Security and Privacy in the Age of
Big Data:
The Case of Genomics
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Significance and Popularity of Genomic
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Why Protect Genomic Data?

 Genome carries information about a
person’ s genetic condition and
predispositions to specific diseases

ETHAN HAWKE UMA THURMAN JUDE LAW

— Leakage of such information could cause
genetic discrimination

— Denial of access to health insurance,

-

® Civil Law
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belonging to a victim retrieved from
different sources

e Genomic data is non-revokable

e Law is not universal and hard to enforce

“The Chills and Thrills of Whole Genome Sequencing”
E. Ayday, E. De Cristofaro, J.P. Hubaux, G. Tsudik



Some of Our Contributions

* Inference Attacks and Quantifying Privacy
— Metrics and methods to infer genomic data
— Quantifying kin genomic privacy
— Quantifying genomic privacy in genetic tests

* Protecting Genomic Privacy

— Computational privacy
* Applied cryptographic techniques for usable privacy

— Information theoretical privacy
e GeneVault via HoneyEncryption
* Efficient non-cryptographic techniques

* Interdependent Genomic Privacy



Genomics 101 - DNA and SNP

 The human genome consists of
approximately 3 billion letters

— 99.9% is identical between any two
individuals

— Remaining: human genetic variation

* Single Nucleotide Polymorphism
(SNP): Most common human
genetic variation.

— A single nucleotide (A, C, G, or T)
differs between members of the

same species or paired chromosomes
of an individual

— Disease risk can be computed by
analyzing particular SNPs

* Angelina Jolie BRCA1 Mutation
e 23andMe genetic disease risk tests




INFERENCE ATTACKS AND
QUANTIFYING GENOMIC PRIVACY
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Quantifying Kin Genomic Privacy

openSNP

CC BY inusebilder/Flickr

+1 Add Friend  Follow Message # ¥

e | 563 | =

q 7 ) PRI RN N
G o = Studied UMM

@ Lives HW =
) ® Married to SEER——— ethuse
mhas uploaded genotyping rawda —— 1 o
About Friends Photos Map Followers
LS Download this set (23andme)
Do you know@iiBegy 7o se= what he shares with friends, send him a friend request. You can also follow his public posts
- i 80 Fri See Al
Description Work and Education & Friends See Al
A ariations
Characteristic
Eye color

Handedness

Lactose intolerance

Coffee consumption

white skin

Hair Color

Correlated genetic 1Mo dLiU e ||||y memwers >4 an individual
sharing his/her genome threatens his (known)-relatives” genomic privacy
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How much can we infer
about one s genome?



Big Picture

* Given:
— Family tree
— (Partial) genomes of

one or more family
members

— Public genomic
knowledge

* Minor allele
frequencies

* Linkage
Disequilibrium
REE o (4 * Reproduction
HUMAN A=
GENOME ‘ » (Probabilistically) infer

the unrevealed
genomes
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Quantification and Protection Framework

Adversary’ s Background Knowledge

Familial relationships gathered from Linkage disequilibrium values: Minor allele
social networks or genealogy websites Matrix of pairwise joint prob. frequencies
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Parameters

m : Number of SNPs
n : Number of family members

xij: Value of SNP j for individual i
x'; € {0,1,2}
X: m X n matrix that stores the SNPs of all family members

+— S ns ——>
A 1 o 00 1 H
1 X m m SNPs of the 15t family member
relatives
n n
! 1 X m

15t SNP for n family members
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Reconstruction Attack

* Xy: Set of unknown SNPs
* Xk: Set of known SNPs

* Attacker’s objective: Compute the marginal
probabilities of the SNPs in Xy

— p(xij Xk) = ZXU\{xij}p(XleK’ B),

. p(xijIXK) : Marginal probability distribution of SNP j
for individual i can be obtained from

* p(XylXk, B) : Joint probability distribution function of
the variables in Xy such that:

¢« B = (TR(xMj,ij,ij), L, Gr, P): Background
knowledge of the attacker

14



Efficient Inference Algorithm

* Naive marginalization has computational
complexity O(3™")
— m is on the order of 10s of millions for human
genome

* Run the belief propagation algorithm on a factor
graph to reduce the computational complexity
— Technique developed for trust and reputation
management (Ph.D. thesis)

— Factorize the joint probability distribution function
into products of simpler local functions

— Local functions represent conditional dependences
between variables
* LD and reproduction

— Complexity = O(mn) per iteration

15



Factor Graph Representation

mothﬁb E_/Ether
(=

child

Familial factor nodes

@ father ___Variable
nodes

Familial factor node for
SNP, of the offspring

- LD factor node between SNP,
] and SNP, of the offspring
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Factorization

* Factorize the joint probability distribution function
into products of simpler local functions

* p(XleKJB) .: .
11, ]_[j x"j,G)(x"j),TR(xMj,ij,ij),P)] >

Representing the

familial relationships Representing the correlations

(LD) between the SNPs
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First Round '\Oﬁ
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Second Round ’\oﬁ

Familial factor nodes
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SNP,

Third Round
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Convergence and Quantification

Keep iterating

At the end of each iteration:

— Check the inferred marginal distributions of the SNPs
IN XU
* The marginal probability of each variable in Xy is given by
multiplying all the incoming messages at each variable node

Stop iterations when the values stop changing

Use the inferred values for quantification of
genomic privacy

Quantify w.r.t:

— Attacker’s incorrectness
* Using estimation error metric

— Attacker’s uncertainty
* Using Entropy-based metrics 22



Prlva Cy Metrics xji,t:actualvalue

X : observed SNPs
e Adversary’s incorrectness

Estimation error at SNP i for individual j = iji Pr(xji|Xk) d(xji,xji,t)
e Adversary’s uncertainty [1]

1
log(3)

Normalized entropy at SNP j for individual j = Z — Pr(xf[- | X)) log Pr(x/;| Xi)
xfi

* Mutual information-based metric [2]

H(xJ)=H(xJi|xp) _ H(x/i| X)
H(x/;) ~ H(xJy)

1 — (normalized) mutual information at SNP j for individual j = 1 —

[1] Serjantov, A. and Danezis, G., Towards an information theoretic metric for anonymity, PET 2003
[2] Agrawal, D. and Aggarwal C.C., On the design and quantification of privacy preserving data

mining algorithms, PODS 2001 >



Evaluation - 80k SNPs, w\o LD

Evolution of the genomic privacy of child C7 by gradually revealing the SNPs of
other family members (starting with the most distant family members)

Child C7’s privacy

09l "NL - | =B Estimation error
‘ ~= Normalized entropy
8 o NQ | =0 1 - (mutual information) |

Privacy level

A
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Revealed relatives



Evaluation

Evolution of the genomic privacy of parent P5 by gradually revealing 50 SNPs (out of
100) of other family members (starting with the most distant family members)

Parent P5’s privacy

—E— Estimation error (w/o LD)
09 SRR R AN | =E]= Estimation error (with LD)

—l— Normalized entropy (w/o LD)
-+- Normalized entropy (with LD)

07 ........ ........ ....... @ ...... N, == 1 - mutual info. (wio LD)

'e' 1 — mutual info. (with LD)

Privacy level

C10 C11

O i i i i i i i i
0O GP3 GP4 P6 C7 C8 C9 C10 C11 GP1 GP2 oe
Revealed relatives



Threat in Online Social Networks

 De-anonymized 149 individuals from OpenSNP

— Using other publicly available resources

— (Partially) sharing their genomes (about 1M SNPs each)

* Found the family tree of 47

— Using the family information on Facebook, 23andMe, Geneology.org, etc.
— 3 de-anonymized individuals belong to the same family

e Computed health privacy for Alzheimer’ s disease

Grandfather X Bl Grandmother X

Father X Mother |

Initial Father GM GF



Discussion

Genomes of relatives are highly correlated and some
family members might be opposed to genetic
exhibitionism

Making thousands of human genomes publicly available is
crucial for genomic researchers

“If we are going to solve cancer, it is going to take a
movement of tens of thousands, or hundreds of thousandes,
of patients willing to contribute /nformatlon from their
cancer genomes towards a common good ”

Eric S. Lander, the founding director of the Broad Institute

Trade-off between privacy and utility
Design optimal genomic-privacy preserving mechanisms



PROTECTING GENOMIC PRIVACY



Protecting Genomic Privacy -
Our Solutions

Computational Privacy
— Privacy-preserving personalized medicine
— Privacy-preserving management of raw genomic data (BAM files)

— Privacy-preserving genomic research
* Ancestry inference

e Genome-wide association studies

— Data sharing and finding similar patients using functional
encryption

— Real-life implementations with CHUV, Sophia Genetics, and Swiss
HIV Cohort

Information Theoretical Privacy

— Optimization-based techniques
* Privacy vs. utility
— GeneVault via HoneyEncryption



Operation Mincemeat

e Successful ' THE STRANGEST MILITARY noAx or WORLD WAR 1!

British disinformation plan F"'
during World War |l
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Decoys

* Decoys, fake objects that look real, are a time-
honored counterintelligence tools
* In computer security, we have “honey objects”:

— Honeypots
— Honeytokens, honey accounts
— Decoy documents

* Key question: How can we apply honey objects to
the most pressing computer security / privacy
problems?

— Password breaches in the cloud (Juels et al.)

— Breaches in genome databases



GeneVault

G Cpasswc
DNA sequence seed ciphertext
ATTCGGACGTAA 00101100100101 10110110011110
-1
G Cpasswo
valid but wrong DNA sequence seed’
ACTTATAGGCGA 01111010110000

N—] N

G—l

“PaASSWo

32



GeneVault — Main Challenge

* How to build such a generator G that can
simulate the distribution of genome sequences?

— Naive way: enumerate all genome sequences and
compute their probabilities based on allele
frequencies and linkage disequilibrium (LD)

— Works, but impractical
— Is there a more intelligent way to do so?

| ATTCG... |—?—>| Seed |

33



GeneVault - Example

Transform sequence ACG into a
seed:

Randomly pick a seed 0.6 €
10.588,0.7)

8 bits to encode one seed:
0.6 X 256] = 153
= 10011001, [0, 0.42)

[0, 1)

A . G

[0, 0.7) [0.7,1)

T C T C
[0.42,0.7) [0f7, 0.91) [0.91, 1)

Password “hzc” ' ’ ’ '
c /\G c/\G c/\C c/\G

=> Generate Key:
Gen(“hzc”) =01000110

Ciphertext: '
10011001 (seed)

@ 01000110 (Key) [0, 0.336)

N 11011111 [0.336, 0.42)

[0.42, 0.588) / [0.7, 0.868) \ [0.91, 0.991

[0.588,0.7) [0.868,0.91) [0.991, 1)

34



Logarithm of Interval Size

GeneVault — Security Evaluation

* Probability of a decrypted sequence

40000

| ® Wrong Sequence

‘ Correct Sequence ‘

35000 |

30000 |

25000

20000 -

15000

10000 -

5000 -

<

R TR TR RS

0 200 400 600 800 1000
Password

Traditional Encryption

1200

Logarithm of Interval Size

38400 °
38200}
38000 |
37800}
37600 - g
-200 200 400 600 800 1000
Password
GeneVault

1200



GeneVault — Still to Come

Partial Retrieval
Typo

— When the user incidentally types a wrong password, he
will get a plausible sequence

— Might cause problems if he doesn’t realize it and uses it
for medical purposes

Adversary’ s background knowledge

— Physical traits, phenotypes (eye color, hair color, etc.)

— Kinship

— Can eliminate some (incorrect) keys if the decrypted
sequence doesn’t indicate those phenotypes

Operations on the data



MORE ON PROTECTING GENOMIC
PRIVACY



Privacy-Preserving Personalized
Medicine
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Setting and Goals

Setting: A medical center (MC) want to conduct a genetic
disease susceptibility test on a patient (P)

Protect the privacy of users’ genomic data
— Protect data, including from insiders (e.g., curious sysadmins)
Protect the privacy of medical center’s confidential data

Allow specialists to access only to the genomic data they
need (or they are authorized for)

Keep the access time to a single patient’s genomic data to
a few seconds



Threat Model

The certified institution (Cl) is a trusted
entity.

— Indispensable to do the sequencing
An attacker at the MC

— A careless or disgruntled employee at the
MC or a hacker who breaks into the MC

— Aims to obtain private genomic information
about a patient (for which it is not
authorized)

A curious party at the SPU

— Existence of a curious party or a disgruntled
employee at the SPU

Both MC and SPU follows the protocols
properly

No collusion between the MC and the SPU

Access control based on patient’s consent

577//) a2l
‘2 _ ey 9

Storage and Processing Unit  Curious Party
(sPU) @ sPu

Il
BB

g Medical Center Malicious 3
Patient (P) (MC) party

Certified Institution

40




Cryptographic Tools

 Modified Paillier Cryptosystem
— Bresson et. al 2003.
— Homomorphic addition

[D( E(my,r1,9"")-E(ma,r9, ¢g"?)) = D(Tll Tf Tgl sz mod n?) = my+my mod n]

— Multiplication with a constant

[D(E(mb 71, gmp)k) — D((Tll)k._ (T21)k mod -11.2) = kmy1 mod n. J

— Proxy re-encryption
* Divide the weak secret into two shares
* Distribute the shares to two parties

e Secure multiparty computation (SMC)

41



2) Sequencing 9) Re-encryption or partial
and encryption decryption of the requested SNPs

3) Encrypted SNPs and positions

Certified Institution Storage and Processing Unit €U 'C;”; :3" ty

A (SPVU)
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5) "Check my susceptibility to disease X"
and part of P's secret key, x(?)

\ 4

N

i+i Medical Center
Patient (P) 6) Positions of the requested SNPs

(M) Malicious 3rd
7) Encryption of -’rhe 11) Homomorphic operations or party
requested positions

recovery of relevant SNPs 42



Computing Disease Susceptibility

P's SNPs: | - «|SNP?_,|SNBE |SNPEF_ .|+« +«|SNB? |.+«.|SNPf |- ..

Markers for

disease X: SNP, SNB, SNP,
Probabilities: Pr(X|SNPB;, Pr(X|SNBY) Pr(X|SNP{)
Contributions I I I

Cm Cn Ck,

of markers: \V

P .
P's susceptibility Pr(X) = Lictmn i) Pr(X|SNP])C;
for disease X: Yietmmni) Ci

* All operations are conducted in ciphertext using
homomorphic encryption



Remarks

Patient-related steps can be handled via the patient’s
smart card or mobile device

Individual contributions of the genetic variant markers
remain secret at the MC

— Homomorphic operations are conducted at the MC

Solution is possible without the proxy re-encryption by
letting the patient decrypt the end-result

— Secret key of the patient remains only at the patient

— Useful when the collusion between the SPU and MC is
possible

Does this solve everything?

44



Quantification of Genomic Privacy

* Privacy is quantified from MC’s view-point
* Two types of genetic tests:

— Test 1: MC obtains a subset of SNPs of P

* For complex diseases that homomorphic operations fail
* Privacy loss due to the exposition of a subset of SNPs

— Test 2: MC obtains the end-result of a genetic test

e Test is conducted at the MC using homomorphic
operations

* Privacy loss due to the exposition of the end-result



Quantification of Genomic Privacy

e What the MC knows?

— Markers (SNPs) and their contributions to the diseases (for Test 2)
— Contributions of two alleles (of a SNP) to a disease

— Linkage Disequilibrium (LD) values between the SNPs

* LD occurs when SNPs at the two SNP positions are not independent of each
other

e @Goal:

— Compute the decrease in privacy of the patient given his revealed
SNPs or the end-result of a genetic test

— Used asymmetric entropy for the quantification

— Maximize the genomic privacy of the patient via obfuscation

methods or policies
46



Methodology

* At each time slot, randomly conduct a test
— Either Test 1 or Test 2

* Test 1:
— Min number of markers revealed: 10
— Max number of markers revealed: 15
— Update the inferred values of non-revealed SNPs using LD

e Test 2:

— Randomly chose a disease to test

— Compute the end-result
* Weighted averaging (to compute the disease susceptibility)

— Compute the potential end-results using public
information

— Update the inferred values of the non-revealed SNPs
using the end-result of the test



Parameters

Real human DNA profile from 1000 Genome
Project

Consider a particular subset of SNPs
— 500 SNPs

Susceptibility to 40 diseases are determined
using these SNPs

Each disease is associated with at least 1 and
at most 15 SNPs

12 SNPs are markers of more than one disease
Real LD values between these SNPs



% genomic privacy of the patient

Decrease in Genomic Privacy

Test 1 Test 2
10 r - 10 :
©no LD S ©no LD
90 Hwith LD| E Hwith LD
&s\&&(\ s 90
80 —
< SSeq  ©
70 &
s‘ﬁ 2
)&S‘Sc\ s 70
60 YO
5
50 e ®0 :
1
S
“% 5 10 15 20 9% 5 10 15 2
time-slot time-slot

 Need to introduce techniques to keep the genomic privacy above a
certain level

— For Test 1: Define policies to delete the revealed SNPs from MC’s database

— For Test 2: Use obfuscation methods on the end-result of the genetic test



Policies for Test 1

Test 1

* Delete the
revealed SNPs
from the MC after
t time-slots

-
+

— A set of SNPs in 2
are revealed as a
result of Test 1 at
time t,

©no policy, no LD -0

50E+no policy, with LD
F=t=5, with LD -

— The SNPs in Z are
used to infer other $t=3 with LD
SNPs (via LD) 0 5 10 15 20
between (t,, t,+t) time-slot

% genomic privacy of the patient
\l
o

50



Obfuscation for Test 2

: Test 2
Provide the end- = 10 XX
result as a range o T
— Range can be S M>
. . 90 YV VWV N\
determined via Q
secure 2PC =
between the SPU o gp
and the MC %)
. ©
E.g., divide the 2
result range into 8 70 ©no obfuscation, no LD
a=4 ranges: = H no obfuscation, with LD
— [0,0.25) S GO’A‘azloo, with LD
: GC) Qa:ZO, with LD
— [0.25,0.5) o | +a=10, with LD
— [0.5,0.75) N 50 *a=4, with LD | |
— [0.75,1] 0 5 10 15 20

time-slot -



Implementation and Complexity

 |ntel Corei7-2620M CPU with 2.70 GHz

e Windows 7

MySQL 5.5 database

* Java programming language

@Cli

@SPU

@MC

Proxy Re-encryption Homomorphic Paillier
Paillier Encryption Re- under the Same| Storage . b :
. : Operations Decryption
encryption Public Key
. 2.1 43 ms.
Key Size=2K 0.049 ms./SNP 30 ms. 0.182 ms./SNP) GB/patient (10 SNPs) 2 ms.
: 4.1 173 ms.
Key Size=4K 0.168 ms./SNP 42 ms. 0.658 ms./SNP GB/patient (10 SNPs) 13 ms.

52




Privacy-Preserving Ancestry Inference

STORAGE AND
PROCESSING UNIT (SPU)

HIV

COHORT
STUDY

P, : [AI[AIIG][TI[AIIGIIC][A]...
P, : [GI[AITI[TI[T][CI[C][A]...
P [AITIGIIG][A]LCICI[T]...
P, : [CI[AI[G]ITI[TI[G]IC][A]...

Homomorphic

computation 1 [X]LY4]

P

> P, : [X,I[Y,] Cosine
P5 : [X5][Y5] ..
Pa: (K]IY,] [> Similarity

A %
;Ng

SMC

International

Hap T
- M
ST S, o
“§ AP

e 1184 individuals
e 1979 markers

=)

|

o WV

K-mean
PCA: T=X*W :> Clustering
C,: (X4, Yy)
* W =loadings matrix . -
* T = principal components matrix . .
* X =data matrix Ck : (Xkr Yk)

o

MEDICAL CENTER (MC)
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Privacy-Preserving GWAS

STORAGE AND
PROCESSING UNIT (SPU)

HIV

COHORT
STUDY SNP

Phenotype Ancestry

[1][0][0]"|[1]
[0][0][O] | |[1]
[OI[1][1] | |[O]
[11[2][1] A |[1]

P, : [AI[A[GI[TI[AIIGIIC][A]...
P, : [GI[ALTI[TI[TI[CI[CI[A]...
P [ATI[GIIG][A][CICI[T]...
P, ¢ [CI[AI[G]ITI[TI[G]IC][A]...

0][0
0][0]
[1][0]
0][0]

Add random noise

[«i:]Pbki = [Silpr, * [rilppr,

|:> [pi]pbki = [Pi]ppk; * [1i]pok;

[Ai]Pbki = [Ailpoi; * [1il e,

GWAS: SNP =S,; Phenotype = P,; Ancestry = A;

———————————————————

* SNP;=S§;

* Phenotype;= P,

* Ancestry;= A

* []=encrypted value

Chv

MEDICAL CENTER (MC)

54




Privacy-Preserving GWAS (cont.)

I O B A e e e . T R WS O

rNotation: |
* @ =secure multiplication protocol :
STORAGE AND 1 *© Cs=#of observed alleles in cases group
PROCESSING UNIT (SPU) I » Ct=#of observed alleles in control group l
I « N=#of patientsinvolved in the computation
L---'--—-'_'_-_ T S VN W WS W --'---_'_'_-'
HIV X )
CSTHUODT(T Partial Decryption Remove noise Secure Count
§£ =d SAi a
‘(ﬁ)) - d(([[P]])J [Silpoie = [Si],,, * [=Tilpo cs1= [ [isd@l4:81P]
(i) = d(A ] Pidooe = [P, * [=1ilone | 22> i
1) = (4, Ao = [Ad],, *[=7ilob e = [is®l4deq/p)

)

Ruft [1]
[N] = U([Ai]®[Pi]) - ([A]® (ﬁ))

N -

Decryption Key Generation and Encryption v
- - (Pbk|Prk) = GenerateKey() Result Decryption
S = D((Sl)Pbki,Prkl)
0Pt LD | [y = E(SPOE) Cs = D([Cs), Pri)
A; = D({Ay),,, Prk:) [pi] = E(P,, Pbk) Ct = D(|Ct], Prk)
_ PbE " N = D([N], Prk)
|4i],,, = E(4, Pbk) B '

Chv

MEDICAL CENTER (MC)



Functional Encryption

* Similarity between genome sequences

— Genomic data sharing

— Finding similar patients

Policy

public key
secret key
: function |
data | T FEouest policy
& i § params
policy —_— Enc _3’ ciphertex ——) KeyReq
params ;
Dec |° KeyGenfl <
'*/iey tweak
. output
Data Owner Client Central Authority

56




OPTIMIZATION



Information Theoretical Privacy -

Back to Henrietta Lacks

 Agreement between the Lacks Family and NIH

* Gives some control to Lacks Family over how
Hela Genome is used

— Working group |n NIH rewewmg applications

“There i "a\ cy. ”

° |tisim}
scienti?
these i k

58



Protecting Kin Genomic Privacy via
Optimization

Publicly available Privacy
genomic data of constraints of
family members family members

Genome of the
donor

Family tree

Proposed genomic

privacy protection

and optimization
mechanism

Quantification of
personal and kin
genomic privacy

Public genomic
knowledge

* Decision maker(s): family member(s)
— One member (donor) reveals his genome

— Other members already (partially) shared their genomic data on
the Internet

— All members have privacy constraints
* Decision variables: SNPs to be revealed or not 59



Goals

Protect the genomic and health privacy of individuals,
considering their personal privacy requirements

— Each individual has a personal genomic (or health) privacy
constraint

— The donor wants to make sure that both his own privacy
constraints and these of his family members’ are met after
he shares part of his genome

Make as much genomic data publicly available as
possible for genomic research

— The donor wants to share as much genomic data (e.g.,
SNPs) as possible

Potential use:

— NIH would not need a working group to control the access
to the Hela genome



Optimization Model

 Assumption: Independent SNPs

maxz U Xq
X1 :

l

subject to Z P r i g1x1 =171 } genomic privacy of F1
1

X 1: decision variables = binary vector of length M

1 .
Yres,Cexf <tf,vd €D } health privacy of F1

ZkesyCk for any disease d

~a!x] => linear constraint

A —
1__ PI"V xv d(v? . v J 7., Vi €F,i #1 genomic and
Z 12 J ( | 1 1) (?"l ) L health privacy
[ of other
K family
vk ckPl‘(v |x1v1)d(vru )<Tl Vi €F,i #1,vd €D _J members
Y
k.k _

~a; x1 => linear constraint
x{ €{0,1}, Vj€ {1, .., M}
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Solving the Optimization Model

 The Knapsack Problem:

You are given a container with a limited weight capacity,
and some items which each have a weight and a value.
Choose which items to place in the container such that the
weight limit is not exceeded, but the total value of the
items is as large as possible.

? maxz piX;
‘ m ]ect to

x! €{0,1}, Vi€ {1, ..

Em g Wi}O{fi—<-<—WVjVj €{1,..
<=

,n}
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Multidimensional 0-1 Knapsack
Problem

e Exact methods

— Often based on dynamic programming and
branch-and-bound algorithm

— Scales linearly with the number of constraints

e Heuristics

— Competitive alternative to exact methods,
especially when the number of constraints is large

— Can achieve lower time complexity while still
providing good (but not necessarily exact)
solutions
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Back to the Framework
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Methodology

Optimization using branch-and-bound algorithm
Independent SNPs (no LD)

* Familial relationships affect privacy much more than the LD

Obtain the first result

* Set of donor’ s SNPs that can be publicly revealed
* Privacy constraints are satisfied

Iterative Fine-Tuning
Using LD
Inference Algorithm Quantification
* Check the privacy constraints again
Reveal or hide more SNPs
Iterate until privacy constraints are satisfied again



Results

* Focus on 50 SNPs
— Utility: number of SNPs publicly revealed out of 50
 One genomic privacy constraint for each member

— Each member is tolerant to high privacy loss
— Each member is tolerant to medium privacy loss

Evolution of utility under high privacy loss tolerance for P5 relatives Evolution of utility under medium privacy loss tolerance for P5 relatives
T . . T T T T T T 40 T T T T T T T T T

0 1 1 1 1 1 1 1 1 1 0 | | 1 1 1 1 1 1 1
0 09 27 36 45 54 63 72 81 9 9.9 ¢7 ¢ (9 C10 c11 0 09 27 36 45 54 63 72 81 9 9.9

Maximum genomic privacy loss of parent P5 = Pri(5, Ps) Maximum genomic privacy loss of parent P5 :%’1(5. Ps)



INTERDEPENDENT GENOMIC
PRIVACY



Interdependent Privacy Game

* Privacy of family members is inherently
interdependent

 |f family members are not cooperative (i.e.,
selfish), then they put other relatives’ privacy
at risk => externalities

e Similar to «interdependent security (IDS)
games» [1]

[1] Laszka A., Felegyhazi M., and Buttyan L., A Survey of Interdependent Security
Games, submitted to ACM CSUR, November 2012



User 1

User 2

User N

System Model

Genome-sharing
website, e.g.,

0

Assumptions:

*Users storing their
genomes (SNPs) in a
mobile device
(smartphone, tablet) for
various benefits (cf. [2])
*Some users also publicly
sharing their genomic data
(or sharing them with
untrusted parties?),
«genetic exhibitionism»

[2] De Cristofaro et al., GenoDroid: Are Privacy-Preserving Genomic Tests Ready for

Prime Time?, WPES’ 12
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Current Deployments

e Swiss HIV Cohort Study:
— Infrastructure supporting multi-center
research project dealing with HIV infected adults i

COHORT
STUDY

* Participating clinics of 7 Swiss hospitals

 Coordination and data center based in Lausanne
— http://www.shcs.ch/

* Lausanne University Hospital (CHUV)
— Protection of CHUV biobank 2015

* C(Clinical and environmental data

e Genomic data:

— 2.5M SNPs / patient
— 20’ 000 patients
— http://www.chuv.ch/biobanque

— Mobile Android App for Doctors: GenoPri
* Sophia Genetics

— Start-up company, on campus; visualization of genomic
data

— Our contribution: protection of raw genomic data
— http://www.sophiagenetics.com

Sophia
Genetics
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Future Research on Security and
Privacy for Healthcare Data

Cryptographic and non-cryptographic solutions
— Differential privacy, membership privacy
— Trade-off between privacy and utility
Inference attacks and mitigations
— Using genomic and non-genomic data
— Genotype <> Phenotype

RS IIII \\\\\u(‘ﬁ IIIIL\‘IH /JIIIII_

Dynamic access control and database privacy

— ORAM, PIR for healthcare data ‘ H '
Protection against different attack models

— Stronger attacker models “ ‘
Economics

— Incentive of the attacker \’ ' ./
Practical implementations _—

Credibility (authenticity) of a genome

Privacy budget and genomic data sharing 71



Future Research on Security and
Privacy of E-health Platforms

5 YRS AGO NEAR FUTURE

MOBILE SEMICON & SENSORS ALGORITHMS cLOUD & BEHAVIORAL
HARDWARE BIG DATA SCIENCE’



Conclusion

Digital medicine is coming

It will forever change the landscape of privacy
protection
Very few researchers have addressed the topic of
genome privacy

— Much more needs to be done in this field

Our contributions:

— Inference attacks and quantification

— Techniques to protect genomic privacy

— Real-life deployments (hospitals, biobanks, industry)

— Workshop on Genome Privacy
e 2014 with PETS, 2015 with IEEE S&P

— Dagstuhl Seminar on Genomic Privacy (2013 and 2015)



WE CHECKED YOUR CONFIPENTIAL
MEPICAL RECORDS ON THE
INTERNET, CHEESE AND
ANCHOVIES WOULD BE BAD
FOR YOU, 50 WE LEFT

THEM QFF-.
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