
U
si

n
g

 U
M

L
,

P
at

te
rn

s,
 a

n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 10,
Mapping Models to

Code

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

State of the Art:
Model-based Software Engineering

• The Vision

• During object design we build an object design model
that realizes the use case model and it is the basis for
implementation (model-driven design)

• The Reality

• Working on the object design model involves many
activities that are error prone

• Examples:

• A new parameter must be added to an operation.
Because of time pressure it is added to the source
code, but not to the object model

• Additional attributes are added to an entity object,
but the database table is not updated (as a result,
the new attributes are not persistent).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Other Object Design Activities

• Programming languages do not support the
concept of a UML association

• The associations of the object model must be
transformed into collections of object references

• Many programming languages do not support
contracts (invariants, pre and post conditions)

• Developers must therefore manually transform contract
specification into source code for detecting and handling
contract violations

• The client changes the requirements during
object design

• The developer must change the interface specification of
the involved classes

• All these object design activities cause problems,
because they need to be done manually.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

• Let us get a handle on these problems

• To do this we distinguish two kinds of spaces

• the model space and the source code space

• and 4 different types of transformations

• Model transformation,

• Forward engineering,

• Reverse engineering,

• Refactoring.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model

(in UML)

Another

System Model

Program

(in Java)

Another

Program

Yet Another

System Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Model Transformation Example

Object design model before transformation:

Object design model
after transformation:

Advertiser

+email:Address

Player

+email:Address

LeagueOwner

+email:Address

PlayerAdvertiserLeagueOwner

User

+email:Address

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model

(in UML)

Another

System Model

Program

(in Java)

Another

Program

Yet Another

System Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Refactoring Example: Pull Up Field

public class Player {

private String email;

//...

}

public class LeagueOwner {

private String eMail;

//...

}

public class Advertiser {

private String email_address;

//...

}

public class User {

private String email;

}

public class Player extends User {

//...

}

public class LeagueOwner extends User {

//...

}

public class Advertiser extends User {

//...

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Refactoring Example: Pull Up Constructor Body

public class User {

private String email;

}

public class Player extends User {

public Player(String email) {

this.email = email;

}

}

public class LeagueOwner extends

User{

public LeagueOwner(String email) {

this.email = email;

}

}

public class Advertiser extendsUser{

public Advertiser(String email) {

this.email = email;

}

}

public class User {

public User(String email) {

this.email = email;

}

}

public class Player extends User {

public Player(String email)

{

super(email);

}

}

public class LeagueOwner extends

User {

public LeagueOwner(String

email) {

super(email);

}

}

public class Advertiser extends User

{

public Advertiser(String

email) {

super(email);

}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

4 Different Types of Transformations

Source code space

Forward
engineering

Refactoring

Reverse
engineering

Model space

Model
transformation

System Model

(in UML)

Another

System Model

Program

(in Java)

Another

Program

Yet Another

System Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Forward Engineering Example

public class User {

private String email;

public String getEmail() {

return email;

}

public void setEmail(String value){

email = value;

}

public void notify(String msg) {

//

}

}

public class LeagueOwner extends User {

private int maxNumLeagues;

public int getMaxNumLeagues() {

return maxNumLeagues;

}

public void setMaxNumLeagues

(int value) {

maxNumLeagues = value;

}

}

User

Object design model before transformation:

Source code after transformation:

-email:String

+getEmail():String

+setEmail(e:String)

+notify(msg:String)

LeagueOwner

-maxNumLeagues:int

+getMaxNumLeagues():int

+setMaxNumLeagues(n:int)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

More Examples of Model Transformations
and Forward Engineering

• Model Transformations

• Goal: Optimizing the object design model

• Collapsing objects

• Delaying expensive computations

• Forward Engineering

• Goal: Implementing the object design model in a
programming language

• Mapping inheritance

• Mapping associations

• Mapping contracts to exceptions

• Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Collapsing Objects

Person SocialSecurity

number:String

Person

SSN:String

Object design model before transformation:

Object design model after transformation:

Turning an object into an attribute of another object is usually

done, if the object does not have any interesting dynamic behavior

(only get and set operations).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Examples of Model Transformations and
Forward Engineering

• Model Transformations

• Goal: Optimizing the object design model

• Collapsing objects

• Delaying expensive computations

• Forward Engineering

• Goal: Implementing the object design model in a
programming language

• Mapping inheritance

• Mapping associations

• Mapping contracts to exceptions

• Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Delaying expensive computations

Object design model before transformation:

Object design model after transformation:

Image

filename:String

paint()

data:byte[]

Image

filename:String

RealImage

data:byte[]

ImageProxy

filename:String

image

1 0..1

paint()

paint() paint()

Proxy Pattern!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Examples of Model Transformations and
Forward Engineering

• Model Transformations

• Goal: Optimizing the object design model

• Collapsing objects

• Delaying expensive computations

• Forward Engineering

• Goal: Implementing the object design model in a
programming language

• Mapping inheritance

• Mapping associations

• Mapping contracts to exceptions

• Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Forward Engineering: Mapping a UML
Model into Source Code

• Goal: We have a UML-Model with inheritance.
We want to translate it into source code

• Question: Which mechanisms in the
programming language can be used?

• Let’s focus on Java

• Java provides the following mechanisms:

• Overriding of methods (default in Java)

• Final classes

• Final methods

• Abstract methods

• Abstract classes

• Interfaces

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Realizing Inheritance in Java

• Realization of specialization and generalization

• Definition of subclasses

• Java keyword: extends

• Realization of strict inheritance

• Overriding of methods is not allowed

• Java keyword: final

• Realization of implementation inheritance

• No keyword necessary:

• Overriding of methods is default in Java

• Realization of specification inheritance

• Specification of an interface

• Java keywords: abstract, interface

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Examples of Model Transformations and
Forward Engineering

• Model Transformations

• Goal: Optimizing the object design model

✓Collapsing objects

✓Delaying expensive computations

• Forward Engineering

• Goal: Implementing the object design model in a
programming language

✓Mapping inheritance

• Mapping associations

• Mapping contracts to exceptions

• Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Mapping Associations

1. Unidirectional one-to-one association

2. Bidirectional one-to-one association

3. Bidirectional one-to-many association

4. Bidirectional many-to-many association

5. Bidirectional qualified association.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Unidirectional one-to-one association

AccountAdvertiser
11

Object design model before transformation:

Source code after transformation:

public class Advertiser {

private Account account;

public Advertiser() {

account = new Account();

}

public Account getAccount() {

return account;

}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Bidirectional one-to-one association

public class Advertiser {

/* account is initialized

* in the constructor and never

* modified. */

private Account account;

public Advertiser() {

account = new

Account(this);

}

public Account getAccount() {

return account;

}

}

AccountAdvertiser
11

Object design model before transformation:

Source code after transformation:

public class Account {

/* owner is initialized

* in the constructor and

* never modified. */

private Advertiser owner;

publicAccount(owner:Advertiser) {

this.owner = owner;

}

public Advertiser getOwner() {

return owner;

}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Bidirectional one-to-many association

public class Advertiser {

private Set accounts;

public Advertiser() {

accounts = new HashSet();

}

public void addAccount(Account a) {

accounts.add(a);

a.setOwner(this);

}

public void removeAccount(Account a) {

accounts.remove(a);

a.setOwner(null);

}

}

public class Account {

private Advertiser owner;

public void setOwner(Advertiser

newOwner) {

if (owner != newOwner) {

Advertiser old = owner;

owner = newOwner;

if (newOwner != null)

newOwner.addAccount(this);

if (oldOwner != null)

old.removeAccount(this);

}

}

}

Advertiser Account
1 *

Object design model before transformation:

Source code after transformation:

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Bidirectional many-to-many association

public class Tournament {

private List players;

public Tournament() {

players = new ArrayList();

}

public void addPlayer(Player p)

{

if (!players.contains(p)) {

players.add(p);

p.addTournament(this);

}

}

}

public class Player {

private List tournaments;

public Player() {

tournaments = new

ArrayList();

}

public void

addTournament(Tournament t) {

if

(!tournaments.contains(t)) {

tournaments.add(t);

t.addPlayer(this);

}

}

}

Tournament Player
* *

Source code after transformation

{ordered}

Object design model before transformation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Examples of Model Transformations and
Forward Engineering

• Model Transformations

• Goal: Optimizing the object design model

✓Collapsing objects

✓Delaying expensive computations

• Forward Engineering

• Goal: Implementing the object design model in a
programming language

✓Mapping inheritance

✓Mapping associations

• Mapping contracts to exceptions

• Mapping object models to tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Implementing Contract Violations

• Many object-oriented languages do not have
built-in support for contracts

• However, if they support exceptions, we can use
their exception mechanisms for signaling and
handling contract violations

• In Java we use the try-throw-catch mechanism

• Example:

• Let us assume the acceptPlayer() operation of
TournamentControl is invoked with a player who is
already part of the Tournament

• UML model (see slide 34)

• In this case acceptPlayer() in TournamentControl
should throw an exception of type KnownPlayer

• Java Source code (see slide 35).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

UML Model for Contract Violation Example

TournamentControl

Player

players*

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)

+getScore():Map

matches

*

+start:Date

+status:MatchStatus

-maNumPlayers:String

+start:Date

+end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p)

+removePlayer(p)

+isPlayerAccepted(p)

Advertiser

sponsors *

*

*

*

*

+selectSponsors(advertisers):List

+advertizeTournament()

+acceptPlayer(p)

+announceTournament()

+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Implementation in Java

public class TournamentForm {

private TournamentControl control;

private ArrayList players;

public void processPlayerApplications() {

for (Iteration i = players.iterator(); i.hasNext();) {

try {

control.acceptPlayer((Player)i.next());

}

catch (KnownPlayerException e) {

// If exception was caught, log it to console

ErrorConsole.log(e.getMessage());

}

}

}

}

TournamentControl

Player

players*

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)

+getScore():Map

matches

*

+start:Date

+status:MatchStatus

-maNumPlayers:String

+start:Date

+end:Date

1
1

*

matches*

TournamentForm

*

*

+acceptPlayer(p)

+removePlayer(p)

+isPlayerAccepted(p)

Advertiser

sponsors*

*

*

*

*

+selectSponsors(advertisers):List

+advertizeTournament()

+acceptPlayer(p)

+announceTournament()

+isPlayerOverbooked():boolean

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

The try-throw-catch Mechanism in Java
public class TournamentControl {

private Tournament tournament;

public void acceptPlayer(Player p) throws KnownPlayerException {

if (tournament.isPlayerAccepted(p)) {

throw new KnownPlayerException(p);

}

//... Normal addPlayer behavior

}

}

public class TournamentForm {

private TournamentControl control;

private ArrayList players;

public void processPlayerApplications() {

for (Iteration i = players.iterator(); i.hasNext();) {

try {

control.acceptPlayer((Player)i.next());

}

catch (KnownPlayerException e) {

// If exception was caught, log it to console

ErrorConsole.log(e.getMessage());

}

}

}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Implementing a Contract
• Check each precondition:

• Before the beginning of the method with a test to check
the precondition for that method

• Raise an exception if the precondition evaluates to false

• Check each postcondition:

• At the end of the method write a test to check the
postcondition

• Raise an exception if the postcondition evaluates to
false. If more than one postcondition is not satisfied,
raise an exception only for the first violation.

• Check each invariant:

• Check invariants at the same time when checking
preconditions and when checking postconditions

• Deal with inheritance:

• Add the checking code for preconditions and postconditions
also into methods that can be called from the class.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

A complete implementation of the
Tournament.addPlayer() contract

«precondition»

!isPlayerAccepted(p)

«invariant»

getMaxNumPlayers() > 0

«precondition»

getNumPlayers() <

getMaxNumPlayers()

Tournament

+isPlayerAccepted(p:Player):boolean

+addPlayer(p:Player)

+getMaxNumPlayers():int

-maxNumPlayers: int

+getNumPlayers():int

«postcondition»

isPlayerAccepted(p)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Adding constraints

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Heuristics: Mapping Contracts to Exceptions

• Executing checking code slows down your
program

• If it is too slow, omit the checking code for private and
protected methods

• If it is still too slow, focus on components with the
longest life

• Omit checking code for postconditions and
invariants for all other components.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Heuristics for Transformations

• For any given transformation always use the
same tool

• Keep the contracts in the source code, not in the
object design model

• Use the same names for the same objects

• Have a style guide for transformations (Martin
Fowler)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Object Design Areas

1. Service specification

• Describes precisely each class interface

2. Component selection

• Identify off-the-shelf components and additional
solution objects

3. Object model restructuring

• Transforms the object design model to improve its
understandability and extensibility

4. Object model optimization

• Transforms the object design model to address
performance criteria such as response time or memory
utilization.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Design Optimizations

• Design optimizations are an important part of
the object design phase:

• The requirements analysis model is semantically
correct but often too inefficient if directly implemented.

• Optimization activities during object design:

1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency

3. Store derived attributes to save computation time

• As an object designer you must strike a balance
between efficiency and clarity.

• Optimizations will make your models more obscure

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Design Optimization Activities

1. Add redundant associations:

• What are the most frequent operations? (Sensor data
lookup?)

• How often is the operation called? (30 times a month,
every 50 milliseconds)

2. Rearrange execution order

• Eliminate dead paths as early as possible (Use knowledge
of distributions, frequency of path traversals)

• Narrow search as soon as possible

• Check if execution order of loop should be reversed

3. Turn classes into attributes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Implement application domain classes

• To collapse or not collapse: Attribute or
association?

• Object design choices:

• Implement entity as embedded attribute

• Implement entity as separate class with associations to
other classes

• Associations are more flexible than attributes but
often introduce unnecessary indirection

• Abbott's textual analysis rules.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Optimization Activities: Collapsing Objects

Student

Matrikelnumber

ID:String

Student

Matrikelnumber:String

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

To Collapse or not to Collapse?

• Collapse a class into an attribute if the only
operations defined on the attributes are Set()
and Get().

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Design Optimizations (continued)

Store derived attributes

• Example: Define new classes to store information
locally (database cache)

• Problem with derived attributes:

• Derived attributes must be updated when base values
change.

• There are 3 ways to deal with the update problem:

• Explicit code: Implementor determines affected
derived attributes (push)

• Periodic computation: Recompute derived attribute
occasionally (pull)

• Active value: An attribute can designate set of
dependent values which are automatically updated
when active value is changed (notification, data
trigger)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Summary

• Four mapping concepts:

• Model transformation

• Forward engineering

• Refactoring

• Reverse engineering

• Model transformation and forward engineering
techniques:

• Optiziming the class model

• Mapping associations to collections

• Mapping contracts to exceptions

• Mapping class model to storage schemas

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Mapping an Object Model to a Database

• UML object models can be mapped to relational
databases:

• Some degradation occurs because all UML constructs
must be mapped to a single relational database
construct - the table

• Mapping of classes, attributes and associations

• Each class is mapped to a table

• Each class attribute is mapped onto a column in the
table

• An instance of a class represents a row in the table

• A many-to-many association is mapped into its own
table

• A one-to-many association is implemented as buried
foreign key

• Methods are not mapped.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Mapping a Class to a Table

User

+firstName:String

+login:String

+email:String

id:long firstName:text[25] login:text[8] email:text[32]

User table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Primary and Foreign Keys

• Any set of attributes that could be used to
uniquely identify any data record in a relational
table is called a candidate key

• The actual candidate key that is used in the
application to identify the records is called the
primary key

• The primary key of a table is a set of attributes whose
values uniquely identify the data records in the table

• A foreign key is an attribute (or a set of
attributes) that references the primary key of
another table.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Example for Primary and Foreign Keys

User table

Candidate key

login email

“am384” “am384@mail.org”

“js289” “john@mail.de”

firstName

“alice”

“john”

“bd” “bobd@mail.ch”“bob”

Candidate key

Primary key

League table login

“am384”

“bd”

name

“tictactoeNovice”

“tictactoeExpert”

“js289”“chessNovice”

Foreign key referencing User table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Buried Association

LeagueLeagueOwner
*1

id:long

LeagueOwner table

...
owner:long

League table

...id:long

• Associations with multiplicity “one” can be implemented
using a foreign key

For one-to-many associations we add the foreign key to the
table representing the class on the “many” end

For all other associations we can select either class at the end

of the association.

owner

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Another Example for Buried Association

Transaction

transactionID

Portfolio

portfolioID

...

*

portfolioID ...

Portfolio TableTransaction Table

transactionID portfolioID

Foreign Key

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Mapping Many-To-Many Associations

City

cityName

Airport

airportCode

airportName

* *Serves

cityName

Houston

Albany

Munich

Hamburg

City Table

airportCode

IAH

HOU

ALB

MUC

HAM

Airport Table

airportName

Intercontinental

Hobby

Albany County

Munich Airport

Hamburg Airport

cityName

Houston

Houston

Albany

Munich

Hamburg

Serves Table

airportCode

IAH

HOU

ALB

MUC

HAM

In this case we need a separate table for the association

Separate table for

the association “Serves”

Primary KeyPrimary Key

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Another Many-to-Many Association
Mapping

PlayerTournament
**

id

Tournament table

23

name ...

novice

24 expert
tournament player

TournamentPlayerAssociation

table

23 56

23 79

Player table

id

56

name ...

alice

79 john

We need the Tournament/Player association as a separate table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Realizing Inheritance

• Relational databases do not support inheritance

• Two possibilities to map an inheritance
association to a database schema

• With a separate table (”vertical mapping”)

• The attributes of the superclass and the subclasses
are mapped to different tables

• By duplicating columns (”horizontal mapping”)

• There is no table for the superclass

• Each subclass is mapped to a table containing the
attributes of the subclass and the attributes of the
superclass

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Realizing inheritance with a separate table
(Vertical mapping)

User table

id

56

name ...

zoe

79 john

role

LeagueOwner

Player

Player

User

LeagueOwner

maxNumLeagues credits

name

Player table

id

79

credits ...

126

id

LeagueOwner table

56

maxNumLeagues ...

12

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Realizing inheritance by duplicating
columns (Horizontal Mapping)

Player

User

LeagueOwner

maxNumLeagues credits

name

id

LeagueOwner table

56

maxNumLeagues ...

12

name

zoe

Player table

id

79

credits ...

126

name

john

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Comparison: Separate Tables vs
Duplicated Columns

• The trade-off is between modifiability and
response time

• How likely is a change of the superclass?

• What are the performance requirements for queries?

• Separate table mapping (Vertical mapping)

☺We can add attributes to the superclass easily by
adding a column to the superclass table

Searching for the attributes of an object requires a join
operation.

• Duplicated columns (Horizontal Mapping)

Modifying the database schema is more complex and
error-prone

☺Individual objects are not fragmented across a number
of tables, resulting in faster queries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Summary

• Four mapping concepts:

• Model transformation improves the compliance of the
object design model with a design goal

• Forward engineering improves the consistency of the
code with respect to the object design model

• Refactoring improves code readability/modifiability

• Reverse engineering discovers the design from the code.

• Model transformations and forward engineering
techniques:

• Optimizing the class model

• Mapping associations to collections

• Mapping contracts to exceptions

• Mapping class model to storage schemas.

