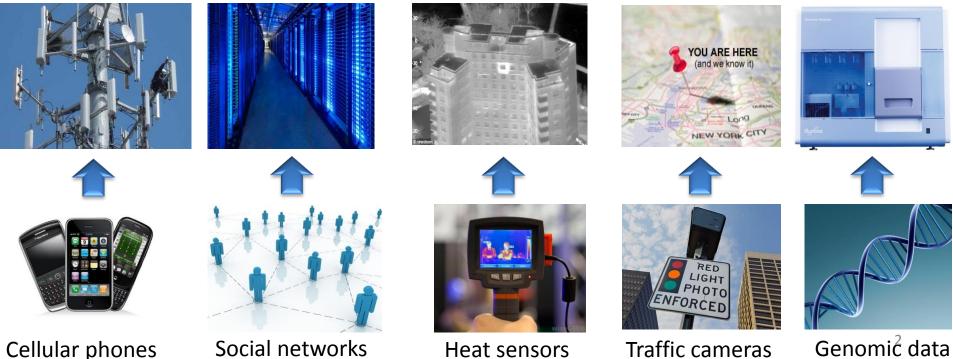
Security and Privacy in the Age of Big Data: The Case of Genomics

Erman Ayday

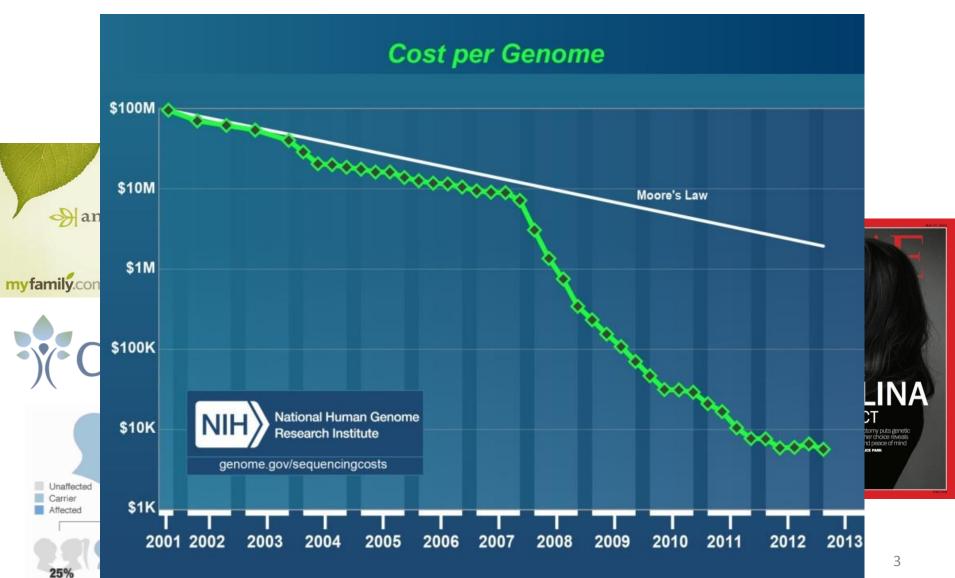
Decreasing Privacy - Wholesale Surveillance



Cellular phones

Social networks

Significance and Popularity of Genomic Data



Unaffected

Why Protect Genomic Data?

ETHAN HAWKE

- Genome carries information about a person's genetic condition and predispositions to specific diseases
 - Leakage of such information could cause genetic discrimination
 - Denial of access to health insurance,

"The view we have today of geno but Google Street View is coming"

Rebecca Skloot, the auth

belonging to a victim retrieved from different sources

- Genomic data is non-revokable
- Law is not universal and hard to enforce

"The Chills and Thrills of Whole Genome Sequencing" E. Ayday, E. De Cristofaro, J.P. Hubaux, G. Tsudik

inference. Science: 339 (6117), Jan. 2013.

UMA THURMAN

sietta Lacks

Countries by Legal System

Life of Henrietta Lacks

orld monipulation

JUDE LAW

Civil Law

Common

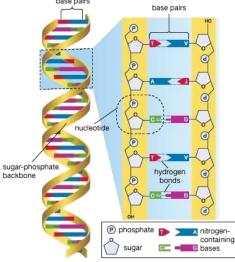
Other
 Mixed Law

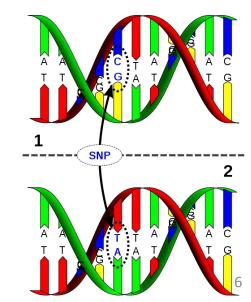
Some of Our Contributions

- Inference Attacks and Quantifying Privacy
 - Metrics and methods to infer genomic data
 - Quantifying kin genomic privacy
 - Quantifying genomic privacy in genetic tests
- Protecting Genomic Privacy
 - Computational privacy
 - Applied cryptographic techniques for usable privacy
 - Information theoretical privacy
 - GeneVault via HoneyEncryption
 - Efficient non-cryptographic techniques
- Interdependent Genomic Privacy

Genomics 101 - DNA and SNP

- The human genome consists of approximately 3 billion letters
 - 99.9% is identical between any two individuals
 - Remaining: human genetic variation
- Single Nucleotide Polymorphism (SNP): Most common human genetic variation.
 - A single nucleotide (A, C, G, or T) differs between members of the same species or paired chromosomes of an individual
 - Disease risk can be computed by analyzing particular SNPs
 - Angelina Jolie BRCA1 Mutation
 - 23andMe genetic disease risk tests





INFERENCE ATTACKS AND QUANTIFYING GENOMIC PRIVACY

Ctivit

5

1989

2

esearch papers 60,000

cancer role in

e

tta Lacks' death man cell line

HENRIETTA LACKS

THE

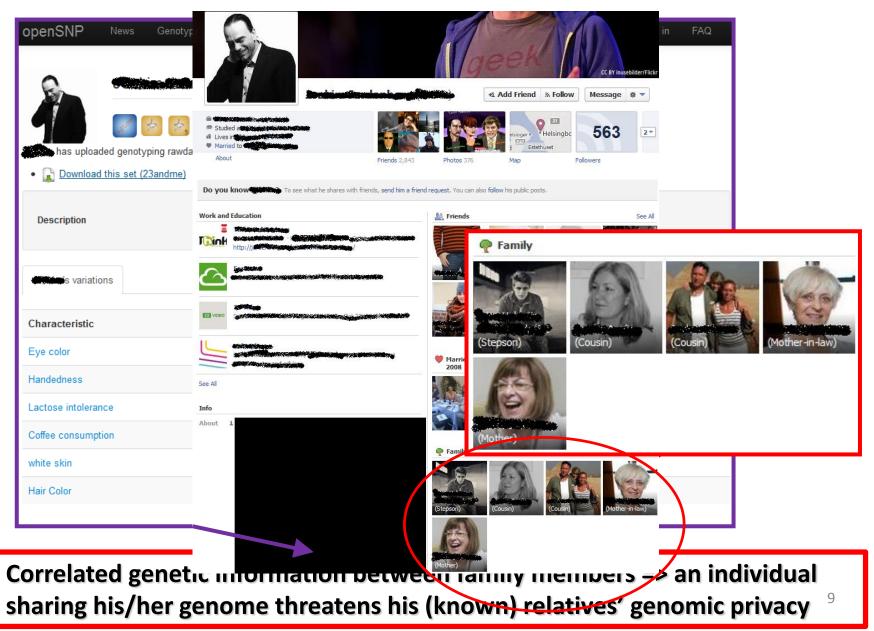
IMMORTAL LIFE OF

HENRIETTA LACKS

Doctors took her cells without asking. Those cells never died. They launched a medical revolution and a multimillion-dollar industry. More than twenty years later, her children found out. Their lives would never be the same.

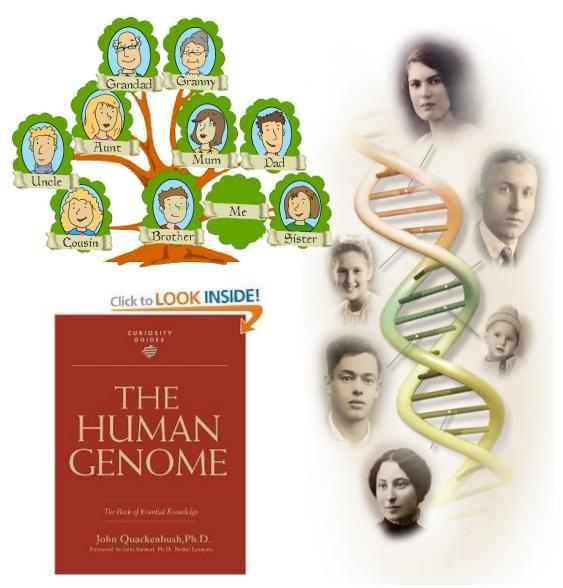
REBECCA SKLOOT

Quantifying Kin Genomic Privacy



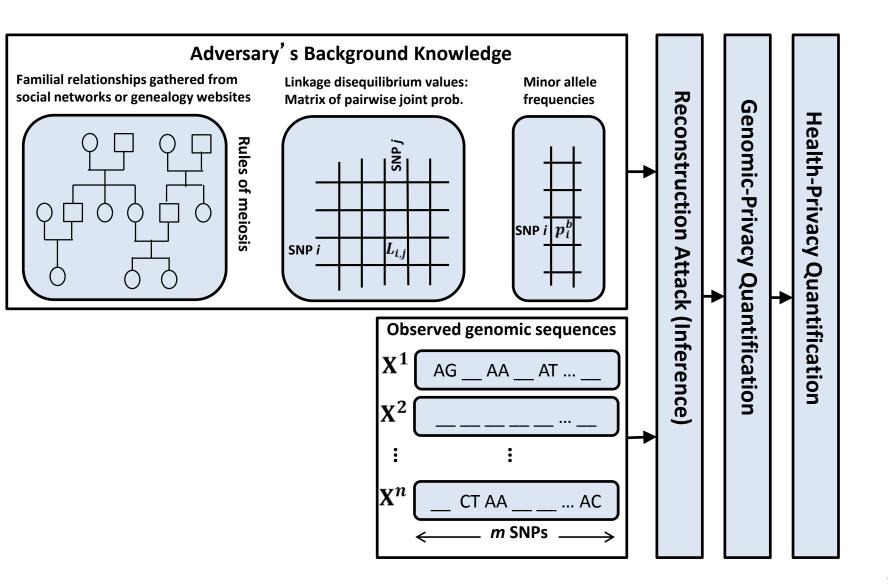
How much can we infer about one's genome?

Big Picture



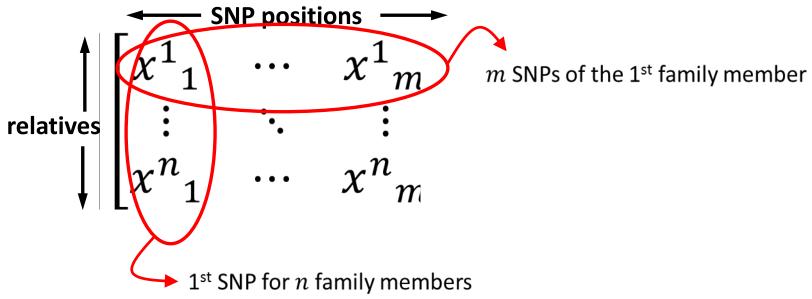
- Given:
 - Family tree
 - (Partial) genomes of one or more family members
 - Public genomic knowledge
 - Minor allele frequencies
 - Linkage Disequilibrium
 - Reproduction
- (Probabilistically) infer the unrevealed genomes

Quantification and Protection Framework



Parameters

- *m* : Number of SNPs
- *n* : Number of family members
- x_{j}^{i} : Value of SNP *j* for individual *i*
- $x_{j}^{i} \in \{0,1,2\}$
- $X: m \times n$ matrix that stores the SNPs of all family members



Reconstruction Attack

- \mathbb{X}_U : Set of unknown SNPs
- X_K : Set of known SNPs
- Attacker's objective: Compute the marginal probabilities of the SNPs in \mathbb{X}_{U}

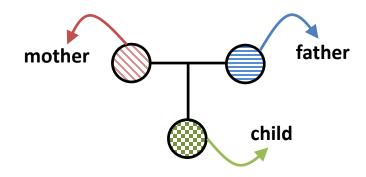
$$-p(x^{i}_{j}|\mathbb{X}_{\mathrm{K}}) = \sum_{\mathbb{X}_{\mathrm{U}} \setminus \{x^{i}_{j}\}} p(\mathbb{X}_{\mathrm{U}}|\mathbb{X}_{\mathrm{K}},\mathcal{B}),$$

- $p(x_j^i | X_K)$: Marginal probability distribution of SNP *j* for individual *i* can be obtained from
- $p(X_U|X_K, B)$: Joint probability distribution function of the variables in X_U such that:
- $\mathcal{B} = (\mathcal{F}_R(x^M_j, x^F_j, x^C_j), \mathbb{L}, \mathcal{G}_F, \mathbf{P})$: Background knowledge of the attacker

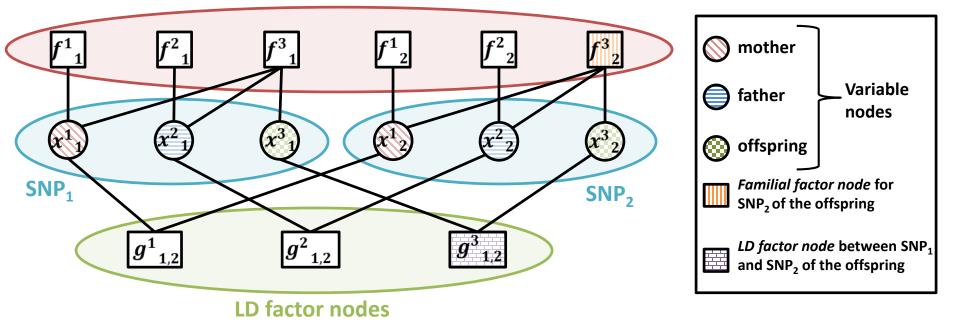
Efficient Inference Algorithm

- Naive marginalization has computational complexity $\mathcal{O}(3^{mn})$
 - -m is on the order of 10s of millions for human genome
- Run the belief propagation algorithm on a factor graph to reduce the computational complexity
 - Technique developed for trust and reputation management (Ph.D. thesis)
 - Factorize the joint probability distribution function into products of simpler local functions
 - Local functions represent conditional dependences between variables
 - LD and reproduction
 - Complexity = $\mathcal{O}(mn)$ per iteration

Factor Graph Representation



Familial factor nodes



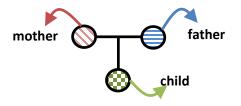
Factorization

- Factorize the joint probability distribution function into products of simpler local functions
- $p(\mathbb{X}_{U}|\mathbb{X}_{K}, \mathcal{B}) =$ $[\prod_{i}\prod_{j}f^{i}_{j}(x^{i}_{j}, \Theta(x^{i}_{j}), \mathcal{F}_{R}(x^{M}_{j}, x^{F}_{j}, x^{C}_{j}), \mathbf{P})] >$ $[\prod_{i}\prod_{(j,m)}g^{2}_{1,2}(x^{i}_{j}, x^{i}_{m}, \mathbb{L}_{j,m})]$

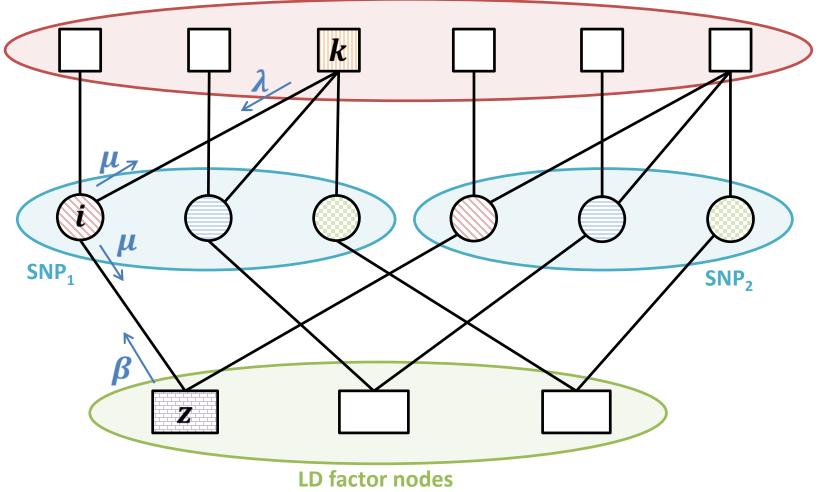
Representing the familial relationships

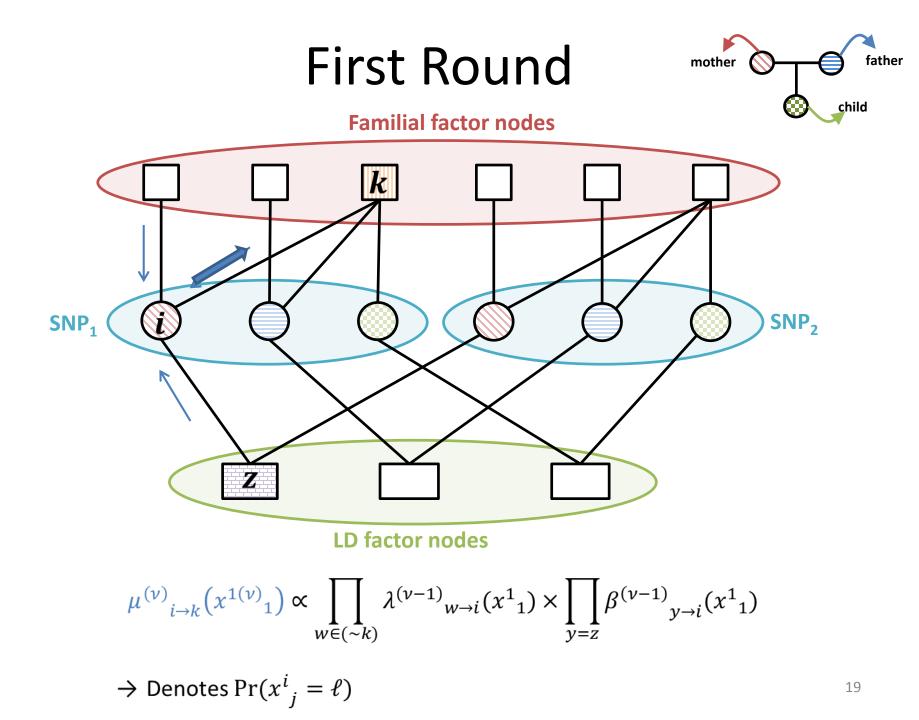
Representing the correlations (LD) between the SNPs

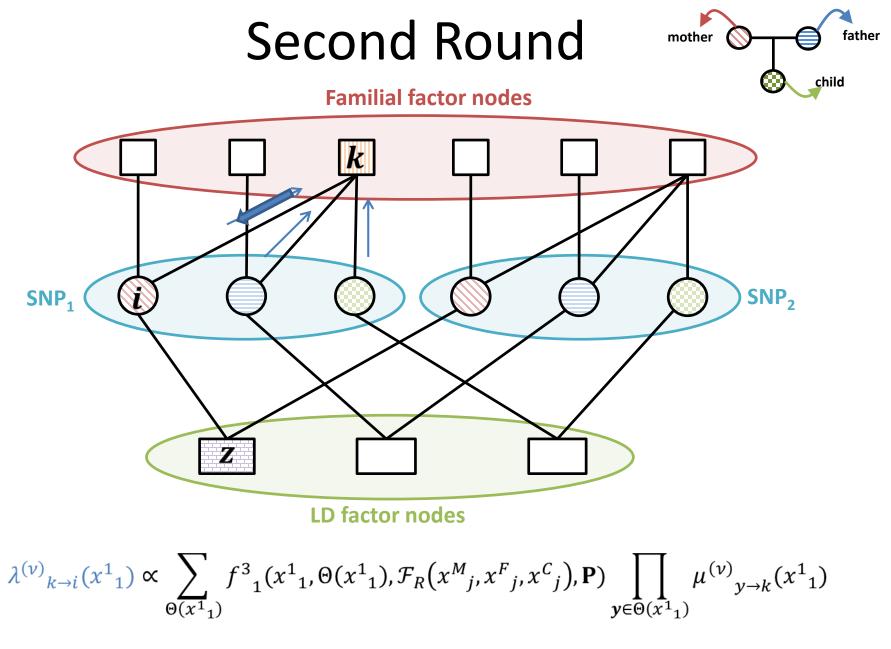
Message Passing



Familial factor nodes



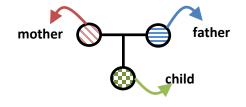


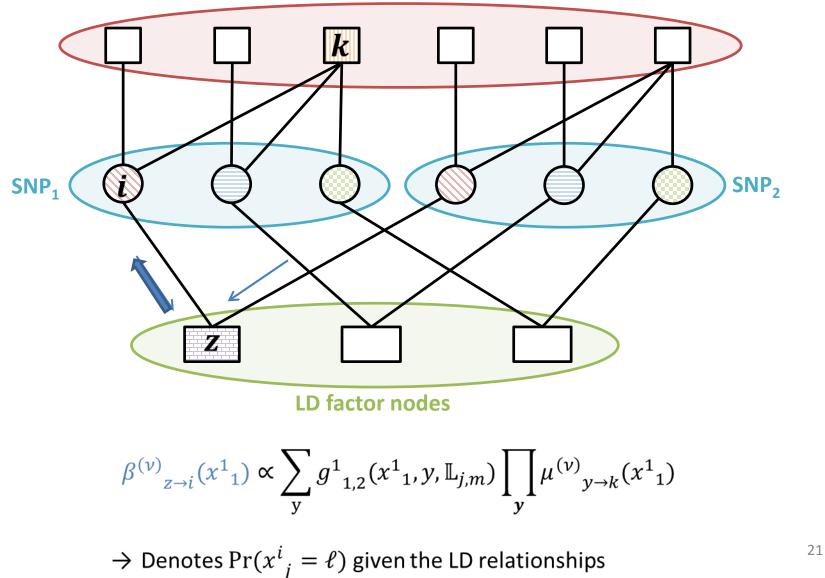


20

→ Denotes $\Pr(x_{j}^{i} = \ell)$ given $\Theta(x_{j}^{i})$, $\mathcal{F}_{R}(x_{j}^{M}, x_{j}^{F}, x_{j}^{C})$, **P**

Third Round





Convergence and Quantification

- Keep iterating
- At the end of each iteration:
 - Check the inferred marginal distributions of the SNPs in \mathbb{X}_{U}
 - The marginal probability of each variable in \mathbb{X}_U is given by multiplying all the incoming messages at each variable node
- Stop iterations when the values stop changing
- Use the inferred values for quantification of genomic privacy
- Quantify w.r.t:
 - Attacker's incorrectness
 - Using estimation error metric
 - Attacker's uncertainty
 - Using Entropy-based metrics

Privacy Metrics

 $x^{j}_{i,t}$: actual value X_{k} : observed SNPs

• Adversary's incorrectness

Estimation error at SNP *i* for individual $j = \sum_{x_i} \Pr(x_i^j | X_k) d(x_i^j, x_{i,t}^j)$

• Adversary's uncertainty [1]

Normalized entropy at SNP *i* for individual $j = \frac{1}{\log(3)} \sum_{x_i^j} - \Pr(x_i^j | X_k) \log \Pr(x_i^j | X_k)$

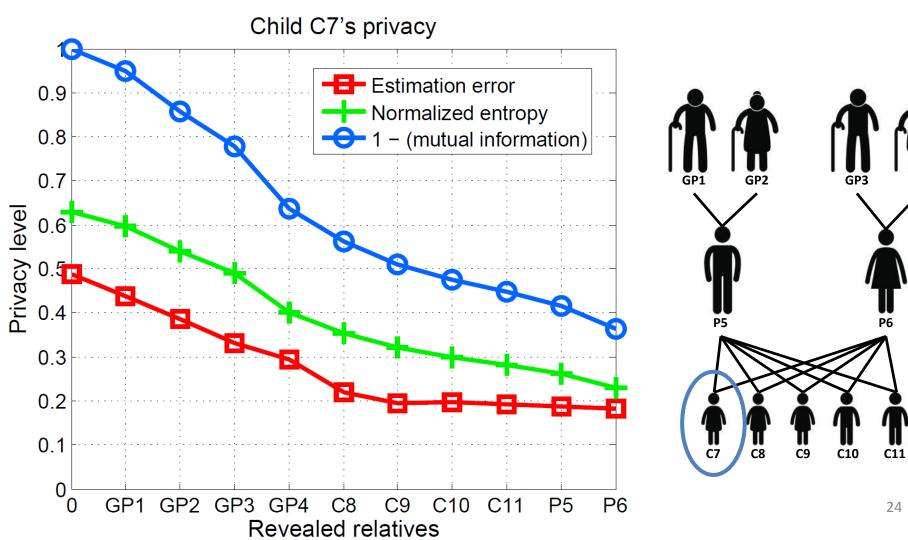
• Mutual information-based metric [2]

1 – (normalized) mutual information at SNP *i* for individual $j = 1 - \frac{H(x^{j}_{i}) - H(x^{j}_{i}|X_{k})}{H(x^{j}_{i})} = \frac{H(x^{j}_{i}|X_{k})}{H(x^{j}_{i})}$

[1] Serjantov, A. and Danezis, G., Towards an information theoretic metric for anonymity, PET 2003
 [2] Agrawal, D. and Aggarwal C.C., On the design and quantification of privacy preserving data mining algorithms, PODS 2001

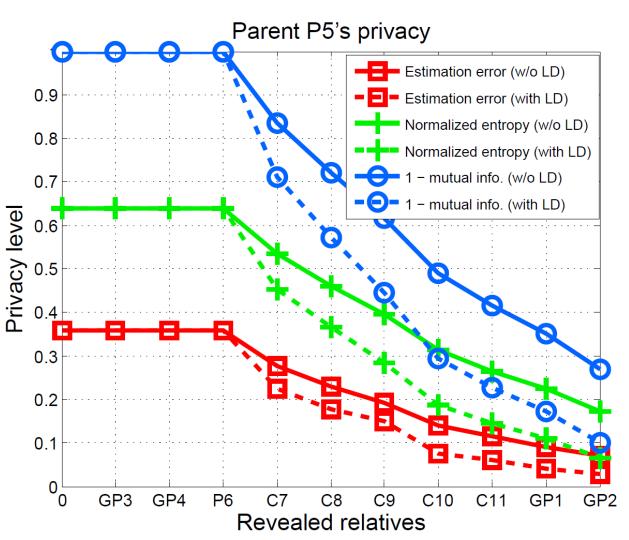
Evaluation - 80k SNPs, w\o LD

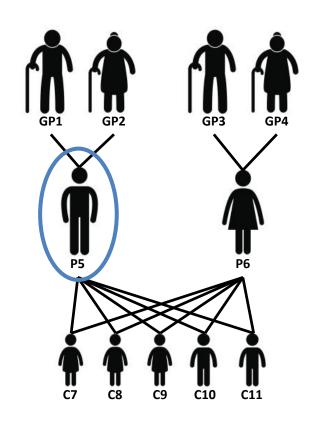
Evolution of the genomic privacy of child C7 by gradually revealing the SNPs of other family members (starting with the most distant family members)



Evaluation

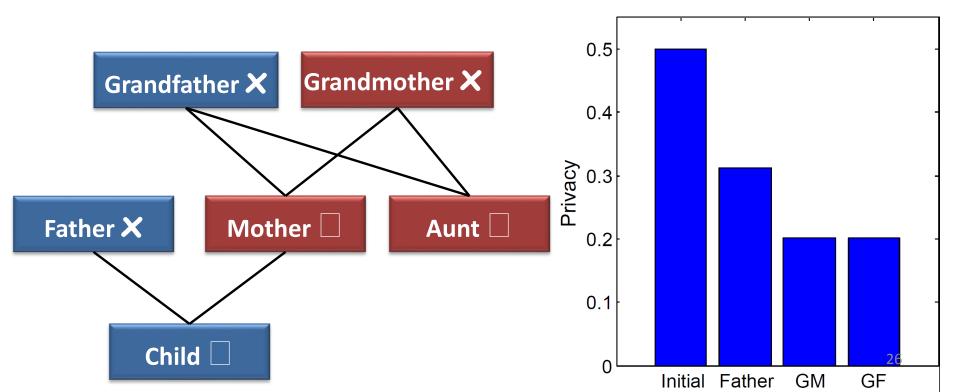
Evolution of the genomic privacy of parent P5 by gradually revealing 50 SNPs (out of 100) of other family members (starting with the most distant family members)





Threat in Online Social Networks

- De-anonymized 149 individuals from OpenSNP
 - Using other publicly available resources
 - (Partially) sharing their genomes (about 1M SNPs each)
- Found the family tree of 47
 - Using the family information on Facebook, 23andMe, Geneology.org, etc.
 - 3 de-anonymized individuals belong to the same family
- Computed health privacy for Alzheimer's disease



Discussion

- Genomes of relatives are highly correlated and some family members might be opposed to genetic exhibitionism
- Making thousands of human genomes publicly available is crucial for genomic researchers

"If we are going to solve cancer, it is going to take a movement of tens of thousands, or hundreds of thousands, of patients willing to contribute information from their cancer genomes towards a common good "

Eric S. Lander, the founding director of the Broad Institute

- Trade-off between privacy and utility
- Design optimal genomic-privacy preserving mechanisms

PROTECTING GENOMIC PRIVACY

Protecting Genomic Privacy -Our Solutions

- Computational Privacy
 - Privacy-preserving personalized medicine
 - Privacy-preserving management of raw genomic data (BAM files)
 - Privacy-preserving genomic research
 - Ancestry inference
 - Genome-wide association studies
 - Data sharing and finding similar patients using functional encryption
 - Real-life implementations with CHUV, Sophia Genetics, and Swiss HIV Cohort
- Information Theoretical Privacy
 - Optimization-based techniques
 - Privacy vs. utility
 - GeneVault via HoneyEncryption

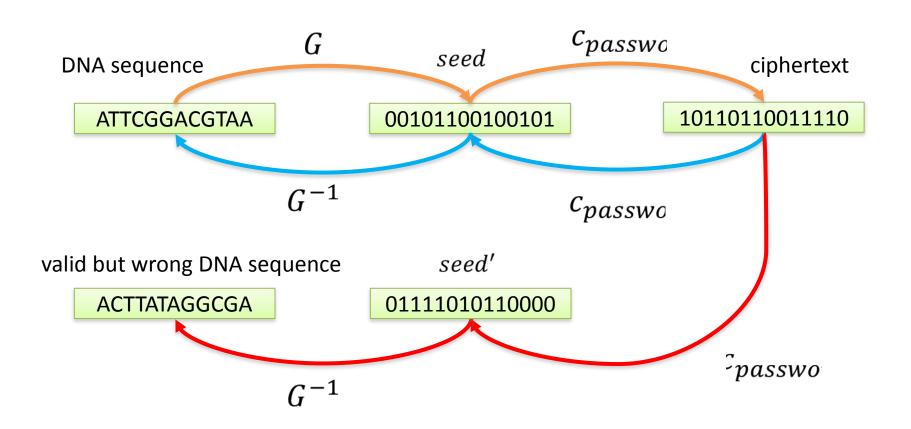
Operation Mincemeat

- Successful British disinformation plan during World War II
- Operation Mincemeat saved an estimated 40,000 Allied lives
- It also gave rise to a movie... The Man Who Never Was

Decoys

- Decoys, fake objects that look real, are a timehonored counterintelligence tools
- In computer security, we have "honey objects":
 - Honeypots
 - Honeytokens, honey accounts
 - Decoy documents
- Key question: How can we apply honey objects to the most pressing computer security / privacy problems?
 - Password breaches in the cloud (Juels et al.)
 - Breaches in genome databases

GeneVault



GeneVault – Main Challenge

- How to build such a generator *G* that can simulate the distribution of genome sequences?
 - Naïve way: enumerate all genome sequences and compute their probabilities based on allele frequencies and linkage disequilibrium (LD)
 - Works, but impractical
 - Is there a more intelligent way to do so?



GeneVault - Example

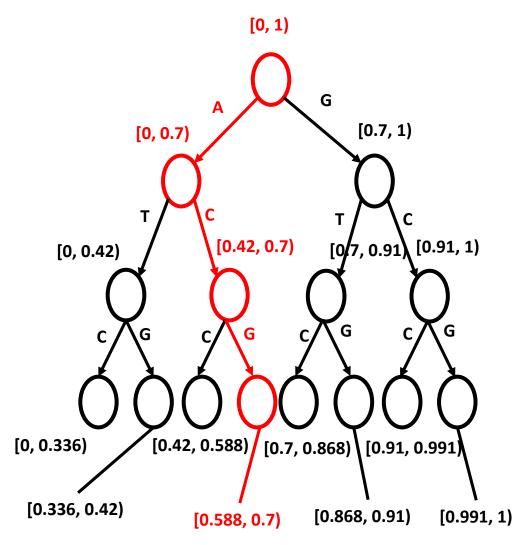
- Transform sequence ACG into a seed:
- Randomly pick a seed 0.6 ∈
 [0.588, 0.7)
- 8 bits to encode one seed:

 $[0.6 \times 256] = 153$

 $= 10011001_2$

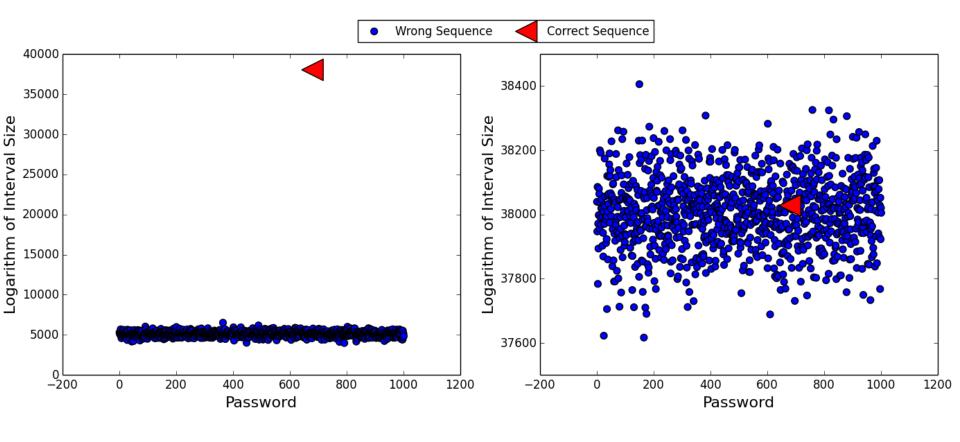
- Password "hzc" => Generate Key: Gen("hzc") = 01000110
- Ciphertext: 10011001 (seed)
 ⊕ 01000110 (Key)

= 11011111



GeneVault – Security Evaluation

• Probability of a decrypted sequence



Traditional Encryption

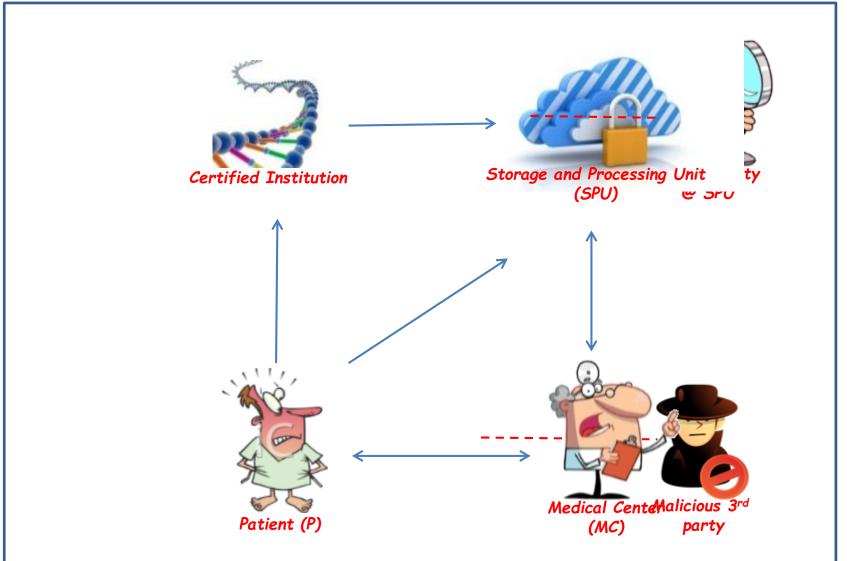
GeneVault

GeneVault – Still to Come

- Partial Retrieval
- Туро
 - When the user incidentally types a wrong password, he will get a plausible sequence
 - Might cause problems if he doesn't realize it and uses it for medical purposes
- Adversary's background knowledge
 - Physical traits, phenotypes (eye color, hair color, etc.)
 - Kinship
 - Can eliminate some (incorrect) keys if the decrypted sequence doesn't indicate those phenotypes
- Operations on the data

MORE ON PROTECTING GENOMIC PRIVACY

Privacy-Preserving Personalized Medicine



Setting and Goals

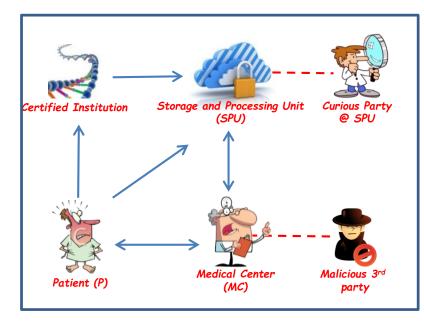
- Setting: A medical center (MC) want to conduct a *genetic* disease susceptibility test on a patient (P)
- Protect the privacy of users' genomic data

Protect data, including from insiders (e.g., curious sysadmins)

- Protect the privacy of medical center's confidential data
- Allow specialists to access only to the genomic data they need (or they are authorized for)
- Keep the access time to a single patient's genomic data to a few seconds

Threat Model

- The certified institution (CI) is a trusted entity.
 - Indispensable to do the sequencing
- An attacker at the MC
 - A careless or disgruntled employee at the MC or a hacker who breaks into the MC
 - Aims to obtain private genomic information about a patient (for which it is not authorized)
- A curious party at the SPU
 - Existence of a curious party or a disgruntled employee at the SPU
- Both MC and SPU follows the protocols properly
- No collusion between the MC and the SPU
- Access control based on patient's consent



Cryptographic Tools

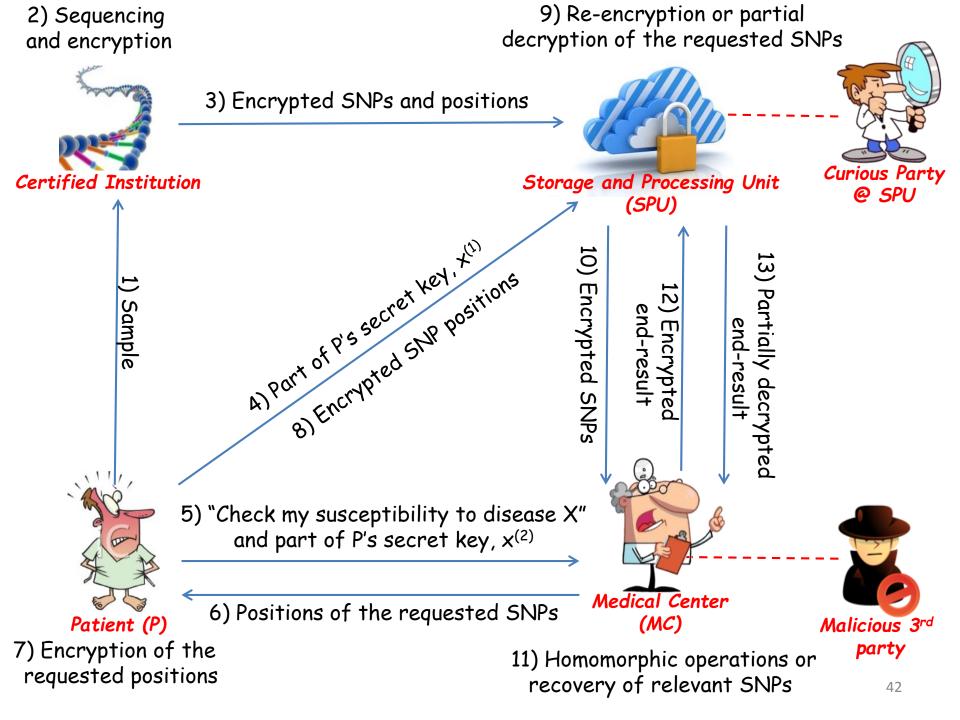
- Modified Paillier Cryptosystem
 - Bresson et. al 2003.
 - Homomorphic addition

 $D(E(m_1, r_1, g^{x_p}) \cdot E(m_2, r_2, g^{x_p})) = D(T_1^1 \cdot T_1^2, T_2^1 \cdot T_2^2 \mod n^2) = m_1 + m_2 \mod n^2$

Multiplication with a constant

 $D(E(m_1, r_1, g^{x_p})^k) = D((T_1^1)^k, (T_2^1)^k \mod n^2) = km_1 \mod n.$

- Proxy re-encryption
 - Divide the weak secret into two shares
 - Distribute the shares to two parties
- Secure multiparty computation (SMC)



Computing Disease Susceptibility

••• SNP_{m-1}^{P} SNP_{m}^{P} SNP_{m+1}^{P} ••• SNP_{n}^{P} P's SNPs: • • • SNP_{ν}^{P} Markers for SNP_m SNP_n SNP_v disease X: **Probabilities:** $\Pr(X|SNP_m^P)$ $Pr(X|SNP_n^P)$ $\Pr(X|SNP_k^P)$ Contributions C_m of markers: $\Pr(X) = \frac{\sum_{i \in \{m,n,k\}} \Pr(X | SNP_i^P) C_i}{\sum_{i \in \{m,n,k\}} C_i}$ P's susceptibility for disease X:

 All operations are conducted in ciphertext using homomorphic encryption

Remarks

- Patient-related steps can be handled via the patient's smart card or mobile device
- Individual contributions of the genetic variant markers remain secret at the MC
 - Homomorphic operations are conducted at the MC
- Solution is possible without the proxy re-encryption by letting the patient decrypt the end-result
 - Secret key of the patient remains only at the patient
 - Useful when the collusion between the SPU and MC is possible
- Does this solve everything?

Quantification of Genomic Privacy

- Privacy is quantified from MC's view-point
- Two types of genetic tests:

– Test 1: MC obtains a subset of SNPs of P

- For complex diseases that homomorphic operations fail
- Privacy loss due to the exposition of a subset of SNPs
- Test 2: MC obtains the end-result of a genetic test
 - Test is conducted at the MC using homomorphic operations
 - Privacy loss due to the exposition of the end-result

Quantification of Genomic Privacy

- What the MC knows?
 - Markers (SNPs) and their contributions to the diseases (for Test 2)
 - Contributions of two alleles (of a SNP) to a disease
 - Linkage Disequilibrium (LD) values between the SNPs
 - LD occurs when SNPs at the two SNP positions are not independent of each other
- Goal:
 - Compute the decrease in privacy of the patient given his revealed SNPs or the end-result of a genetic test
 - Used asymmetric entropy for the quantification
 - Maximize the genomic privacy of the patient via obfuscation methods or policies

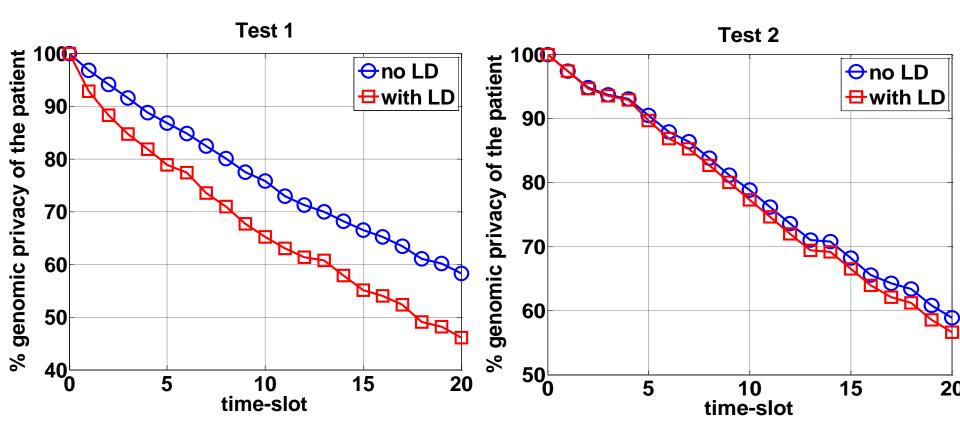
Methodology

- At each time slot, randomly conduct a test
 - Either Test 1 or Test 2
- Test 1:
 - Min number of markers revealed: 10
 - Max number of markers revealed: 15
 - Update the inferred values of non-revealed SNPs using LD
- Test 2:
 - Randomly chose a disease to test
 - Compute the end-result
 - Weighted averaging (to compute the disease susceptibility)
 - Compute the potential end-results using public information
 - Update the inferred values of the non-revealed SNPs using the end-result of the test

Parameters

- Real human DNA profile from 1000 Genome Project
- Consider a particular subset of SNPs
 500 SNPs
- Susceptibility to 40 diseases are determined using these SNPs
- Each disease is associated with at least 1 and at most 15 SNPs
- 12 SNPs are markers of more than one disease
- Real LD values between these SNPs

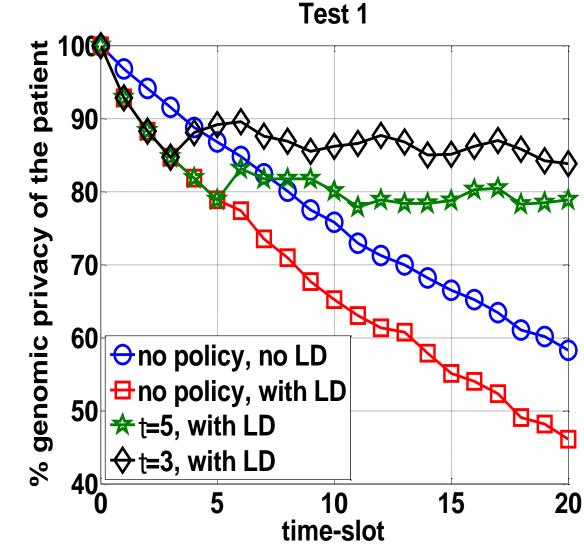
Decrease in Genomic Privacy



- Need to introduce techniques to keep the genomic privacy above a certain level
 - For Test 1: Define policies to delete the revealed SNPs from MC's database
 - For Test 2: Use obfuscation methods on the end-result of the genetic test

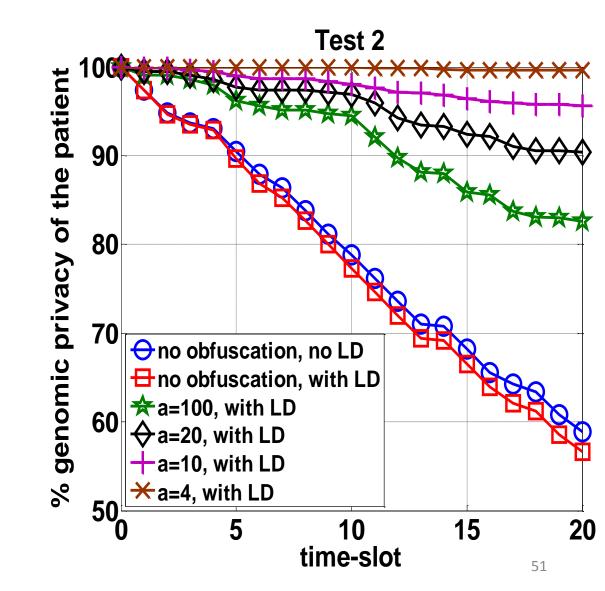
Policies for Test 1

- Delete the revealed SNPs from the MC after t time-slots
 - A set of SNPs in Σ are revealed as a result of Test 1 at time t₀
 - The SNPs in Σ are used to infer other SNPs (via LD) between (t₀, t₀+t)



Obfuscation for Test 2

- Provide the endresult as a range
 - Range can be determined via secure 2PC between the SPU and the MC
- E.g., divide the result range into a=4 ranges:
 - [0,0.25)
 - [0.25,0.5)
 - [0.5,0.75)
 - [0.75,1]



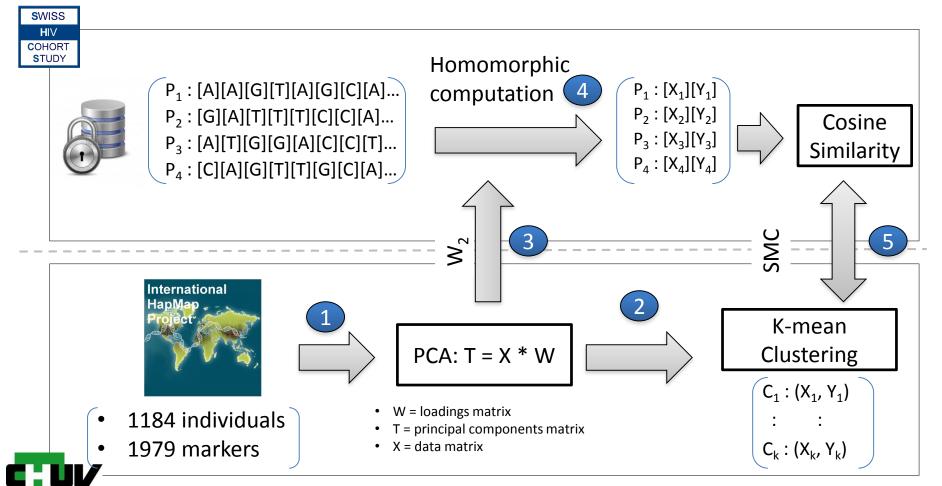
Implementation and Complexity

- Intel Core i7-2620M CPU with 2.70 GHz
- Windows 7
- MySQL 5.5 database
- Java programming language

	@CI	@SPU			@MC	
	Paillier Encryption	Proxy Re- encryption	Re-encryption under the Same Public Key	Storage	Homomorphic Operations	Paillier Decryption
Key Size=2K	0.049 ms./SNP	30 ms.	0.182 ms./SNP)	2.1 GB/patient	43 ms. (10 SNPs)	2 ms.
Key Size=4K	0.168 ms./SNP	42 ms.	0.658 ms./SNP	4.1 GB/patient	173 ms. (10 SNPs)	13 ms.

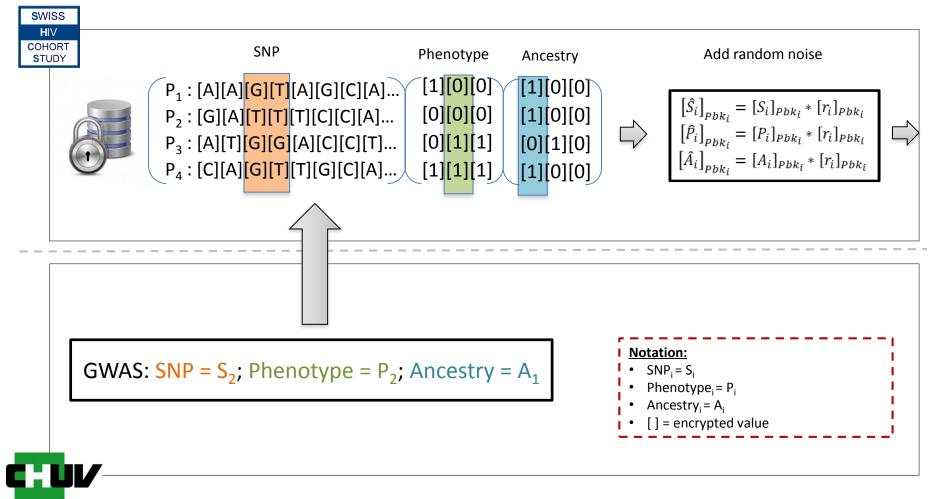
Privacy-Preserving Ancestry Inference

STORAGE AND PROCESSING UNIT (SPU)



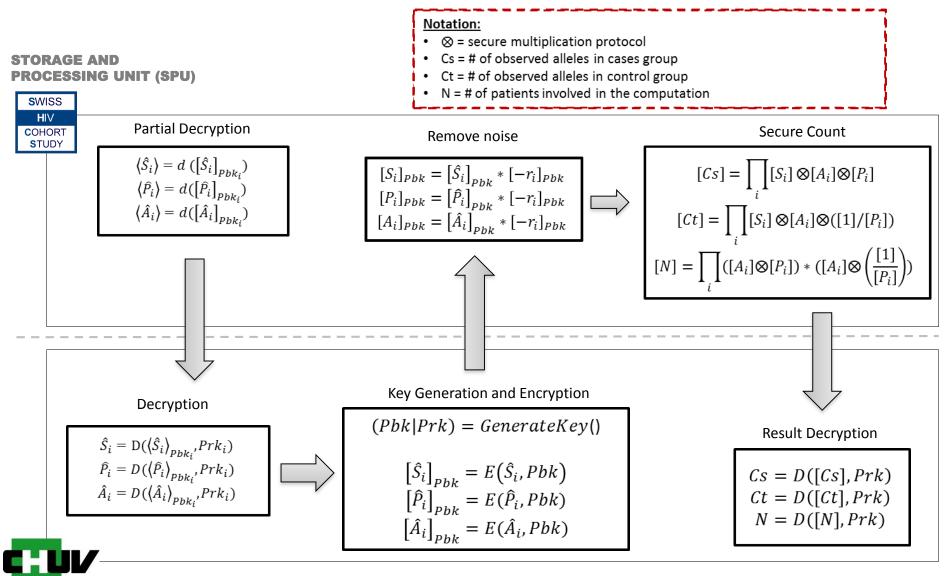
Privacy-Preserving GWAS

STORAGE AND PROCESSING UNIT (SPU)



MEDICAL CENTER (MC)

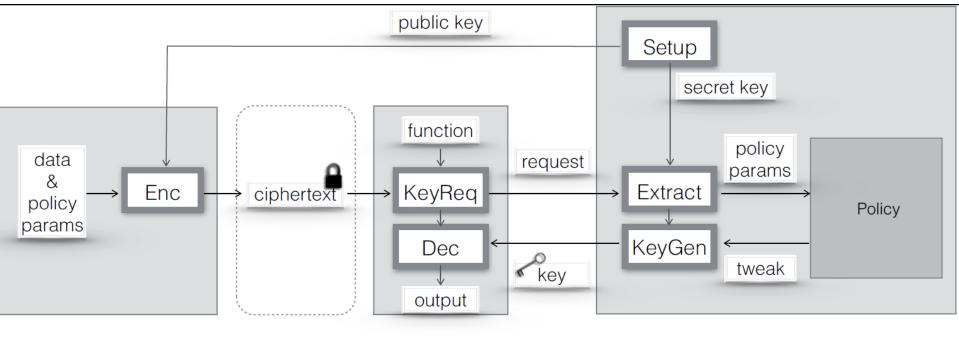
Privacy-Preserving GWAS (cont.)



MEDICAL CENTER (MC)

Functional Encryption

- Similarity between genome sequences
 - Genomic data sharing
 - Finding similar patients

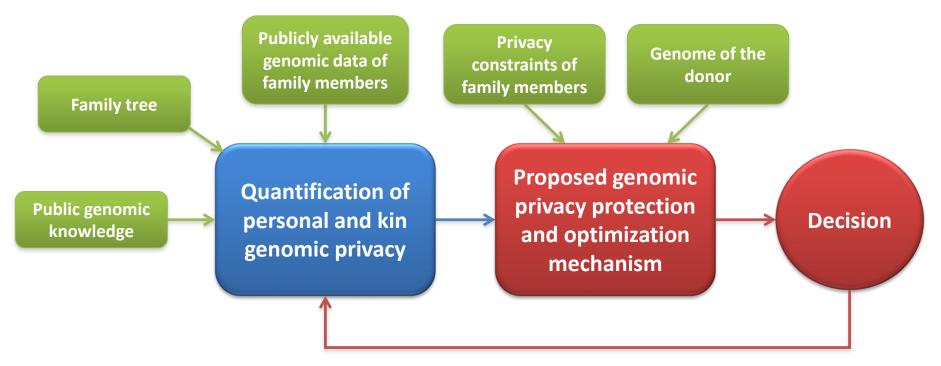


OPTIMIZATION

Information Theoretical Privacy -Back to Henrietta Lacks

- Agreement between the Lacks Family and NIH
- Gives some control to Lacks Family over how *HeLa Genome* is used
 - Working group in NIH reviewing applications

Protecting Kin Genomic Privacy via Optimization



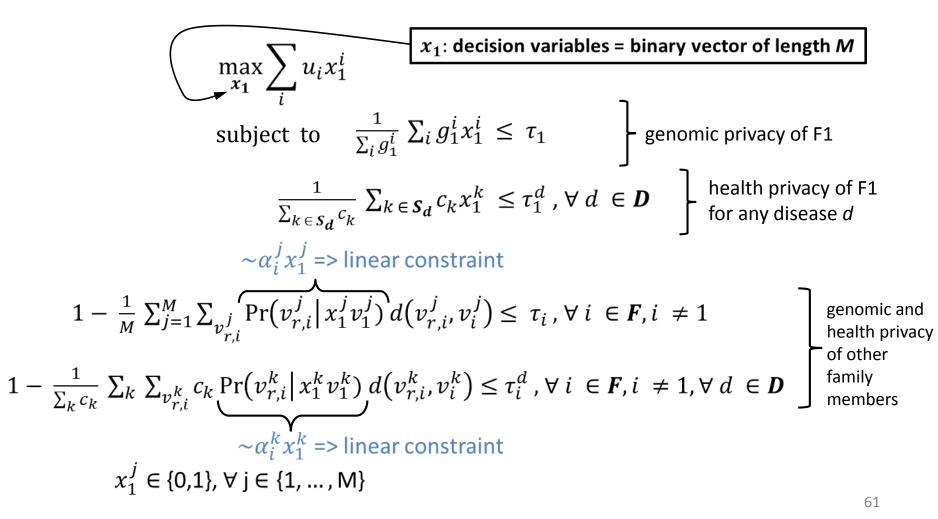
- Decision maker(s): family member(s)
 - One member (*donor*) reveals his genome
 - Other members already (partially) shared their genomic data on the Internet
 - All members have *privacy constraints*
- Decision variables: SNPs to be revealed or not

Goals

- Protect the genomic and health privacy of individuals, considering their personal privacy requirements
 - Each individual has a personal genomic (or health) privacy constraint
 - The donor wants to make sure that both his own privacy constraints and these of his family members' are met after he shares part of his genome
- Make as much genomic data publicly available as possible for genomic research
 - The donor wants to share as much genomic data (e.g., SNPs) as possible
- Potential use:
 - NIH would not need a working group to control the access to the HeLa genome

Optimization Model

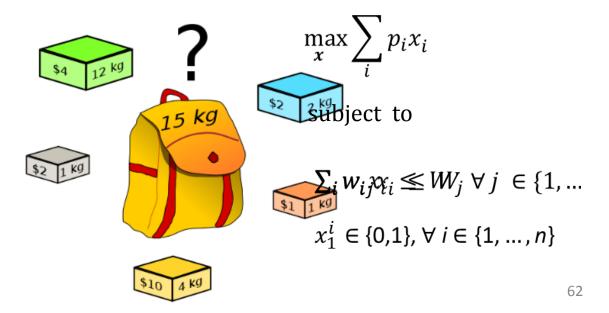
• Assumption: Independent SNPs



Solving the Optimization Model

• The Knapsack Problem:

You are given a container with a limited weight capacity, and some items which each have a weight and a value. Choose which items to place in the container such that the weight limit is not exceeded, but the total value of the items is as large as possible.



Multidimensional 0-1 Knapsack Problem

• Exact methods

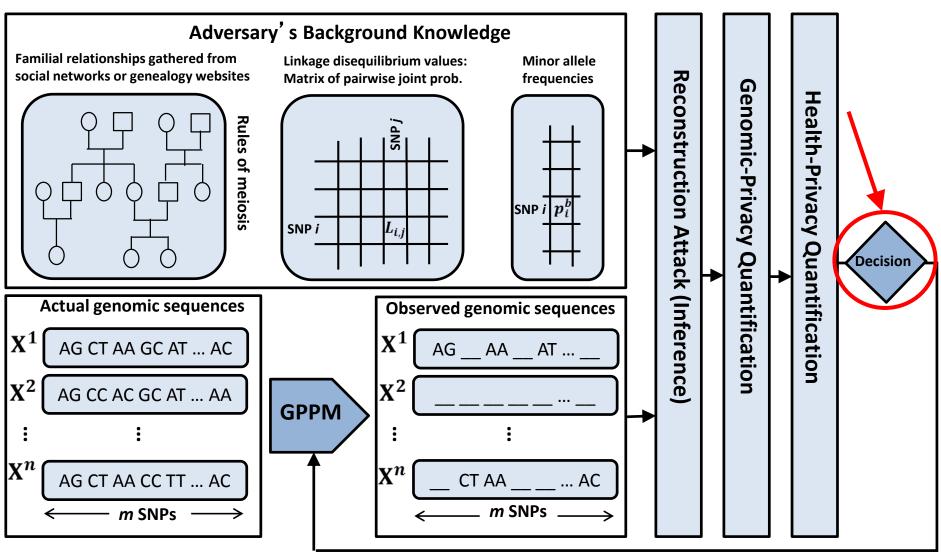
 Often based on dynamic programming and branch-and-bound algorithm

- Scales linearly with the number of constraints

Heuristics

- Competitive alternative to exact methods, especially when the number of constraints is large
- Can achieve lower time complexity while still providing good (but not necessarily exact) solutions

Back to the Framework

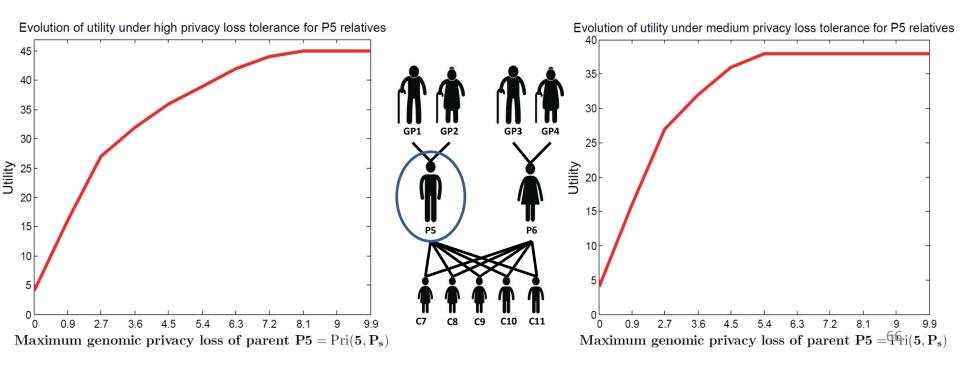


Methodology

- Optimization using *branch-and-bound algorithm*
- Independent SNPs (no LD)
 - Familial relationships affect privacy much more than the LD
- Obtain the first result
 - Set of donor's SNPs that can be publicly revealed
 - Privacy constraints are satisfied
- Iterative Fine-Tuning
- Using LD
- Inference Algorithm Quantification
 - Check the privacy constraints again
- Reveal or hide more SNPs
- Iterate until privacy constraints are satisfied again

Results

- Focus on 50 SNPs
 - Utility: number of SNPs publicly revealed out of 50
- One genomic privacy constraint for each member
 - Each member is tolerant to high privacy loss
 - Each member is tolerant to medium privacy loss



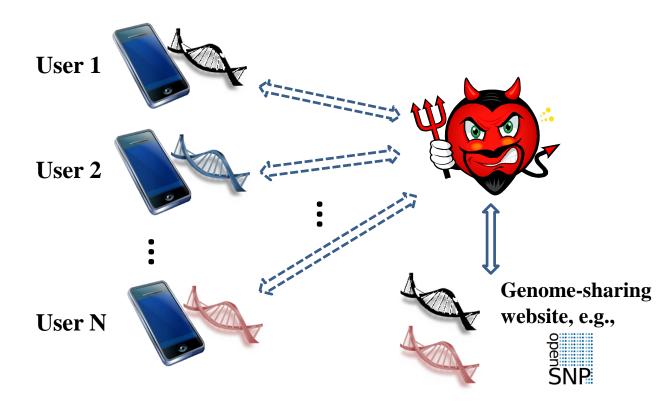
INTERDEPENDENT GENOMIC PRIVACY

Interdependent Privacy Game

- Privacy of family members is inherently interdependent
- If family members are not cooperative (i.e., selfish), then they put other relatives' privacy at risk => externalities
- Similar to «interdependent security (IDS) games» [1]

[1] Laszka A., Felegyhazi M., and Buttyan L., A Survey of Interdependent Security Games, submitted to ACM CSUR, November 2012

System Model



Assumptions: •Users storing their genomes (SNPs) in a mobile device (smartphone, tablet) for various benefits (cf. [2]) •Some users also publicly sharing their genomic data (or sharing them with untrusted parties?), «genetic exhibitionism»

[2] De Cristofaro et al., GenoDroid: Are Privacy-Preserving Genomic Tests Ready for Prime Time?, WPES' 12

Current Deployments

- Swiss HIV Cohort Study:
 - Infrastructure supporting multi-center research project dealing with HIV infected adults
 - Participating clinics of 7 Swiss hospitals
 - Coordination and data center based in Lausanne
 - http://www.shcs.ch/
- Lausanne University Hospital (CHUV)
 - Protection of CHUV biobank 2015
 - Clinical and environmental data
 - Genomic data:
 - 2.5M SNPs / patient
 - 20' 000 patients
 - <u>http://www.chuv.ch/biobanque</u>
 - Mobile Android App for Doctors: GenoPri
- Sophia Genetics
 - Start-up company, on campus; visualization of genomic data
 - Our contribution: protection of raw genomic data
 - <u>http://www.sophiagenetics.com</u>

Future Research on Security and Privacy for Healthcare Data

- Cryptographic and non-cryptographic solutions
 - Differential privacy, membership privacy
 - Trade-off between privacy and utility
- Inference attacks and mitigations
 - Using genomic and non-genomic data
 - Genotype \leftrightarrow Phenotype
- Dynamic access control and database privacy
 - ORAM, PIR for healthcare data
- Protection against different attack models
 - Stronger attacker models
- Economics
 - Incentive of the attacker
- Practical implementations
- Credibility (authenticity) of a genome
- Privacy budget and genomic data sharing

Future Research on Security and Privacy of E-health Platforms

MOBILE

SEMICON & HARDWARE

SENSORS ALGORITHMS

CLOUD & BIG DATA

Conclusion

- Digital medicine is coming
- It will *forever* change the landscape of privacy protection
- Very few researchers have addressed the topic of genome privacy
 - Much more needs to be done in this field
- Our contributions:
 - Inference attacks and quantification
 - Techniques to protect genomic privacy
 - Real-life deployments (hospitals, biobanks, industry)
 - Workshop on Genome Privacy
 - 2014 with PETS, 2015 with IEEE S&P
 - Dagstuhl Seminar on Genomic Privacy (2013 and 2015)

