild() post: self.childs->notEmpty()
and self.childs->size() > self.childs@pre->size()

context Person inv: self.age<18 implies self.cars->isEmpty()

context Auto inv: self.registration>=self.constructionYear

context Person inv: self.cars->notEmpty() implies self.cars-
>exists(c | Calendar.YEAR - c.constructionYear < self.age)

context Person inv: self.parents->excludes(self)

context Person inv: Person.allInstances()->exists(p | p.cars-
>size() > 0)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

javadoc

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Java Implementation of Tournament class
(Contract as a set of JavaDoc comments)

public class Tournament {

/** The maximum number of players

* is positive at all times.

* @invariant maxNumPlayers > 0

*/

private int maxNumPlayers;

/** The players List contains

* references to Players who are

* are registered with the

* Tournament. */

private List players;

/** Returns the current number of

* players in the tournament. */

public int getNumPlayers() {…}

/** Returns the maximum number of

* players in the tournament. */

public int getMaxNumPlayers() {…}

/** The acceptPlayer() operation

* assumes that the specified

* player has not been accepted

* in the Tournament yet.

* @pre !isPlayerAccepted(p)

* @pre getNumPlayers()<maxNumPlayers

* @post isPlayerAccepted(p)

* @post getNumPlayers() =

* @pre.getNumPlayers() + 1

*/

public void acceptPlayer (Player p) {…}

/** The removePlayer() operation

* assumes that the specified player

* is currently in the Tournament.

* @pre isPlayerAccepted(p)

* @post !isPlayerAccepted(p)

* @post getNumPlayers() =

* @pre.getNumPlayers() - 1

*/

public void removePlayer(Player p) {…}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Constraints can involve more than one
class

How do we specify constraints on
on a group of classes?

Starting from a specific class in the UML class diagram,

we navigate the associations in the class diagram to

refer to the other classes and their properties (attributes and

Operations).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Example from ARENA: League,
Tournament and Player

players

* tournaments

{ordered}

Tournament

+start:Date

+end:Date

+acceptPlayer(p:Player)

*

League

+start:Date

+end:Date

+getActivePlayers()

*

Player

+name:String

+email:String

* players

tournaments*

Constraints:

1. A Tournament’s planned
duration must be under one
week.

2. Players can be accepted in a
Tournament only if they are
already registered with the
corresponding League.

3. The number of active
Players in a League are
those that have taken part
in at least one Tournament
of the League.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Instance Diagram: 2 Leagues

tttExpert:League chessNovice:League

alice:Player

bob:Player

marc:Player

joe:Player

zoe:Player

winter:Tournament

start=Jan 12

end= Jan 14

Xmas:Tournament

start=Dec 23

end= Dec 25

, 5 Players,
2 Tournaments

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

3 Types of Navigation through a Class
Diagram

1. Local attribute 2. Directly related class 3. Indirectly related class

Tournament

League

*

*

Player

*

League

Player

*

*

Tournament

start:Date

end:Date

Any constraint for an arbitrary UML class diagram can
be specified using only a combination of these

3 navigation types!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Specifying the Model Constraints in OCL

Local attribute navigation

players

* tournaments

{ordered}

Tournament

+start:Date

+end:Date

+acceptPlayer(p:Player)

*

League

+start:Date

+end:Date

+getActivePlayers()

*

Player

+name:String

+email:String

* players

tournaments*

Directly related class navigation

context Tournament inv:

end - start <= 7

context

Tournament::acceptPlayer(p)

pre:

league.players->includes(p)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

OCL Sets, Bags and Sequences

• Sets, Bags and Sequences are predefined in OCL and
subtypes of Collection. OCL offers a large number of
predefined operations on collections. They are all of the
form:

collection->operation(arguments)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

OCL-Collection

• The OCL-Type Collection is the generic
superclass of a collection of objects of Type T

• Subclasses of Collection are

• Set: Set in the mathematical sense. Every element
 can appear only once

• Bag: A collection, in which elements can appear more
than once (also called multiset)

• Sequence: A multiset, in which the elements are
ordered

• Example for Collections:

• Set(Integer): a set of integer numbers

• Bag(Person): a multiset of persons

• Sequence(Customer): a sequence of customers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

OCL-Operations for OCL-Collections (1)

size: Integer
Number of elements in the collection

includes(o:OclAny): Boolean
True, if the element o is in the collection

count(o:OclAny): Integer
Counts how many times an element is contained in the
collection

isEmpty: Boolean

True, if the collection is empty

notEmpty: Boolean

True, if the collection is not empty

The OCL-Type OclAny is the most general OCL-Type

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

OCL-Operations for OCL-Collections(2)

union(c1:Collection)
Union with collection c1

intersection(c2:Collection)
Intersection with Collection c2 (contains only elements,
which appear in the collection as well as in collection c2
auftreten)

including(o:OclAny)
Collection containing all elements of the Collection and
element o

select(expr:OclExpression)
Subset of all elements of the collection, for which the OCL-
expression expr is true

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

How do we get OCL-Collections?

• A collection can be generated by explicitly
enumerating the elements

• A collection can be generated by navigating
along one or more 1-N associations

• Navigation along a single 1:n association yields a Set

• Navigation along a couple of 1:n associations yields a

Bag (Multiset)

• Navigation along a single 1:n association labeled with

the constraint {ordered } yields a Sequence

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Summary

• Constraints are predicates (often boolean
expressions) on UML model elements

• Contracts are constraints on a class that enable
class users, implementors and extenders to
share the same assumption about the class
(“Design by contract”)

• OCL is the example of a formal language that
allows us to express constraints on UML models

• Complicated constrains involving more than one
class, attribute or operation can be expressed
with 3 basic navigation types.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Backup and Additional Slides

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

OCL supports Quantification

OCL forall quantifier
/* All Matches in a Tournament occur within the

Tournament’s time frame */

context Tournament inv:

matches->forAll(m:Match |

m.start.after(t.start) and m.end.before(t.end))

OCL exists quantifier
/* Each Tournament conducts at least one Match on the

first day of the Tournament */

context Tournament inv:

matches->exists(m:Match | m.start.equals(start))

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Pre- and post-
conditions for
ordering operations
on TournamentControl

context TournamentControl::selectSponsors(advertisers) pre:

interestedSponsors->notEmpty and

tournament.sponsors->isEmpty

context TournamentControl::selectSponsors(advertisers) post:

tournament.sponsors.equals(advertisers)

context TournamentControl::advertiseTournament() pre:

tournament.sponsors->isEmpty and

not tournament.advertised

context TournamentControl::advertiseTournament() post:

tournament.advertised

context TournamentControl::acceptPlayer(p) pre:

tournament.advertised and

interestedPlayers->includes(p) and

not isPlayerOverbooked(p)

context TournamentControl::acceptPlayer(p) post:

tournament.players->includes(p)

TournamentControl

+selectSponsors(advertisers):List

+advertizeTournament()

+acceptPlayer(p)

+announceTournament()

+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Specifying invariants on Tournament and
Tournament Control

English: “All Matches of in a Tournament must
occur within the time frame of the Tournament”

context Tournament inv:

matches->forAll(m|

m.start.after(start) and m.start.before(end))

English: “No Player can take part in two or more
Tournaments that overlap”

context TournamentControl inv:

tournament.players->forAll(p|

p.tournaments->forAll(t|

t <> tournament implies

not t.overlap(tournament)))

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Specifying invariants on Match

English: “A match can only involve players who
are accepted in the tournament”

context Match inv:

players->forAll(p|

p.tournaments->exists(t|

t.matches->includes(self)))

context Match inv:

players.tournaments.matches.includes(self)

Player

players

*
Tournament

Match

matches

*

*

tournaments

players *

