
CS 202, Fall 2017
Homework #1 – Algorithm Efficiency and Sorting

Due Date: October 16, 2017

Important Notes

Please do not start the assignment before reading these notes.

• Before 23:55, October 16, upload your solutions in a single ZIP archive using Moodle
submission form. Name the file as student_id.zip.

• Your ZIP archive should contain the following files:

– hw1.pdf, the file containing the answers to Questions 1 and 3,

– sorting.h and sorting.cpp files which contain the C++ source codes, and

– readme.txt, the file containing anything important on the compilation and
execution of your program in Question 2.

– Do not forget to put your name, student id, and section number in all of these
files. Well comment your implementation. Add a header as in Listing 1 to the
beginning of each file:

Listing 1: Header style
/**
* Title: Algorithm Efficiency and Sorting
* Author: Name Surname
* ID: 21000000
* Section: 0
* Assignment: 1
* Description: description of your code
*/

– Do not put any unnecessary files such as the auxiliary files generated from your
favorite IDE. Be careful to avoid using any OS dependent utilities (for example
to measure the time).

– You should prepare the answers of Questions 1 and 3 using a word

processor (in other words, do not submit images of handwritten an-

swers).

1

https://moodle.bilkent.edu.tr/2017-2018-fall/mod/assignment/view.php?id=15812
https://moodle.bilkent.edu.tr/2017-2018-fall/mod/assignment/view.php?id=15812

Fundamental Structures of Computer Science II

• Although you may use any platform or any operating system to implement your
algorithms and obtain your experimental results, your code should work in a Linux
environment (specifically using the g++ compiler). We will compile your programs
with the g++ compiler and test your codes in a Linux environment. Thus, you may
lose significant amount of points if your C++ code does not compile or execute in
a Linux environment.

• This homework will be graded by your TA, Ilkin Safarli. Thus, please contact him
directly for any homework related questions.

Attention: For this assignment, you are allowed to use the codes given in our text-
book and/or our lecture slides. However, you ARE NOT ALLOWED to use any codes
from other sources (including the codes given in other textbooks, found on the Internet,
belonging to your classmates, etc.). Furthermore, you ARE NOT ALLOWED to use any
data structure or algorithm related function from the C++ standard template library
(STL).

Do not forget that plagiarism and cheating will be heavily punished. Please

do the homework yourself.

Question 1 – 25 points

(a) [10 points] Sort the functions below in the increasing order of their asymptotic com-
plexity: f1(n) = 10π, f2(n) = n, f3(n) =

√
n, f4(n) = log n, f5(n) = n0.0001,

f6(n) = n log n, f7(n) = 2n, f8(n) = n!, f9(n) = log(n!), f10(n) = nn

(b) [10 points] Express the running time complexity (using asymptotic notation) of each
loop separately. Show all the steps clearly.

Listing 2: Loops
// Loop A - 3 points
for (i = 1; i <= n; i++)

for (j = 1; j <= i; j++)
sum = sum + 1;

// Loop B - 3 points
i = 1;
while (i < n) {

for (j = 1; j <= i; j++)
sum = sum + 1;

i *= 2;
}

Page 2

mailto:ilkin.safarli@bilkent.edu.tr?subject=CS 202 - Homework 1
mailto:ilkin.safarli@bilkent.edu.tr?subject=CS 202 - Homework 1

Fundamental Structures of Computer Science II

// Loop C - 4 points
i = 1;
while (i < n) {

j = 1;
while (j < i*i) {

for (k = 1; k <= n; k++)
sum = sum + 1;

j *= 2;
}
i *= 2;

}

(c) [5 points] Write the recurrence relation of merge sort and quick sort algorithms for
the worst case, and solve them. Show all the steps clearly.

Question 2 – 50 points

(a) [35 points] You will implement insertion sort, merge sort, and quick sort algorithms.
Your functions should take an array of integers and the size of that array and then
sort it in increasing order. Add two counters to count the number of key comparisons
and the number of data moves during sorting. For the quick sort algorithm, you are
supposed to take the last element of the array as pivot. Your functions should have
the following prototypes:

void insertionSort(int *arr, int size, int &compCount, int &moveCount);

void mergeSort(int *arr, int size, int &compCount, int &moveCount);

void quickSort(int *arr, int size, int &compCount, int &moveCount);

For key comparisons, you should count each comparison like k1 < k2 as one comparison,

where k1 and k2 correspond to the value of an array entry (that is, they are either an array

entry like arr[i] or a local variable that temporarily keeps the value of an array entry).

For data moves, you should count each assignment as one move, where either the right-hand

side of this assignment or its left-hand side or both of its sides correspond to the value of an

array entry.

(b) [15 points] In this part, you will analyze the performance of the sorting algorithms that

you implemented in part a. Write a function named performanceAnalysis which does the

followings:

1. Create three identical arrays with random 1000 integers (use rand from cstdlib). Use

one of the arrays for the insertion sort, another one for the merge sort, and the last one

for the quick sort algorithm. Output the elapsed time in milliseconds, the number of key

comparisons, the number of data moves (use clock from ctime for calculating elapsed

time). Repeat the experiment for the following sizes: {5000, 10000, 15000, 20000}

Page 3

Fundamental Structures of Computer Science II

2. Now, instead of creating arrays of random integers, create arrays with elements in as-

cending order and repeat the steps in part b1.

3. Lastly, instead of creating arrays of random integers, create arrays with elements in

descending order and repeat the steps in part b1.

When performanceAnalysis function is called, it needs to produce an output similar to the

following one:

Listing 3: Sample output
Part b1 - Performance analysis of random integers array
--

Elapsed Time compCount moveCount
Array Size: 1000
Insertion Sort
Merge Sort
Quick Sort
--

Elapsed Time compCount moveCount
Array Size: 5000
Insertion Sort
Merge Sort
Quick Sort
...

Part b2 - Performance analysis of ascending integers array
--

Elapsed Time compCount moveCount
Array Size: 1000
Insertion Sort
Merge Sort
Quick Sort
...

All of your code related to this question, goes into sorting.cpp file. You are free to
write helper functions to accomplish the tasks required from the above functions. Use
the given file names and function signatures during implementation. You will not submit
a main.cpp file, instead we will use our main.cpp file during evaluation. Therefore, it is
important to use given file names and function signatures.

A minimal main.cpp file and sorting.h header file are provided with the assignment.
Please make sure that your solution works with this main.cpp file.

Page 4

Fundamental Structures of Computer Science II

Question 3 – 25 points

After running your programs, you are expected to prepare a 3− 4 page report about the
experimental results that you obtained in Question 2 b. First, create a table similar to
Table 1 and fill it with the results you obtained. 1

Table 1: Sorting Algorithms Performance Table
Array

Elapsed Time (in milliseconds) Number of Comparisons Number of Data Moves

Insertion Sort Merge Sort Quick Sort Insertion Sort Merge Sort Quick Sort Insertion Sort Merge Sort Quick Sort

R1K

R10K

R20K

A1K

A10K

A20K

D1K

D10K

D20K

Then, with the help of a spreadsheet program (Microsoft Excel, Matlab or other tools),
plot elapsed time versus the size of array. Note that you will need to plot 3 figures, one
for each array type (ascending, descending and random). A sample figure is given below
(these values do not reflect real values):

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

E
la

p
s
e
d

 t
im

e
 (

m
s
)

Array size

Performance of Sorting Algorithms

Insertion Sort

Merge Sort

Quick Sort

Figure 1: Performance analysis for array with random elements
1R1K - array with 1000 random integers, A1K - array of 1000 ascending integers, D1K - array of

1000 descending integers.

Page 5

Fundamental Structures of Computer Science II

Interpret and compare your empirical results with the theoretical ones for each sorting
algorithm. Explain any differences between the empirical and theoretical results, if any.
Finally, answer the following questions:

• When should insertion sort algorithm be preferred over merge sort and quick sort
algorithms?

• When should merge sort algorithm be preferred over quick sort algorithm?

Page 6

	Important Notes
	Question 1 – 25 points
	Question 2 – 50 points
	Question 3 – 25 points

