CS 559 Deep Learning

Basics of Neural Network Training

Gokberk Cinbis
Recap: activation functions

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid
Overview

1. **One time setup**
 - activation functions, preprocessing, weight initialization, regularization, gradient checking

2. **Training dynamics**
 - babysitting the learning process, parameter updates, hyperparameter optimization

3. **Evaluation**
 - model ensembles
Data Preprocessing
Step 1: Preprocess the data

(Assume $X [N \times D]$ is data matrix, each example in a row)

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson
Step 1: Preprocess the data

In practice, you may also see **PCA** and **Whitening** of the data

![Graphs showing original data, decorrelated data, and whitened data](image)

- **Original data**
- **Decorrelated data** (data has diagonal covariance matrix)
- **Whitened data** (covariance matrix is the identity matrix)
In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)

Not common to normalize variance, to do PCA or whitening
Weight Initialization
- Q: what happens when W=0 init is used?
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[
W = 0.01 \times \text{np.random.randn}(D,H)
\]
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(D, H) \]

Works ~okay for small networks, but can lead to non-homogeneous distributions of activations across the layers of a network.
Let's look at some activation statistics.

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.
input layer had mean 0.000927 and std 0.998388
hidden layer 1 had mean -0.000117 and std 0.213681
hidden layer 2 had mean -0.000001 and std 0.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean 0.000001 and std 0.002137
hidden layer 5 had mean 0.000002 and std 0.000552
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson
All activations become zero!

Q: think about the backward pass. What do the gradients look like?

Hint: think about backward pass for a W*X gate.
Almost all neurons completely saturated, either -1 and 1. Gradients will be all zero.

*1.0 instead of *0.01
"Xavier initialization"
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation assumes linear activations)
but when using the ReLU nonlinearity it breaks.
He et al., 2015
(note additional /2)
He et al., 2015
(note additional /2)
Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

…
Batch Normalization

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

\[
\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]

this is a vanilla differentiable function...
Batch Normalization

“you want unit gaussian activations? just make them so.”

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

\[\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}, \]

[ioffe and Szegedy, 2015]
Batch Normalization

Usually inserted after Fully Connected / (or Convolutional, as we’ll see soon) layers, and before nonlinearity.

Problem: do we necessarily want a unit gaussian input to a tanh layer?

\[
\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{Var[x(k)]}}
\]
Batch Normalization

 Normalize:

\[
\hat{x}(k) = \frac{x(k) - \mathbb{E}[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]

And then allow the network to squash the range if it wants to:

\[
y(k) = \gamma(k) \hat{x}(k) + \beta(k)
\]

Note, the network can learn:

\[
\gamma(k) = \sqrt{\text{Var}[x(k)]}
\]

\[
\beta(k) = \mathbb{E}[x(k)]
\]

to recover the identity mapping.

[ioffe and Szegedy, 2015]
Batch Normalization

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_\mathcal{B} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma^2_\mathcal{B} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_\mathcal{B})^2 \quad \text{// mini-batch variance} \\
\hat{x}_i &\leftarrow \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B} + \epsilon}} \quad \text{// normalize} \\
y_i &\leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]
Batch Normalization

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.

(e.g. can be estimated during training with running averages)

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson
Babysitting the Learning Process
Step 1: Preprocess the data

(Assume X [NxD] is data matrix, each example in a row)

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson
Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden neurons

CIFAR-10 images, 3072 numbers

input layer

hidden layer

output layer

10 output neurons, one per class
Double check that the loss is reasonable:

```python
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

```python
model = init_two_layer_model(32*32*3, 50, 10)  # input size, hidden size, number of classes
loss, grad = two_layer_net(X_train, model, y_train)  # disable regularization
print loss
```

loss ~2.3. “correct” for 10 classes. c.f. -log(1/10)=2.30

returns the loss and the gradient for all parameters
Double check that the loss is reasonable:

```python
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

```python
model = init_two_layer_model(32*32*3, 50, 10)  # input size, hidden size, number of classes
loss, grad = two_layer_net(X_train, model, y_train, le3)
print loss
```

Loss (=objective here) went up, good. (sanity check)
Let's try to train now...

Tip: Make sure that you can overfit very small portion of the training data

The above code:
- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'
Lets try to train now…

Tip: Make sure that you can overfit very small portion of the training data.

Very small loss, train accuracy 1.00, nice!
Lets try to train now…

I like to start with small regularization and find learning rate that makes the loss go down.

```python
model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X_val, y_val,
    model, two_layer_net,
    num_epochs=10, reg=0.000001,
    update='sgd', learning_rate_decay=1,
    sample_batches = True,
    learning_rate=1e-6, verbose=True)
```

Finished epoch 1 / 10: cost 2.392576. train: 0.88000. Val 0.10300. lr 1.000000e-06
Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

```python
model = init_two_layer_model(32*32*3, 50, 10)  # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X_val, y_val,
model, two_layer_net,
num_epochs=10, reg=0.000001,
update='sgd', learning_rate_decay=1,
sample_batches=True,
learning_rate=1e-6, verbose=True)
```

```
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06
Finished epoch 2 / 10: cost 2.302502, train: 0.121000, val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06
Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10: cost 2.302496, train: 0.180000, val 0.176000, lr 1.000000e-06
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10: cost 2.302459, train: 0.266000, val 0.192000, lr 1.000000e-06
Finished epoch 10 / 10: cost 2.302420, train: 0.190000, val 0.192000, lr 1.000000e-06
finished optimization: best validation accuracy: 0.192000
```

Loss barely changing
Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

Loss barely changing: Learning rate is probably too low
Lets try to train now…

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

Loss barely changing: Learning rate is probably too low

Notice train/val accuracy goes to 20% though, what’s up with that? (remember this is softmax)
Let's try to train now...

I like to start with small regularization and find a learning rate that makes the loss go down.

loss not going down:
learning rate too low

```python
model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X_val, y_val,
                                 model, two_layer_net,
                                 num_epochs=10, reg=0.000001,
                                 update='sgd', learning_rate_decay=1,
                                 sample_batches = True,
                                 learning_rate=1e6, verbose=True)
```

Okay now let's try learning rate 1e6. What could possibly go wrong?
Let's try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

Loss not going down:
learning rate too low

Loss exploding:
learning rate too high

Cost: NaN almost always means high learning rate...
Lets try to train now…

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

loss exploding: learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we should be cross-validating is somewhere [1e-3 … 1e-5]
Hyperparameter Optimization
Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work

Second stage: longer running time, finer search

... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever $> 3 \times$ original cost, break out early
For example: run coarse search for 5 epochs

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-5, 5)
    lr = 10**uniform(-3, -6)

    trainer = ClassifierTrainer()
    model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes
    trainer = ClassifierTrainer()
    best_model_local, stats = trainer.train(X_train, y_train, X_val, y_val,
        model, two_layer_net,
        num_epochs=5, reg=reg,
        update='momentum', learning_rate_decay=0.9,
        sample_batches = True, batch_size = 100,
        learning_rate=lr, verbose=False)

    val_acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)
    val_acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)
    val_acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
    val_acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
    val_acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
    val_acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
    val_acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
    val_acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
    val_acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
    val_acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
    val_acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)
```

Note it’s best to optimize in log space!
Now run finer search...

```python
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-5, 5)
    lr = 10**uniform(-3, -6)

val_acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val_acc: 0.492000, lr: 2.279464e-04, reg: 9.991345e-04, (1 / 100)
val_acc: 0.512000, lr: 8.868827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461000, lr: 1.026377e-04, reg: 1.228193e-02, (3 / 100)
val_acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
val_acc: 0.493000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val_acc: 0.469000, lr: 1.484369e-04, reg: 4.328310e-01, (6 / 100)
val_acc: 0.522000, lr: 5.386261e-04, reg: 2.312685e-04, (7 / 100)
val_acc: 0.530000, lr: 5.806183e-04, reg: 8.259964e-02, (8 / 100)
val_acc: 0.489000, lr: 1.979168e-04, reg: 1.018889e-04, (9 / 100)
val_acc: 0.495000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287607e-01, (11 / 100)
val_acc: 0.460000, lr: 1.135527e-04, reg: 3.905640e-02, (12 / 100)
val_acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
val_acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
val_acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val_acc: 0.514000, lr: 6.438349e-04, reg: 3.633781e-01, (16 / 100)
val_acc: 0.502000, lr: 3.921764e-04, reg: 2.707126e-04, (17 / 100)
val_acc: 0.509000, lr: 9.752279e-04, reg: 2.850665e-03, (18 / 100)
val_acc: 0.509000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val_acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val_acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
```

53% - relatively good for a 2-layer neural net with 50 hidden neurons.
Now run finer search...

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-5, 5)
    lr = 10**uniform(-3, -6)
```

```
val_acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val_acc: 0.492000, lr: 2.279484e-04, reg: 9.991345e-04, (1 / 100)
val_acc: 0.512000, lr: 8.668827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461000, lr: 1.026377e-04, reg: 1.228193e-02, (3 / 100)
val_acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
val_acc: 0.493000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val_acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
val_acc: 0.522000, lr: 5.386261e-04, reg: 2.312685e-04, (7 / 100)
val_acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
val_acc: 0.496000, lr: 1.979168e-04, reg: 1.018889e-04, (9 / 100)
val_acc: 0.496000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val_acc: 0.460000, lr: 1.135527e-04, reg: 3.905640e-02, (12 / 100)
val_acc: 0.515000, lr: 6.947668e-04, reg: 1.562008e-02, (13 / 100)
val_acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
val_acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val_acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
val_acc: 0.502000, lr: 3.921764e-04, reg: 2.707126e-04, (17 / 100)
val_acc: 0.509000, lr: 9.752279e-04, reg: 2.850665e-03, (18 / 100)
val_acc: 0.509000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val_acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val_acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
```

53% - relatively good for a 2-layer neural net with 50 hidden neurons.

But this best cross-validation result is worrying. Why?
Random Search vs. Grid Search

Grid Layout

Random Layout

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson
Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function
Monitor and visualize the loss curve

![Loss curve diagram]

- **very high learning rate**
- **low learning rate**
- **high learning rate**
- **good learning rate**

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson
Loss vs. time
Loss

Bad initialization
a prime suspect
lossfunctions.tumblr.com Loss function specimen
lossfunctions.tumblr.com
lossfunctions.tumblr.com
Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?
Track the ratio of weight updates / weight magnitudes:

```python
# assume parameter vector W and its gradient vector dW
param_scale = np.linalg.norm(W.ravel())
update = -learning_rate*dW  # simple SGD update
update_scale = np.linalg.norm(update.ravel())
W += update  # the actual update
print(update_scale / param_scale)  # want ~1e-3
```

ratio between the values and updates: $\sim 0.0002 / 0.02 = 0.01$ (about okay)

want this to be somewhere around 0.001 or so
Summary

We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)
- Batch Normalization (use)
- Babysitting the Learning process
- Hyperparameter Optimization (random sample hyperparams, in log space when appropriate)
TODO

Look at:

- Parameter update schemes
- Learning rate schedules
- Gradient Checking
- Regularization (Dropout etc)
- Evaluation (Ensembles etc)