Chapter 11, Testing

BAR[pUR ‘suraned “TIAN SUIs)
SULIUISUT 3IBM)JOS PIIIUALI)-}NRIqO

ARIANE Flight 501

« Disintegration after 39 sec

« Caused by wrong data being sent
to On Board Computer

e Large correction for attitude
deviation

« Software exception in Inertial
Reference System after 36 sec.

» Overflow in conversion of a variable
from 64-bit floating point to 16-bit
5|1gnec_l integer

e Of 7 risky conversions, 4 were

rotected _ o
. easqnln?: ph¥5|cally limited, or large
margin of safety

« In case of exception: report failure
and shut down

http://www.devtopics.com/20-famous-software-disasters-part-4/
http://en.wikipedia.org/wiki/List_of_software_bugs

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Terminology

e Failure: Any deviation of the observed behavior
from the specified behavior

 Erroneous state (error): The system is in a state
such that further processing by the system can
lead to a failure

e Fault: The mechanical or algorithmic cause of an
error ("bug”)

« Validation: Activity of checking for deviations
between the observed behavior of a system and
its specification.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Error — Fault - Failure

Error - Fault - Failure

A person makes
an error ...

... that creates a
fault in the
software ...

... that can cause
= a failure
fé?ﬁigiﬁ::i:- in operation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Error — Fault - Failure

e oftware failures

-
-~

7 Happened when software
| fault is activated
e ooftware faults
/ Improper functioning of SW in
carrying out general or specific

f
f

(application

Software errors

Grammatical error in line of codes;
Logical error in carrying out clients’ requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Examples of Faults and Errors

e Mechanical Faults
(very hard to find)

« Operating temperature
outside of equipment
specification

e Errors

* Null reference errors

e Concurrency errors

* Exceptions.

e Faults in the Interface
specification
 Mismatch between
what the client needs

and what the server
offers

 Mismatch between
requirements and
implementation

» Algorithmic Faults
» Missing initialization
» Incorrect branching
condition

» Missing test for null

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Another View on How to Deal with Faults

e Fault avoidance
« Use methodology to reduce complexity
« Use configuration management to prevent inconsistency
« Apply verification to prevent algorithmic faults
* Use Reviews

e Fault detection
» Testing: Activity to provoke failures in a planned way

° Debuggin%: Find and remove the cause (Faults) of an
observed failure

« Monitoring: Deliver information about state => Used
during debugging

 Fault tolerance

« Exception handling
 Modular redundancy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Taxonomy for Fault Handling Techniques

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Fault
Handling
/\
Fault Fault Fault
Avoidance Detection Tolerance
/\ /\ | |
Configuration Atomic Modular
Methodology Management Transactions Redundancy
Verification
I]
Testing ﬁ Debugging
~ ‘ 4
Unit Integration System
Testing Testing Testing

Observations

e It is impossible to completely test any nontrivial
module or system

» Practical limitations: Complete testing is prohibitive in
time and cost

» Theoretical limitations: e.g. Halting problem

e "Testing can only show the presence of bugs,
not their absence” (Dijkstra).

e Testing is not for free

=> Define your goals and priorities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Testing takes creativity

 Development vs Testing mentality

 To develop an effective test, one must have:
e Detailed understanding of the system
« Application and solution domain knowledge
« Knowledge of the testing techniques
« Skill to apply these techniques

e Testing is done best by independent testers

* We often develop a certain mental attitude that the
program should behave in a certain way when in fact it
does not

« Programmers often stick to the data set that makes
the program work

« A program often does not work when tried by
somebody else.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Unit test vs Integration Test

2 UNIT TESTS 0 INTEGRATION TESTS

via reddit.com/r/programmerhumor

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Syste Accept
ation m ance
estin Testin Testin
g g g

Types of Testing

e Unit Testing
» Individual component (class or subsystem)
« Carried out by developers

e Goal: Confirm that the component or subsystem is
correctly coded and carries out the intended
functionality

 Integration Testing

* Groups of subsystems (collection of subsystems) and
eventually the entire system

» Carried out by development organization
e Goal: Test the interfaces among the subsystems.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Accept
ance
Testin
g

Types of Testing continued...

e System Testing
* The entire system
» Carried out by development organization

e Goal: Determine if the system meets the requirements
(functional and nonfunctional)

e Acceptance Testing
« Evaluates the system delivered by developers

« Carried out by the client. May involve executing typical
transactions on site on a trial basis

» Goal: Demonstrate that the system meets the
requirements and is ready to use.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

[) ege Unit Integration System Acceptance
Testing Activities

Object System Requirements .
. . . Client
Design Design Analysis Expectation
Document Document Document P
Unit Integration System Acceptance
Testing Testing Testing Testing
- Functional testing
- Performance testing
Development Organization Client

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

When should you write a test?

 Traditionally after the source code is written

 In XP before the source code written
» Test-Driven Development Cycle
« Add a test
« Run the automated tests
=> see the new one fail
 Write some code
« Run the automated tests
=> see them succeed
« Refactor code.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

15

TDD Example

6e public void testSumUp () {

7 MyClass myClass = new MyClass();

8 assertEquals (5, myClass.sumUp (2, 3));

9 assertEquals (92, myClass.sumUp(l, 2, ©));

5 public class TestMyClass extends TestCase {

10 1

11

12% public void testSumUpOverSize () {

13 MyClass myClass = new MyClass();

14 tey: |

15 myClass.sumUp (Integer.MAX VALUE, Integer.MAX VALUE);
16 myClass.sumUp (Integer.MIN VALUE, Integer.MIN VALUE);
17 fail ({("Exception should be thrown here™);

18 } catch (ArithmeticException e) {

19 // do nothing

20 }

2.1

22 }

2.3 ¥

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Integr Syste Accept

Y PY ation m ance}

[Testin Testin Testin
JUnit: Overview 2 P

A Java framework for writing and running unit tests
« Test cases and fixtures
« Test suites
e Test runner
Written by Kent Beck and Erich Gamma
Written with “test first” and pattern-based development in
mind
« Tests written before code
« Allows for regression testing
 Facilitates refactoring
JUnit is Open Source
« WWW.]junit.org
* JUnit Version 4, released Mar 2006

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

http://wwwbruegge.informatik.tu-muenchen.de/twiki/bin/view/Lehrstuhl/KMinSESoSe2007

Junit Example

Vi B W N -

00 N O

package junitTutorial;

public class Airthematic {
g public int sum(int a,int b){
return a+b;
}

11< @Test

12 public void testAirthematicTest() {

13 // assert statements

14 assertEquals("1@ +1© must be 20", 20, airthematic.sum(10, 10))
15 assertEquals("2@ +2@ must be 40", 40, airthematic.sum(20, 20))
16 assertEquals("3@ +1© must be 40", 40, airthematic.sum(30, 10))
17

18 }

19 }

20

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

An example: Testing MyList

 Unit to be tested
e MyList

« Methods under test
« add()
 remove()
e contains()
 size()

 Concrete Test case
* MyListTestCase

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

19

Writing TestCases in JUnit

Case {

public MyListTestCase(String name) {

}

super(name);

public void testAdd() {

(S

[

V.

Test

/ Sl Up L;IE LSSL
List aList = new MyList();
String anElement = “a string”;

run(TestResult)

TestCase

77 Pertorm tne test
aList.add(anElement);

tegtName:String

se

&

rul\(TestResuIt)

LL herl{ 1t fost cnrre.e.d_er*l

C

assertTrue(aList.size() == 1);

totected void runTest() {

assertTrue(aList.contains(anElement));

TthTest()

MyListTestCase

TestSuite

run(TestResult)
addTest()

testAdd();

Bernd Bruegge & Allen H. Dutoit

setUp()
tearDown()
runTest()
testAdd()

testRemove()

Object-Oriented Software Engineering: Using UML, Patterns, and Java

MyList

add()
remove()
contains()
size()

20

Writing Fixtures and Test Cases

public class MyListTestCase extends TestCase {
/] ...

private Mylist alList;

private String anElement;

public void setUp() {
aList = new MyList();
anElement = “a string”;

Test Fixture

}

—pubiicvoid-testAdd(
aList.add(anElement);
assertTrue(aList.size() == 1);
assertTrue(aList.contains(anElement));

}

— Test Case

aList.add(anElement);
aList.remove(anElement);
assertTrue(aList.size() == 0);
assertFalse(aList.contains(anElement));

— Test Case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

21

Integration Testing

 The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

« Goal: Test all interfaces between subsystems
and the interaction of subsystems

 The Integration testing strategy determines the
order in which the subsystems are selected for
testing and integration.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Why do we do integration testing?

* Unit tests only test the unit in isolation

 Many failures result from faults in the interaction of
subsystems

e Often many Off-the-shelf components are used that
cannot be unit tested

o Without integration testing the system test will be very
time consuming

» Failures that are not discovered in integration testing will
be discovered after the system is deployed and can be
vVery expensive.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Stubs and drivers

e Driver:
« Partial implementation of a component,
that calls the TestedUnit
« Controls the test cases

e Stub:

« A component, the TestedUnit
depends on

» Partial implementation of components on
which the tested component depends
« Returns fake values.

Driver

Tested
Unit

Stub

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

24

Example: A 3-Layer-Design (Spreadsheet)

A A L

Spread
SheetView
Layer I
_ 7 .
B A C A D A
Entity Calculator Currency Layer I1
Model Converter
S—
« Y
E A F £ G
BinaryFile XMLFile Currency Layer 111
Storage Storage DataBase

o

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

25

Big-Bang Approach

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

26

Boitom-up Testing Sirategy

« The subsystems in the lowest layer of the call
hierarchy are tested individually

« Then the next subsystems are tested that call the
previously tested subsystems

* This is repeated until all subsystems are included
e Drivers are needed.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Boitom-up Integration

a s

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

28

Pros and Cons of Bottom-Up Integration
Testing

e Con:

» Tests the most important subsystem (user interface)
last

e Drivers needed

 Pro
* No stubs needed
« Useful for integration testing of the following systems
e Object-oriented systems
« Real-time systems
« Systems with strict performance requirements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Top-down Testing Strategy

e Test the top layer or the controlling subsystem
first

« Then combine all the subsystems that are called
by the tested subsystems and test the resulting
collection of subsystems

e Do this until all subsystems are incorporated
into the test

e Stubs are needed to do the testing.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Top-down Integration

o s

Layer I Layer I + 11 All Layers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

31

Pros and Cons of Top-down Integration
Testing

Pro

» Test cases can be defined in terms of the
functionality of the system (functional
requirements)

 No drivers needed

Cons

e Writing stubs is difficult: Stubs must allow all
possible conditions to be tested.

 Large number of stubs may be required,
especially if the lowest level of the system
contains many methods.

« Some interfaces are not tested separately.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

32

Continuous Testing

e Continuous build:
» Build from day one
» Test from day one
» Integrate from day one
- System is always runnable

* Requires integrated tool support:
» Continuous build server
« Automated tests with high coverage
» Tool supported refactoring
» Software configuration management
» Issue tracking.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

33

System Testing

* Functional Testing
» Validates functional requirements

« Performance Testing
» Validates non-functional requirements

» Acceptance Testing
 Validates clients expectations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

34

Functional Testing

Goal: Test functionality of system

» Test cases are designed from the requirements
analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

« The system is treated as black box

« Unit test cases can be reused, but new test
cases have to be developed as well.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Performance Testing

Goal: Try to violate non-functional requirements

 Test how the system behaves when overloaded.

« Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

 Try unusual orders of execution
« Call a receive() before send()

. gheck the system’s response to large volumes of
ata

 If the system is supposed to handle 1000 items, try it
with 1001 items.

« What is the amount of time spent in different
use cases?

* Are typical cases executed in a timely fashion?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Types of Performance Testing

Stress Testing Security testing
« Stress limits of system « Try to violate security
Volume testing requirements

- Test what happens if large Environmental test
amounts of data are handled - Test tolerances for heat,

Configuration testing humidity, motion

. Test the various software and Quality te_stlrlg o
hardware configurations - Test reliability, maintain-

Compatibility test ability & availability
. Test backward compatibility with * RECOvery testing

existing systems « Test system’s response to
I : presence of errors or loss
Timing testing of data

* Evaluate response times and
time to perform a function

Human factors testing
» Test with end users.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Acceptance Testing

 Goal: Demonstrate system is ¢ Alpha test:

ready for operational use - Client uses the software
« Choice of tests is made by at the developer’s
client environment.
« Many tests can be taken « Software used in a
from integration testing controlled setting, with
. Acceptance test is the developer always
performed by the client, not ready to fix bugs.
by the developer. Beta test:

e Conducted at client’s
environment (developer is
not present)

« Software gets a realistic
workout in target environ-
ment

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Summary

e Testing is still a black art, but many rules and
heuristics are available
e Testing consists of
« Unit testing
« Integration testing
« System testing
« Acceptance testing

e Testing has its own lifecycle

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

39

roblem
s%STEﬁEﬁt

(asissnetti.o)

*“‘~\\\\\\\\‘£$F

nonfunctional functional

“requirements mode |

S analysis (ch.5))

class diagram analysis object
model

use case diagram

state machine

diagram

dynamic _model

—
-q-'__\

——

System design
(Ch.6 & 7)

sequence diagram

——__4=& subsystem
decomposition

system design
“object model

design goals

Object design
(Ch.8 & 9)

™

object design

class diagram

model

mpTementation
(Ch. 10)

source code

442-—"""'——.—.
(Test (Ch.11))

—=u] deliverable system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

40

Final Exam

Chapter 1 - Introduction

Chapter 2 - Modeling with UML

Chapter 3 - Project Organization and Communication
Chapter 4 - Requirements Elicitation

Chapter 5 - Analysis — Object / Dynamic Model
Chapter 6 - System Design: Decomposing The System
Chapter 7 - System Design: Addressing Design Goals
Chapter 8 - Object Design: Reusing Pattern Solutions
Chapter 8 & Appendix A - Object Design: Design Patterns I
Chapter 9 - Object Design: Specifying Interfaces / OCL
Chapter 10 - Mapping Models to Code

Chapter 11 - Testing / Integration & System Testing

«Closed Book

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Final Exam tips

 Go through sample final/midterm exam
e Go through book first /read through slides

« UML Basics

e Go through few UML exercises on your own (in
paper) e.g : Use case, state, activity, sequence
diagrams etc

e Go through design patterns on your own
e Go through model transformations on your own

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Term Project Tips

« Make sure to go through the comments that your TA provided in
the first iteration.

 Make sure to implement my comments I delivered in class
related to the reports in general (Especially related to the choose
of correct and informative UML diagrams)

« Make sure to implement my comments in the private demos
« Make sure all the slides / diagrams in the reports are legible

« Make sure you have the necessary cabling before the demo and
be on time.

« Make sure you carefully read the instructions related to the
report and presentation formats

« For majority of the projects, the current form of implementations
is very basic which is normal for the first iteration. For the
second iteration, I have much higher expectations.

 For the second iteration, you are expected to update/enrich
requirements/design/implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Term Project

Requirements (25 points)

- Use case (3 points)
- NFR (2 points)
- Activity (4 points)
- State (4 points)
- Sequence (4 points)
- Class (4 points)
UI mockups (4 points)
De5|gn (25 points)

- High-level architecture (8 points)
- Design goals (2 points)

- Class Diagram (5 points)

- Design patterns (10 points)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Term Project

Implementation (35 points)

» Criteria: Number and complexity of features, quality of
implementation decisions, code comments, final report
(user guide and build instructions), code style, naming
conventions,, etc.

Demo and presentation (15 points)

» Criteria: Flow and quality of the presentation, Demo
performance, creativity of demo videos etc.

Individual performance factors

» Criteria: Peer review grades, GitHub records, individual
presentation and QA performance etc.

Perform 2 full rehearses for final demo
Emphasize your strong attributes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

