
CS 202, Fall 2017
Homework #2 – Binary Search Trees

Due Date: November 6, 2017

Important Notes

Please do not start the assignment before reading these notes.

• Before 23:55, November 6, upload your solutions in a single ZIP archive using
Moodle submission form. Name the file as studentID.zip.

• Your ZIP archive should contain the following files:

– hw2.pdf, the file containing the answers to Questions 1 and 3,

– AbBinaryNode.h, AbBinaryNode.cpp, AbBST.h, AbBST.cpp, PbBinaryNode.h,
PbBinaryNode.cpp, PbBST.h, PbBST.cpp, analysis.h, analysis.cpp,
main.cpp files which contain the C++ source codes, and the Makefile.

– Do not forget to put your name, student id, and section number in all of these
files. Well comment your implementation. Add a header as in Listing 1 to the
beginning of each file:

Listing 1: Header style

/**

* Title: Binary Search Trees

* Author: Name Surname

* ID: 21000000

* Section: 0

* Assignment: 2

* Description: description of your code

*/

– Do not put any unnecessary files such as the auxiliary files generated from your
favorite IDE. Be careful to avoid using any OS dependent utilities (for example
to measure the time).

1

https://moodle.bilkent.edu.tr/2017-2018-fall/mod/assignment/view.php?id=15817

Fundamental Structures of Computer Science II

– You should prepare the answers of Questions 1 and 3 using a word processor
(in other words, do not submit images of handwritten answers).

• Although you may use any platform or any operating system to implement your
algorithms and obtain your experimental results, your code should work in a Linux
environment (specifically using the g++ compiler). We will compile your programs
with the g++ compiler and test your codes in a Linux environment. Thus, you may
lose a significant amount of points if your C++ code does not compile or execute
in a Linux environment.

• This homework will be graded by your TA, Ilkin Safarli. Thus, please contact him
directly for any homework related questions.

Attention: For this assignment, you are allowed to use the codes given in our text-
book and/or our lecture slides. However, you ARE NOT ALLOWED to use any codes
from other sources (including the codes given in other textbooks, found on the Internet,
belonging to your classmates, etc.). Furthermore, you ARE NOT ALLOWED to use any
data structure or algorithm related function from the C++ standard template library
(STL).

Do not forget that plagiarism and cheating will be heavily punished. Please

do the homework yourself.

Question 1 – 15 points

(a) [5 points] What are the preorder, inorder, and postorder traversals of the binary tree
below:

R

G

L

A

O

H

I

T

M

(b) [5 points] Insert 40, 50, 45, 30, 60, 55, 20, 35, 10, 25 to an empty Binary Search Tree.
Show only the final tree after all insertions. Then delete 10, 40, 50, 20, 30 in given

Page 2

mailto:ilkin.safarli@bilkent.edu.tr?subject=CS 202 - Homework 2
mailto:ilkin.safarli@bilkent.edu.tr?subject=CS 202 - Homework 2

Fundamental Structures of Computer Science II

order. Show only the final tree after all deletion operations. Use the exact algo-
rithms shown in lectures. Verify your answers by using this visualization tool.

(c) [5 points] A binary tree has a pre-order traversal of B, I,N,A,R, Y and postorder
traversal of N,A, I, Y, R,B. What is its inorder traversal? Reconstruct the tree from
those traversals and draw it.

Question 2 – 70 points

(a) [15 points] Write an array-based implementation of Binary Search Tree (BST) named
as AbBST for maintaining a list of integer keys. Implement only insert and getHeight

methods for AbBST class. The initial size of the array is two. During insertion, if
there is no more empty space left in the array, you should double the array size. Put
your code into AbBinaryNode.h, AbBinaryNode.cpp, AbBST.h and AbBST.cpp files.
Prototypes of required methods:
void insert(int val);

int getHeight();

(b) [15 points] Write a pointer-based implementation of Binary Search Tree named as
PbBST for maintaining a list of integer keys. Implement only insert and getHeight

methods for PbBST class. Put your code into PbBinaryNode.h, PbBinaryNode.cpp,
PbBST.h and PbBST.cpp files. Prototypes of required methods:
void insert(int val);

int getHeight();

(c) [10 points] Write a method for PbBST class with the following prototype to check if
the tree is a valid BST or not: bool isValidBST();

(d) [10 points] Write another method for PbBST class to return the median of numbers in
that BST in linear time (linear in the number of items). Your method should have
the following prototype:
int medianOfBST();

(e) [10 points] In this part of the homework, you will analyze the performance of array-
based and pointer-based implementations of Binary Search Trees. Write a global
function, void performanceAnalysis(), which does the following:

• Creates 2000 random numbers and inserts them into an empty array-based
BST and an empty pointer-based BST. Calculate the elapsed times to insert
all of those numbers into each BST and output them (use clock from ctime

Page 3

https://visualgo.net/en/bst

Fundamental Structures of Computer Science II

for calculating elapsed time). Repeat the experiment for the following sizes:
{4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000}

Put your code in a file named analysis.cpp. When performanceAnalysis function
is called, it needs to produce an output similar to the following one:

Listing 2: Sample output

Part e - Performance analysis of BST implementations

--

Array Size Array Based Pointer Based

--

1000 x ms x ms

2000 x ms x ms

...

(f) [10 points] Height of BST is a very important property which affects the performance
of search, delete, and insert operations directly. In this part, you will analyze how
different patterns of insertion affect the height of a BST. Write a global function,
void heightAnalysis(); which does the following:

(1) Creates 2000 random numbers and inserts them into an empty pointer-based
BST. After inserting all elements into BST, output the height of the tree. Re-
peat the experiment for the following sizes: {4000, 6000, 8000, 10000, 12000, 14000,
16000, 18000, 20000}

(2) Instead of creating arrays of random integers, create arrays with elements in
ascending order and repeat the steps in part f1.

Add your code to analysis.cpp file. When heightAnalysis function is called, it
needs to produce an output similar to the following one:

Listing 3: Sample output

Part f - Analysis of BST height

--

Array Size Random Numbers Ascending Numbers

--

1000 x x

2000 x x

Page 4

Fundamental Structures of Computer Science II

...

(g) [0 points] Create a main.cpp file which does the followings:

• creates a pointer-based BST and adds the following numbers into it: {40, 50, 45,
30, 60, 55, 20, 35, 10, 25}

• check if this tree is valid or not by using isValidBST method

• find the median of numbers by using medianOfBST method

• calls performanceAnalysis function

• calls heightAnalysis function

At the end, write a basic Makefile which compiles all your code and creates an ex-
ecutable file named hw2. Check out these tutorials for writing a simple make file:
tutorial 1, tutorial 2.

You are free to write helper functions to accomplish the tasks required from the above
functions. Use the given file names and function signatures during implementation. Please
make sure that your Makefile works properly, otherwise you will not get any points from
Question 2.

Question 3 – 15 points

After running your programs, you are expected to prepare a 3− 4 page report about the
experimental results that you obtained in Question 2 e and f. First, with the help of a
spreadsheet program (Microsoft Excel, Matlab or other tools), plot number of elements
versus elapsed time for both implementation on the same figure. Then plot number of
elements versus height for both random and ascending ordered numbers. Sample figures
are given in Figure 1 (these values do not reflect real values).

Interpret and compare your empirical results with the theoretical ones for each imple-
mentation of BST. Explain any differences between the empirical and theoretical results,
if any. Discuss which implementation of BST is better and why. In practice, what would
be the average height (in terms of n) of a BST based on your excremental results? What
could be done to make sure that the worst case scenario does not happen when inserting
a predefined set of data into BST?

Page 5

http://mrbook.org/blog/tutorials/make/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

Fundamental Structures of Computer Science II

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10

20

30

40

50

60

70

80

90

100

110

Number of inserted elements

E
la

p
s
e
d

 t
im

e
 (

m
s
)

Peformance of BST Implementations

Pointer based

Array based

(a) Peformance of BST implementations

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

2

4

6

8

10

12

14

16

18

20

22

Number of inserted elements

T
re

e
 h

e
ig

h
t

Analysis of Average BST Height

Random numbers

Ascending numbers

(b) Analysis of average BST height

Figure 1: Sample figures

Page 6

	Important Notes
	Question 1 – 15 points
	Question 2 – 70 points
	Question 3 – 15 points

