
U
si

ng
 U

M
L

, P
at

te
rn

s,
 a

nd
 J

av
a

O
bj

ec
t-

O
ri

en
te

d
So

ft
w

ar
e

E
ng

in
ee

ri
ng

Chapter 11, Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

ARIANE Flight 501

• Disintegration after 39 sec
• Caused by wrong data being sent

to On Board Computer
• Large correction for attitude

deviation
• Software exception in Inertial

Reference System after 36 sec.
• Overflow in conversion of a variable

from 64-bit floating point to 16-bit
signed integer

• Of 7 risky conversions, 4 were
protected

• Reasoning: physically limited, or large
margin of safety

• In case of exception: report failure
and shut down

http://www.devtopics.com/20-famous-software-disasters-part-4/
http://en.wikipedia.org/wiki/List_of_software_bugs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Terminology

• Failure: Any deviation of the observed behavior
from the specified behavior

• Erroneous state (error): The system is in a state
such that further processing by the system can
lead to a failure

• Fault: The mechanical or algorithmic cause of an
error (“bug”)

• Validation: Activity of checking for deviations
between the observed behavior of a system and
its specification.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Error – Fault - Failure

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Error – Fault - Failure

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Examples of Faults and Errors

• Faults in the Interface
specification

• Mismatch between
what the client needs
and what the server
offers

• Mismatch between
requirements and
implementation

• Algorithmic Faults
• Missing initialization
• Incorrect branching

condition
• Missing test for null

• Mechanical Faults
(very hard to find)

• Operating temperature
outside of equipment
specification

• Errors
• Null reference errors
• Concurrency errors
• Exceptions.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Another View on How to Deal with Faults

• Fault avoidance
• Use methodology to reduce complexity
• Use configuration management to prevent inconsistency
• Apply verification to prevent algorithmic faults
• Use Reviews

• Fault detection
• Testing: Activity to provoke failures in a planned way
• Debugging: Find and remove the cause (Faults) of an

observed failure
• Monitoring: Deliver information about state => Used

during debugging
• Fault tolerance

• Exception handling
• Modular redundancy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Taxonomy for Fault Handling Techniques

Fault
Handling

Fault
Avoidance

Fault
Detection

Fault
Tolerance

Verification

Configuration
Management

Methodology
Atomic

Transactions
Modular

Redundancy

System
Testing

Integration
Testing

Unit
Testing

Testing Debugging

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Observations

• It is impossible to completely test any nontrivial
module or system

• Practical limitations: Complete testing is prohibitive in
time and cost

• Theoretical limitations: e.g. Halting problem
• “Testing can only show the presence of bugs,

not their absence” (Dijkstra).
• Testing is not for free

=> Define your goals and priorities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Testing takes creativity

• Development vs Testing mentality
• To develop an effective test, one must have:

• Detailed understanding of the system
• Application and solution domain knowledge
• Knowledge of the testing techniques
• Skill to apply these techniques

• Testing is done best by independent testers
• We often develop a certain mental attitude that the

program should behave in a certain way when in fact it
does not

• Programmers often stick to the data set that makes
the program work

• A program often does not work when tried by
somebody else.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Unit test vs Integration Test

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Types of Testing

• Unit Testing
• Individual component (class or subsystem)
• Carried out by developers
• Goal: Confirm that the component or subsystem is

correctly coded and carries out the intended
functionality

• Integration Testing
• Groups of subsystems (collection of subsystems) and

eventually the entire system
• Carried out by development organization
• Goal: Test the interfaces among the subsystems.

Unit
Testin

g

Accept
ance

Testin
g

Integr
ation
Testin

g

Syste
m

Testin
g

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Types of Testing continued...

• System Testing
• The entire system
• Carried out by development organization
• Goal: Determine if the system meets the requirements

(functional and nonfunctional)
• Acceptance Testing

• Evaluates the system delivered by developers
• Carried out by the client. May involve executing typical

transactions on site on a trial basis
• Goal: Demonstrate that the system meets the

requirements and is ready to use.

Unit
Testin

g

Accept
ance

Testin
g

Integr
ation
Testin

g

Syste
m

Testin
g

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Testing Activities

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

Requirements
Analysis

Document

Client
Expectation

System
Design

Document

Object
Design

Document

Development Organization Client

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

- Functional testing
- Performance testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

When should you write a test?

• Traditionally after the source code is written

• In XP before the source code written
• Test-Driven Development Cycle

• Add a test
• Run the automated tests

=> see the new one fail
• Write some code
• Run the automated tests

=> see them succeed
• Refactor code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

TDD Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

JUnit: Overview
• A Java framework for writing and running unit tests

• Test cases and fixtures
• Test suites
• Test runner

• Written by Kent Beck and Erich Gamma
• Written with “test first” and pattern-based development in

mind
• Tests written before code
• Allows for regression testing
• Facilitates refactoring

• JUnit is Open Source
• www.junit.org
• JUnit Version 4, released Mar 2006

Unit
Testin

g

Accept
ance

Testin
g

Integr
ation
Testin

g

Syste
m

Testin
g

http://wwwbruegge.informatik.tu-muenchen.de/twiki/bin/view/Lehrstuhl/KMinSESoSe2007

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Junit Example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

An example: Testing MyList

• Unit to be tested
• MyList

• Methods under test
• add()
• remove()
• contains()
• size()

• Concrete Test case
• MyListTestCase

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Writing TestCases in JUnit
public class MyListTestCase extends TestCase {

public MyListTestCase(String name) {
super(name);

}
public void testAdd() {
 // Set up the test

List aList = new MyList();
String anElement = “a string”;

 // Perform the test
aList.add(anElement);

 // Check if test succeeded
assertTrue(aList.size() == 1);
assertTrue(aList.contains(anElement));

}
protected void runTest() {

testAdd();
}
}

Test

run(TestResult)

MyListTestCase

setUp()
tearDown()
runTest()
testAdd()
testRemove()

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

MyList

add()
remove()
contains()
size()

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Writing Fixtures and Test Cases
public class MyListTestCase extends TestCase {
// …
private MyList aList;
private String anElement;
public void setUp() {

aList = new MyList();
anElement = “a string”;

}

public void testAdd() {
aList.add(anElement);
assertTrue(aList.size() == 1);
assertTrue(aList.contains(anElement));

}

public void testRemove() {
aList.add(anElement);
aList.remove(anElement);
assertTrue(aList.size() == 0);
assertFalse(aList.contains(anElement));

}

Test Fixture

Test Case

Test Case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Integration Testing

• The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

• Goal: Test all interfaces between subsystems
and the interaction of subsystems

• The Integration testing strategy determines the
order in which the subsystems are selected for
testing and integration.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Why do we do integration testing?

• Unit tests only test the unit in isolation

• Many failures result from faults in the interaction of
subsystems

• Often many Off-the-shelf components are used that
cannot be unit tested

• Without integration testing the system test will be very
time consuming

• Failures that are not discovered in integration testing will
be discovered after the system is deployed and can be
very expensive.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Stubs and drivers

• Driver:
• Partial implementation of a component,
that calls the TestedUnit
• Controls the test cases

• Stub:
• A component, the TestedUnit

depends on
• Partial implementation of components on
which the tested component depends
• Returns fake values.

Driver

Tested
Unit

Stub

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Example: A 3-Layer-Design

Layer I

Layer II

Layer III

Spread
SheetVie

w

A

Calculato
r

C

BinaryFil
e

Storage

E

XMLFile
Storage

F

Currency
DataBase

G

Currency
Converter

D

Data
Model

B

A

C

E F G

DB

Spread
SheetView

BinaryFile
Storage

Entity
Model

A

E F

Currency
DataBase

G

Currency
Converter

D B

Calculator

C

XMLFile
Storage

(Spreadsheet)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

A

C

E F G

DB

Big-Bang Approach

Test
A

Test
B

Test
G

Test
F

Test
E

Test
C

Test
D

Test
A, B,
C, D,

E, F, G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Bottom-up Testing Strategy

• The subsystems in the lowest layer of the call
hierarchy are tested individually

• Then the next subsystems are tested that call the
previously tested subsystems

• This is repeated until all subsystems are included
• Drivers are needed.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

A

C

E F G

DB

Bottom-up Integration A

Test
A, B,
C, D,

E, F, G

E

Test
E

F

Test
F

B

Test B,
E, F

C

Test
C

D

Test
D,G

G

Test
G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Pros and Cons of Bottom-Up Integration
Testing

• Con:
• Tests the most important subsystem (user interface)

last
• Drivers needed

• Pro
• No stubs needed
• Useful for integration testing of the following systems

• Object-oriented systems
• Real-time systems
• Systems with strict performance requirements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Top-down Testing Strategy

• Test the top layer or the controlling subsystem
first

• Then combine all the subsystems that are called
by the tested subsystems and test the resulting
collection of subsystems

• Do this until all subsystems are incorporated
into the test

• Stubs are needed to do the testing.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Top-down Integration

Test
A, B,
C, D,

E, F, G

All LayersLayer I + II

Test A,
B, C, D

Layer I

Test
A

A

E F

B C D

G

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Pros and Cons of Top-down Integration
Testing
Pro
• Test cases can be defined in terms of the

functionality of the system (functional
requirements)

• No drivers needed

Cons
• Writing stubs is difficult: Stubs must allow all

possible conditions to be tested.
• Large number of stubs may be required,

especially if the lowest level of the system
contains many methods.

• Some interfaces are not tested separately.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Continuous Testing

• Continuous build:
• Build from day one
• Test from day one
• Integrate from day one
⇒ System is always runnable

• Requires integrated tool support:
• Continuous build server
• Automated tests with high coverage
• Tool supported refactoring
• Software configuration management
• Issue tracking.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

System Testing

• Functional Testing
• Validates functional requirements

• Performance Testing
• Validates non-functional requirements

• Acceptance Testing
• Validates clients expectations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

.

Functional Testing

Goal: Test functionality of system
• Test cases are designed from the requirements

analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

• The system is treated as black box
• Unit test cases can be reused, but new test

cases have to be developed as well.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Performance Testing

Goal: Try to violate non-functional requirements
• Test how the system behaves when overloaded.

• Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

• Try unusual orders of execution
• Call a receive() before send()

• Check the system’s response to large volumes of
data

• If the system is supposed to handle 1000 items, try it
with 1001 items.

• What is the amount of time spent in different
use cases?

• Are typical cases executed in a timely fashion?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Types of Performance Testing

• Stress Testing
• Stress limits of system

• Volume testing
• Test what happens if large

amounts of data are handled
• Configuration testing

• Test the various software and
hardware configurations

• Compatibility test
• Test backward compatibility with

existing systems
• Timing testing

• Evaluate response times and
time to perform a function

• Security testing
• Try to violate security

requirements
• Environmental test

• Test tolerances for heat,
humidity, motion

• Quality testing
• Test reliability, maintain-

ability & availability
• Recovery testing

• Test system’s response to
presence of errors or loss
of data

• Human factors testing
• Test with end users.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Acceptance Testing

• Goal: Demonstrate system is
ready for operational use

• Choice of tests is made by
client

• Many tests can be taken
from integration testing

• Acceptance test is
performed by the client, not
by the developer.

• Alpha test:
• Client uses the software

at the developer’s
environment.

• Software used in a
controlled setting, with
the developer always
ready to fix bugs.

• Beta test:
• Conducted at client’s

environment (developer is
not present)

• Software gets a realistic
workout in target environ-
ment

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Summary

• Testing is still a black art, but many rules and
heuristics are available

• Testing consists of
• Unit testing
• Integration testing
• System testing

• Acceptance testing
• Testing has its own lifecycle

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Final Exam

Chapter 1 - Introduction
Chapter 2 - Modeling with UML
Chapter 3 - Project Organization and Communication
Chapter 4 - Requirements Elicitation
Chapter 5 - Analysis – Object / Dynamic Model
Chapter 6 - System Design: Decomposing The System
Chapter 7 - System Design: Addressing Design Goals
Chapter 8 - Object Design: Reusing Pattern Solutions
Chapter 8 & Appendix A - Object Design: Design Patterns I
Chapter 9 - Object Design: Specifying Interfaces / OCL
Chapter 10 - Mapping Models to Code
Chapter 11 – Testing / Integration & System Testing

•Closed Book

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Final Exam tips

• Go through sample final/midterm exam
• Go through book first /read through slides
• UML Basics
• Go through few UML exercises on your own (in

paper) e.g : Use case, state, activity, sequence
diagrams etc

• Go through design patterns on your own
• Go through model transformations on your own

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Term Project Tips

• Make sure to go through the comments that your TA provided in
the first iteration.

• Make sure to implement my comments I delivered in class
related to the reports in general (Especially related to the choose
of correct and informative UML diagrams)

• Make sure to implement my comments in the private demos
• Make sure all the slides / diagrams in the reports are legible
• Make sure you have the necessary cabling before the demo and

be on time.
• Make sure you carefully read the instructions related to the

report and presentation formats
• For majority of the projects, the current form of implementations

is very basic which is normal for the first iteration. For the
second iteration, I have much higher expectations.

• For the second iteration, you are expected to update/enrich
requirements/design/implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Term Project

Requirements (25 points)
- Use case (3 points)
- NFR (2 points)
- Activity (4 points)
- State (4 points)
- Sequence (4 points)
- Class (4 points)
- UI mockups (4 points)

Design (25 points)
- High-level architecture (8 points)
- Design goals (2 points)
- Class Diagram (5 points)
- Design patterns (10 points)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Term Project

• Implementation (35 points)
• Criteria: Number and complexity of features, quality of

implementation decisions, code comments, final report
(user guide and build instructions), code style, naming
conventions,, etc.

• Demo and presentation (15 points)
• Criteria: Flow and quality of the presentation, Demo

performance, creativity of demo videos etc.
• Individual performance factors

• Criteria: Peer review grades, GitHub records, individual
presentation and QA performance etc.

• Perform 2 full rehearses for final demo
• Emphasize your strong attributes

