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Significance and Popularity of Genomic 
Data
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Why Protect Genomic Data?
• Genome carries information about a 

person’s genetic condition and 
predispositions to specific diseases

– Leakage of such information could cause 
genetic discrimination

– Denial of access to health insurance, 
mortgage, education, and employment

• Anonymisation is ineffective

• Genome carries information about family 
members

– Cross-layer attacks

• Using privacy-sensitive information 
belonging to a victim retrieved from 
different sources

• Genomic data is non-revokable

• Law is not universal and hard to enforce

M. Gymrek, A. L. McGuire, D. Golan, E. Halperin,
and Y. Erlich. Identifying personal genomes by surname 
inference. Science: 339 (6117), Jan. 2013.

“The Chills and Thrills of Whole Genome Sequencing”

E. Ayday, E. De Cristofaro, J.P. Hubaux, G. Tsudik

“The view we have today of genomes is like a world map, 
but Google Street View is coming very soon.”

Rebecca Skloot, the author of The Immortal Life of Henrietta Lacks
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Some of Our Contributions

• Inference Attacks and Quantifying Privacy
– Metrics and methods to infer genomic data

– Quantifying kin genomic privacy

– Quantifying genomic privacy in genetic tests

• Protecting Genomic Privacy

– Computational privacy
• Applied cryptographic techniques for usable privacy

– Information theoretical privacy
• GeneVault via HoneyEncryption

• Efficient non-cryptographic techniques

• Interdependent Genomic Privacy
5



Genomics 101 - DNA and SNP
• The human genome consists of 

approximately 3 billion letters
– 99.9% is identical between any two 

individuals
– Remaining: human genetic variation

• Single Nucleotide Polymorphism 
(SNP): Most common human 
genetic variation.
– A single nucleotide (A, C, G, or T) 

differs between members of the 
same species or paired chromosomes 
of an individual

– Disease risk can be computed by 
analyzing particular SNPs
• Angelina Jolie BRCA1 Mutation
• 23andMe genetic disease risk tests 
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INFERENCE ATTACKS AND
QUANTIFYING GENOMIC PRIVACY
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Henrietta Lacks

Image: EMBL/Jonathan Landry
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Correlated genetic information between family members => an individual 
sharing his/her genome threatens his (known) relatives’ genomic privacy

Quantifying Kin Genomic Privacy
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How much can we infer 
about one’s genome?
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Big Picture

• Given:
– Family tree
– (Partial) genomes of 

one or more family 
members

– Public genomic 
knowledge
• Minor allele 

frequencies
• Linkage 

Disequilibrium
• Reproduction

 (Probabilistically) infer 
the unrevealed 
genomes 
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Quantification and Protection Framework

Adversary’s Background Knowledge
Familial relationships gathered from 
social networks or genealogy websites
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Parameters

SNP positions

relatives
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Reconstruction Attack
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Efficient Inference Algorithm
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Familial factor nodes

LD factor nodes

SNP2

mother

father

offspring

Familial factor node for 
SNP2 of the offspring

LD factor node between SNP1

and SNP2 of the offspring  

SNP1

Factor Graph Representation

father

child

mother

Variable 
nodes
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Factorization

Representing the 
familial relationships Representing the correlations 

(LD) between the SNPs
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Message Passing

Familial factor nodes

LD factor nodes

SNP2
SNP1

father

child

mother
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First Round father

child

mother

Familial factor nodes

LD factor nodes

SNP2SNP1
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Second Round father

child

mother

Familial factor nodes

LD factor nodes

SNP2SNP1
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Third Round father

child

mother

Familial factor nodes

LD factor nodes

SNP2SNP1
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Convergence and Quantification
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Privacy Metrics

• Adversary’s incorrectness

• Adversary’s uncertainty [1]

• Mutual information-based metric [2]

[1] Serjantov, A. and Danezis, G., Towards an information theoretic metric for anonymity, PET 2003

[2] Agrawal, D. and Aggarwal C.C., On the design and quantification of privacy preserving data 
mining algorithms, PODS 2001
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Evaluation - 80k SNPs, w\o LD
Evolution of the genomic privacy of child C7 by gradually revealing the SNPs of 
other family members (starting with the most distant family members) 

GP1 GP2 GP3 GP4

P5 P6

C7 C8 C9 C10 C11
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Evaluation
Evolution of the genomic privacy of parent P5 by gradually revealing 50 SNPs (out of 
100) of other family members (starting with the most distant family members) 

GP1 GP2 GP3 GP4

P5 P6

C7 C8 C9 C10 C11
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Threat in Online Social Networks
• De-anonymized 149 individuals from OpenSNP

– Using other publicly available resources
– (Partially) sharing their genomes (about 1M SNPs each)

• Found the family tree of 47 
– Using the family information on Facebook, 23andMe, Geneology.org, etc.
– 3 de-anonymized individuals belong to the same family

• Computed health privacy for Alzheimer’s disease

Grandfatherx Grandmother x

Mother AuntFather x

Child 26



Discussion

• Genomes of relatives are highly correlated and some 
family members might be opposed to genetic 
exhibitionism

• Making thousands of human genomes publicly available is 
crucial for genomic researchers

“If we are going to solve cancer, it is going to take a 
movement of tens of thousands, or hundreds of thousands, 
of patients willing to contribute information from their 
cancer genomes towards a common good”

Eric S. Lander, the founding director of the Broad Institute

• Trade-off between privacy and utility
• Design optimal genomic-privacy preserving mechanisms
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PROTECTING GENOMIC PRIVACY
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Protecting Genomic Privacy -
Our Solutions

• Computational Privacy

– Privacy-preserving personalized medicine

– Privacy-preserving management of raw genomic data (BAM files)

– Privacy-preserving genomic research

• Ancestry inference

• Genome-wide association studies

– Data sharing and finding similar patients using functional 
encryption

– Real-life implementations with CHUV, Sophia Genetics, and Swiss 
HIV Cohort

• Information Theoretical Privacy

– Optimization-based techniques
• Privacy vs. utility

– GeneVault via HoneyEncryption
29



Operation Mincemeat

• Successful 
British disinformation plan 
during World War II

• Operation Mincemeat 
saved an estimated 40,000 
Allied lives

• It also gave rise to a 
movie… The Man Who 
Never Was
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Decoys

• Decoys, fake objects that look real, are a time-
honored counterintelligence tools

• In computer security, we have “honey objects”:
– Honeypots
– Honeytokens, honey accounts
– Decoy documents 

• Key question: How can we apply honey objects to 
the most pressing computer security / privacy 
problems?
– Password breaches in the cloud (Juels et al.)
– Breaches in genome databases
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GeneVault

ATTCGGACGTAA

DNA sequence

00101100100101 10110110011110

ciphertext

ACTTATAGGCGA

valid but wrong DNA sequence

01111010110000
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GeneVault – Main Challenge

ATTCG… Seed?
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GeneVault - Example
[0, 1)

A G

T C T C

C G C G C G C G

[0, 0.7) [0.7, 1)

[0, 0.42) [0.42, 0.7)

[0, 0.336)

[0.336, 0.42)

[0.42, 0.588)

[0.588, 0.7)

[0.91, 1)[0.7, 0.91)

[0.7, 0.868)

[0.868, 0.91)

[0.91, 0.991)

[0.991, 1)
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GeneVault – Security Evaluation

• Probability of a decrypted sequence
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Traditional Encryption GeneVault



GeneVault – Still to Come

• Partial Retrieval
• Typo

– When the user incidentally types a wrong password, he 
will get a plausible sequence

– Might cause problems if he doesn’t realize it and uses it 
for medical purposes

• Adversary’s background knowledge
– Physical traits, phenotypes (eye color, hair color, etc.)
– Kinship
– Can eliminate some (incorrect) keys if the decrypted 

sequence doesn’t indicate those phenotypes

• Operations on the data
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MORE ON PROTECTING GENOMIC 
PRIVACY
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Privacy-Preserving Personalized 
Medicine

Curious Party
@ SPU

Malicious 3rd

partyPatient (P)
Medical Center

(MC)

Certified Institution Storage and Processing Unit
(SPU)



Setting and Goals

• Setting: A medical center (MC) want to conduct a genetic 
disease susceptibility  test on a patient (P)

• Protect the privacy of users’ genomic data

– Protect data, including from insiders (e.g., curious sysadmins)

• Protect the privacy of medical center’s confidential data

• Allow specialists to access only to the genomic data they 
need (or they are authorized for)

• Keep the access time to a single patient’s genomic data to 
a few seconds
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Threat Model

• The certified institution (CI) is a trusted 
entity. 
– Indispensable to do the sequencing

• An attacker at the MC

– A careless or disgruntled employee at the 
MC or a hacker who breaks into the MC

– Aims to obtain private genomic information 
about a patient (for which it is not 
authorized)

• A curious party at the SPU

– Existence of a curious party or a disgruntled 
employee at the SPU

• Both MC and SPU follows the protocols 
properly

• No collusion between the MC and the SPU

• Access control based on patient’s consent

Patient (P)
Medical Center

(MC)

Certified Institution Curious Party
@ SPU

Malicious 3rd

party

Storage and Processing Unit
(SPU)

40



Cryptographic Tools

• Modified Paillier Cryptosystem
– Bresson et. al 2003.
– Homomorphic addition

– Multiplication with a constant

– Proxy re-encryption
• Divide the weak secret into two shares
• Distribute the shares to two parties

• Secure multiparty computation (SMC)
41



3) Encrypted SNPs and positions
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5) “Check my susceptibility to disease X”
and part of P’s secret key, x(2)



Probabilities:

. . .

Markers for 
disease X:

P’s SNPs:

Contributions 
of markers:

P’s susceptibility 
for disease X:

. . . . . . . . .

Computing Disease Susceptibility

• All operations are conducted in ciphertext using 
homomorphic encryption 43



Remarks

• Patient-related steps can be handled via the patient’s 
smart card or mobile device

• Individual contributions of the genetic variant markers 
remain secret at the MC

– Homomorphic operations are conducted at the MC

• Solution is possible without the proxy re-encryption by 
letting the patient decrypt the end-result

– Secret key of the patient remains only at the patient

– Useful when the collusion between the SPU and MC is 
possible

• Does this solve everything?
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Quantification of Genomic Privacy

• Privacy is quantified from MC’s view-point

• Two types of genetic tests:

– Test 1: MC obtains a subset of SNPs of P

• For complex diseases that homomorphic operations fail

• Privacy loss due to the exposition of a subset of SNPs

– Test 2: MC obtains the end-result of a genetic test

• Test is conducted at the MC using homomorphic 
operations

• Privacy loss due to the exposition of the end-result
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Quantification of Genomic Privacy

• What the MC knows?

– Markers (SNPs) and their contributions to the diseases (for Test 2)

– Contributions of two alleles (of a SNP) to a disease

– Linkage Disequilibrium (LD) values between the SNPs

• LD occurs when SNPs at the two SNP positions are not independent of each 
other

• Goal:

– Compute the decrease in privacy of the patient given his revealed 
SNPs or the end-result of a genetic test

– Used asymmetric entropy for the quantification

– Maximize the genomic privacy of the patient via obfuscation 
methods or policies
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Methodology

• At each time slot, randomly conduct a test
– Either Test 1 or Test 2

• Test 1:
– Min number of markers revealed: 10
– Max number of markers revealed: 15
– Update the inferred values of non-revealed SNPs using LD

• Test 2:
– Randomly chose a disease to test
– Compute the end-result

• Weighted averaging (to compute the disease susceptibility)

– Compute the potential end-results using public 
information

– Update the inferred values of the non-revealed SNPs 
using the end-result of the test 47



Parameters

• Real human DNA profile from 1000 Genome 
Project

• Consider a particular subset of SNPs
– 500 SNPs 

• Susceptibility to 40 diseases are determined 
using these SNPs

• Each disease is associated with at least 1 and 
at most 15 SNPs

• 12 SNPs are markers of more than one disease

• Real LD values between these SNPs
48



Decrease in Genomic Privacy
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• Need to introduce techniques to keep the genomic privacy above a 
certain level

– For Test 1: Define policies to delete the revealed SNPs from MC’s database

– For Test 2: Use obfuscation methods on the end-result of the genetic test49



Policies for Test 1
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no policy, no LD

no policy, with LD

t=5, with LD

t=3, with LD

• Delete the 
revealed SNPs 
from the MC after 
t time-slots

– A set of SNPs in Σ
are revealed as a 
result of Test 1 at 
time t0

– The SNPs in Σ are 
used to infer other 
SNPs (via LD) 
between (t0, t0+t)
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Obfuscation for Test 2

0 5 10 15 20
50

60

70

80

90

100

time-slot

%
 g

e
n

o
m

ic
 p

ri
v
a
c
y
 o

f 
th

e
 p

a
ti

e
n

t

Test 2

 

 

no obfuscation, no LD

no obfuscation, with LD

a=100, with LD

a=20, with LD

a=10, with LD

a=4, with LD

• Provide the end-
result as a range
– Range can be 

determined via 
secure 2PC 
between the SPU 
and the MC

• E.g.,  divide the 
result range into 
a=4 ranges:
– [0,0.25) 
– [0.25,0.5)
– [0.5,0.75)
– [0.75,1]

51



Implementation and Complexity

• Intel Core i7-2620M CPU with 2.70 GHz

• Windows 7

• MySQL 5.5 database

• Java programming language

@CI @SPU @MC

Paillier Encryption
Proxy 

Re-
encryption

Re-encryption 
under the Same 

Public Key
Storage

Homomorphic
Operations

Paillier
Decryption

Key Size=2K 0.049 ms./SNP 30 ms. 0.182 ms./SNP)
2.1 

GB/patient
43 ms.

(10 SNPs)
2 ms.

Key Size=4K 0.168 ms./SNP 42 ms. 0.658 ms./SNP
4.1 

GB/patient
173 ms.

(10 SNPs)
13 ms.
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Privacy-Preserving Ancestry Inference

MEDICAL CENTER (MC)

STORAGE AND 

PROCESSING UNIT (SPU)

P1 : [A][A][G][T][A][G][C][A]…

P2 : [G][A][T][T][T][C][C][A]…

P3 : [A][T][G][G][A][C][C][T]…

P4 : [C][A][G][T][T][G][C][A]…

• 1184 individuals
• 1979 markers

PCA: T = X * W
K-mean 

Clustering

W
2

Homomorphic 
computation P1 : [X1][Y1]

P2 : [X2][Y2]

P3 : [X3][Y3]

P4 : [X4][Y4]

C1 : (X1, Y1)

:         :

Ck : (Xk, Yk)

21

3

4

Cosine
Similarity

5

SM
C

• W = loadings matrix
• T = principal components matrix 
• X = data matrix 
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Privacy-Preserving GWAS
STORAGE AND 

PROCESSING UNIT (SPU)

P1 : [A][A][G][T][A][G][C][A]…

P2 : [G][A][T][T][T][C][C][A]…

P3 : [A][T][G][G][A][C][C][T]…

P4 : [C][A][G][T][T][G][C][A]…

MEDICAL CENTER (MC)

[1][0][0]

[0][0][0]

[0][1][1]

[1][1][1]

SNP Phenotype

GWAS: SNP = S2; Phenotype = P2; Ancestry = A1

[1][0][0]

[1][0][0]

[0][1][0]

[1][0][0]

Ancestry Add random noise

54

Notation:
• SNPi = Si

• Phenotypei = Pi

• Ancestryi = Ai

• [ ] = encrypted value
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Privacy-Preserving GWAS (cont.)

STORAGE AND 

PROCESSING UNIT (SPU)

MEDICAL CENTER (MC)

Partial Decryption

Decryption
Key Generation and Encryption

Remove noise Secure Count

Result Decryption
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Functional Encryption

• Similarity between genome sequences

– Genomic data sharing

– Finding similar patients

56



OPTIMIZATION
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Information Theoretical Privacy -
Back to Henrietta Lacks

• Agreement between the Lacks Family and NIH

• Gives some control to Lacks Family over how 
HeLa Genome is used
– Working group in NIH reviewing applications

“There is absolutely a need for a new policy.”
Richard Sharp, the director of biomedical ethics at the Mayo Clinic

• It is impractical to set up a working group of 
scientists and relatives for every genome with 
these issues

58



Quantification of 
personal and kin 
genomic privacy

Public genomic 
knowledge

Family tree

Proposed genomic 
privacy protection 
and optimization 

mechanism

Decision

Privacy 
constraints of 

family members

Publicly available 
genomic data of 
family members

Genome of the 
donor

Protecting Kin Genomic Privacy via 
Optimization

• Decision maker(s): family member(s)
– One member (donor) reveals his genome
– Other members already (partially) shared their genomic data on 

the Internet
– All members have privacy constraints

• Decision variables: SNPs to be revealed or not 59



Goals

• Protect the genomic and health privacy of individuals, 
considering their personal privacy requirements
– Each individual has a personal genomic (or health) privacy 

constraint

– The donor wants to make sure that both his own privacy 
constraints and these of his family members’ are met after 
he shares part of his genome

• Make as much genomic data publicly available as 
possible for genomic research
– The donor wants to share as much genomic data (e.g., 

SNPs) as possible

• Potential use:
– NIH would not need a working group to control the access 

to the HeLa genome
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Optimization Model

• Assumption:  Independent SNPs

subject  to genomic privacy of F1

health privacy of F1
for any disease d

genomic and 
health privacy 
of other 
family 
members
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Solving the Optimization Model

• The Knapsack Problem:

subject  to
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Multidimensional 0-1 Knapsack 
Problem

• Exact methods

– Often based on dynamic programming and 
branch-and-bound algorithm

– Scales linearly with the number of constraints 

• Heuristics

– Competitive alternative to exact methods, 
especially when the number of constraints is large

– Can achieve lower time complexity while still 
providing good (but not necessarily exact) 
solutions
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Back to the Framework

Adversary’s Background Knowledge
Familial relationships gathered from 
social networks or genealogy websites
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Methodology

• Optimization using branch-and-bound algorithm

– Independent SNPs (no LD)
• Familial relationships affect privacy much more than the LD 

– Obtain the first result
• Set of donor’s SNPs that can be publicly revealed 

• Privacy constraints are satisfied

• Iterative Fine-Tuning
– Using LD

– Inference Algorithm Quantification
• Check the privacy constraints again

– Reveal or hide more SNPs

– Iterate until privacy constraints are satisfied again
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Results

• Focus on 50 SNPs
– Utility: number of SNPs publicly revealed out of 50

• One genomic privacy constraint for each member
– Each member is tolerant to high privacy loss
– Each member is tolerant to medium privacy loss

GP1 GP2 GP3 GP4

P5 P6

C7 C8 C9 C10 C11
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INTERDEPENDENT GENOMIC 
PRIVACY
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Interdependent Privacy Game

• Privacy of family members is inherently 
interdependent 

• If family members are not cooperative (i.e., 
selfish), then they put other relatives’ privacy 
at risk => externalities

• Similar to «interdependent security (IDS) 
games» [1]

[1] Laszka A., Felegyhazi M., and Buttyan L., A Survey of Interdependent Security 
Games, submitted to ACM CSUR, November 2012 68



System Model

... 

User 1

User 2

User N

Assumptions:
•Users  storing their 
genomes (SNPs) in a 
mobile device 
(smartphone, tablet) for 
various benefits (cf. [2])
•Some users also publicly 
sharing their genomic data 
(or sharing them with 
untrusted parties?), 
«genetic exhibitionism» 

[2] De Cristofaro et al., GenoDroid: Are Privacy-Preserving Genomic Tests Ready for 
Prime Time?, WPES’12

... 

Genome-sharing 

website, e.g.,
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Current Deployments
• Swiss HIV Cohort Study:

– Infrastructure supporting multi-center 
research project dealing with HIV infected adults
• Participating clinics of 7 Swiss hospitals
• Coordination and data center based in Lausanne

– http://www.shcs.ch/

• Lausanne  University Hospital (CHUV)
– Protection of CHUV biobank 2015

• Clinical and environmental data
• Genomic data:

– 2.5M SNPs / patient
– 20’000 patients
– http://www.chuv.ch/biobanque

– Mobile Android App for Doctors: GenoPri

• Sophia Genetics
– Start-up company, on campus; visualization of genomic 

data
– Our contribution: protection of raw genomic data
– http://www.sophiagenetics.com
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Future Research on Security and 
Privacy for Healthcare Data 

• Cryptographic and non-cryptographic solutions

– Differential privacy, membership privacy

– Trade-off between privacy and utility

• Inference attacks and mitigations

– Using genomic and non-genomic data

– Genotype ↔ Phenotype

• Dynamic access control and database privacy

– ORAM, PIR for healthcare data

• Protection against different attack models

– Stronger attacker models

• Economics 

– Incentive of the attacker

• Practical implementations

• Credibility (authenticity) of a genome

• Privacy budget and genomic data sharing

Human Brain Project
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5 YRS AGO TODAY NEAR FUTURE

Future Research on Security and 
Privacy of E-health Platforms

MOBILE SEMICON &
HARDWARE

SENSORS ALGORITHMS CLOUD &
BIG DATA

BEHAVIORAL
SCIENCE72



Conclusion

• Digital medicine is coming
• It will forever change the landscape of privacy 

protection
• Very few researchers have addressed the topic of 

genome privacy
– Much more needs to be done in this field

• Our contributions:
– Inference attacks and quantification
– Techniques to protect genomic privacy
– Real-life deployments (hospitals, biobanks, industry)
– Workshop on Genome Privacy 

• 2014 with PETS, 2015 with IEEE S&P

– Dagstuhl Seminar on Genomic Privacy (2013 and 2015)
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