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Introduction

I We are considering a scenario in which we have a set of
samples where each sample is modeled by a set of features
(attributes).

I In practical applications, it is not unusual to encounter
problems involving hundreds or thousands of features.

I Intuitively, it may seem that each feature is useful for at
least some of the discriminations.

I In general, if the performance obtained with a given set of
features is inadequate, it is natural to consider adding new
features.
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Problems of Dimensionality

I Unfortunately, it has frequently been observed in practice
that, beyond a certain point, adding new features leads to
worse rather than better performance.

I This is called the curse of dimensionality .
I There are two issues that we must be careful about:

I How is the accuracy affected by the dimensionality (relative
to the amount of available data)?

I How is the complexity of the model affected by the
dimensionality?
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Problems of Dimensionality
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Figure 1: Regression example: plot of 10 sample points for the input variable
x along with the corresponding target variable t. Green curve is the true
function that generated the data.
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Problems of Dimensionality
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(a) 0’th order polynomial
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(b) 1’st order polynomial
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(c) 3’rd order polynomial
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(d) 9’th order polynomial
Figure 2: Polynomial curve fitting: plots of polynomials having various
orders, shown as red curves, fitted to the set of 10 sample points.
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Problems of Dimensionality
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(a) 15 sample points
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(b) 100 sample points
Figure 3: Polynomial curve fitting: plots of 9’th order polynomials fitted to 15
and 100 sample points.
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Problems of Dimensionality

I Potential reasons for increase in error include
I wrong assumptions in model selection,
I estimation errors due to the finite number of samples for

high-dimensional observations (overfitting).

I Potential solutions include
I reducing the dimensionality,
I simplifying the estimation.
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Feature Reduction

I One way of coping with the problem of high dimensionality
is to reduce the dimensionality by combining features.

I Issues in feature reduction:
I Linear vs. non-linear transformations.
I Use of class labels or not (depends on the availability of

training data).
I Objective:

I minimizing classification error (discriminative training),
I minimizing reconstruction error (PCA),
I maximizing class separability (LDA),
I retaining interesting directions (projection pursuit),
I making features as independent as possible (ICA),
I embedding to lower dimensional manifolds (Isomap, LLE).
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Feature Reduction

I Linear combinations are particularly attractive because they
are simple to compute and are analytically tractable.

I Linear methods project the high-dimensional data onto a
lower dimensional space.

I Advantages of these projections include
I reduced complexity in estimation and classification,
I ability to visually examine the multivariate data in two or

three dimensions.
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Feature Reduction

I Given x ∈ Rd, the goal is to find a linear transformation A

that gives y = ATx ∈ Rd′ where d′ < d.
I Two classical approaches for finding optimal linear

transformations are:
I Principal Components Analysis (PCA): Seeks a projection

that best represents the data in a least-squares sense.
I Linear Discriminant Analysis (LDA): Seeks a projection that

best separates the data in a least-squares sense.
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Principal Components Analysis

I Given x1, . . . ,xn ∈ Rd, the goal is to find a d′-dimensional
subspace where the reconstruction error of xi in this
subspace is minimized.

I The criterion function for the reconstruction error can be
defined in the least-squares sense as

Jd′ =
n∑

i=1

∥∥∥∥∥
d′∑

k=1

yikek − xi

∥∥∥∥∥
2

where e1, . . . , ed′ are the bases for the subspace (stored as
the columns of A) and yi is the projection of xi onto that
subspace.
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Principal Components Analysis

I It can be shown that Jd′ is minimized when e1, . . . , ed′ are
the d′ eigenvectors of the scatter matrix

S =
n∑

i=1

(xi − µ)(xi − µ)T

having the largest eigenvalues.
I The coefficients y = (yi, . . . ,yd′)

T are called the principal
components.

I When the eigenvectors are sorted in descending order of
the corresponding eigenvalues, the greatest variance of the
data lies on the first principal component, the second
greatest variance on the second component, etc.
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Examples

(a) Scatter plot.

(b) Projection onto e1.

(c) Projection onto e2.
Figure 4: Scatter plot (red dots) and the principal axes for a bivariate sample.
The blue line shows the axis e1 with the greatest variance and the green line
shows the axis e2 with the smallest variance. Features are now uncorrelated.
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Examples

Figure 5: Scatter plot of the iris data. Diagonal cells show the histogram for
each feature. Other cells show scatters of pairs of features x1, x2, x3, x4 in
top-down and left-right order. Red, green and blue points represent samples
for the setosa, versicolor and virginica classes, respectively.
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Examples

Figure 6: Scatter plot of the projection of the iris data onto the first two and
the first three principal axes. Red, green and blue points represent samples
for the setosa, versicolor and virginica classes, respectively.
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Linear Discriminant Analysis

I Whereas PCA seeks directions that are efficient for
representation, discriminant analysis seeks directions that
are efficient for discrimination.

I Given x1, . . . ,xn ∈ Rd divided into two subsets D1 and D2

corresponding to the classes w1 and w2, respectively, the
goal is to find a projection onto a line defined as

y = wTx

where the points corresponding to D1 and D2 are well
separated.
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Linear Discriminant Analysis

Figure 7: Projection of the same set of samples onto two different lines in
the directions marked as w. The figure on the right shows greater separation
between the red and black projected points.
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Linear Discriminant Analysis

I The criterion function for the best separation can be defined
as

J(w) =
|m̃1 − m̃2|2

s̃21 + s̃22

where m̃i =
1

#Di

∑
y∈wi

y is the sample mean and
s̃2i =

∑
y∈wi

(y − m̃i)
2 is the scatter for the projected samples

labeled wi.

I This is called the Fisher’s linear discriminant with the
geometric interpretation that the best projection makes the
difference between the means as large as possible relative
to the variance.
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Linear Discriminant Analysis

I Generalization to c classes involves c− 1 discriminant
functions where the projection is from a d-dimensional
space to a (c− 1)-dimensional space (d ≥ c).

I We compute the scatter matrices Si as

Si =
∑
x∈Di

(x−mi)(x−mi)
T where mi =

1

#Di

∑
x∈Di

x.

I The within-class scatter matrix SW is computed as

SW =
c∑

i=1

Si.
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Linear Discriminant Analysis

I The between-class scatter matrix SB is computed as

SB =
c∑

i=1

(#Di)(mi −m)(mi −m)T

where m = 1
n

∑
x x is the total mean vector.

I Then, the criterion function becomes

J(W) =
|WTSBW|
|WTSWW|

where W is the d-by-(c− 1) transformation matrix and | · |
represents the determinant.
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Linear Discriminant Analysis

I It can be shown that J(W) is maximized when the columns
of W are the eigenvectors of S−1WSB having the largest
eigenvalues.

I Because SB is the sum of c matrices of rank one or less,
and because only c− 1 of these are independent, SB is of
rank c− 1 or less. Thus, no more than c− 1 of the
eigenvalues are nonzero.
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Examples

(a) Scatter plot.

(b) Projection onto the
first PCA axis.

(c) Projection onto the
first LDA axis.

Figure 8: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.
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Examples

(a) Scatter plot.

(b) Projection onto the
first PCA axis.

(c) Projection onto the
first LDA axis.

Figure 9: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.
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Examples

Figure 10: A hyperspectral image and the first six PCA bands (after
projection).
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Examples

Figure 11: A hyperspectral image and the six LDA bands (after projection).
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Examples

Figure 12: A hyperspectral image and the first six PCA bands (after
projection).
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Examples

Figure 13: A hyperspectral image and the six LDA bands (after projection).
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Examples

Figure 14: Example face images. (Taken from
http://www.geop.ubc.ca/CDSST/eigenfaces.html.)
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Examples

Figure 15: Eigenvectors (principal axes) of the face images (often
referred to as eigenfaces).
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Isometric Feature Mapping

I The isometric feature mapping (Isomap) algorithm
combines the major algorithmic features of PCA and
multi-dimensional scaling with the flexibility to learn a broad
class of nonlinear manifolds.

I A manifold is a topological space that locally resembles
Euclidean space near each point.

I The approach seeks to preserve the intrinsic geometry of
the data, as captured in the geodesic manifold distances
between all pairs of data points.

I The essential point is to estimate the geodesic distance
between faraway points, given only input-space distances.
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Isometric Feature Mapping

I For neighboring points, input-space distance provides a
good approximation.

I For faraway points, geodesic distance can be approximated
by adding up a sequence of short hops between
neighboring points.

I These approximations are computed efficiently by finding
shortest paths in a graph with edges connecting
neighboring data points.
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Isometric Feature Mapping

Figure 16: The “Swiss roll” data set. (A) The Euclidean distance between
two points in the high-dimensional input space (length of dashed line) may
not accurately reflect their intrinsic similarity, as measured by geodesic
distance along the low-dimensional manifold (length of solid curve). (B) The
neighborhood graph G constructed with the closest 7 neighbors allows an
approximation (red segments) to the true geodesic path with the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap
preserves the shortest path distances in the neighborhood graph. Straight
lines in the embedding (blue) now represent cleaner approximations to the
true geodesic paths than do the corresponding graph paths (red).
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Examples

Figure 17: The input consists of 4096-dimensional vectors, representing the
brightness values of 64× 64 pixel images of a face rendered with different
poses and lighting directions. A two-dimensional projection is shown with
horizontal sliders (under the images) representing the third dimension. Each
coordinate axis of the embedding correlates highly with one degree of
freedom underlying the original data: left-right pose (x axis), up-down pose
(y axis), and lighting direction (slider position).
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Examples

Figure 18: Isomap applied to handwritten “2”s. The two most significant
dimensions in the Isomap embedding articulate the major features of the “2”:
bottom loop (x axis) and top arch (y axis).
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Locally Linear Embedding

I The locally linear embedding (LLE) algorithm is based on
simple geometric intuitions.

I Suppose that the data consist of N real-valued vectors xi,
each of dimensionality d, sampled from some underlying
manifold.

I Provided there is sufficient data (such that the manifold is
well-sampled), each data point and its neighbors are
expected to lie on or close to a locally linear patch of the
manifold.
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Locally Linear Embedding

I The local geometry of these patches is characterized by
linear coefficients that reconstruct each data point from its
neighbors.

I The characterization of local geometry in the original data
space is expected to be equally valid for local patches on
the manifold.

I Therefore, each high-dimensional observation is mapped to
a low-dimensional vector representing global internal
coordinates on the manifold.
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Locally Linear Embedding

Figure 19: Steps of LLE. (1) Assign neighbors to data point xi. (2) Compute
the weights Wij that best reconstruct xi from its neighbors. (3) Compute the
low-dimensional embedding vectors yi best reconstructed by Wij .
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Examples

Figure 20: Images of faces, digitized at 20× 28 pixels, mapped into the
embedding space described by the first two coordinates of LLE. The bottom
images correspond to points along the top-right path (linked by solid red line),
illustrating one particular mode of variability in pose and expression.
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Feature Selection

I An alternative to feature reduction that uses linear or
non-linear combinations of features is feature selection that
reduces dimensionality by selecting subsets of existing
features.

I The first step in feature selection is to define a criterion
function that is often a function of the classification error.

I Note that, the use of classification error in the criterion
function makes feature selection procedures dependent on
the specific classifier used.
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Feature Selection

I The most straightforward approach would require
I examining all

(
d
m

)
possible subsets of size m,

I selecting the subset that performs the best according to the
criterion function.

I The number of subsets grows combinatorially, making the
exhaustive search impractical.

I Iterative procedures are often used but they cannot
guarantee the selection of the optimal subset.
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Feature Selection

I Sequential forward selection:
I First, the best single feature is selected.
I Then, pairs of features are formed using one of the

remaining features and this best feature, and the best pair is
selected.

I Next, triplets of features are formed using one of the
remaining features and these two best features, and the best
triplet is selected.

I This procedure continues until all or a predefined number of
features are selected.
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Feature Selection

I Sequential backward selection:
I First, the criterion function is computed for all d features.
I Then, each feature is deleted one at a time, the criterion

function is computed for all subsets with d− 1 features, and
the worst feature is discarded.

I Next, each feature among the remaining d− 1 is deleted one
at a time, and the worst feature is discarded to form a subset
with d− 2 features.

I This procedure continues until one feature or a predefined
number of features are left.
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Examples
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AERIAL::BAND2
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AERIAL_GABOR2::FINE0DEG
IKONOS3::BAND2

AERIAL_GABOR1::COARSE90DEG
AERIAL_GABOR2::FINE90DEG
AERIAL_GABOR1::FINE90DEG

IKONOS3::BAND1
AERIAL_GABOR2::COARSE0DEG

IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::FINE90DEG

IKONOS3::BAND3
IKONOS3::BAND4

IKONOS2_GABOR1::FINE0DEG
IKONOS2_GABOR1::COARSE0DEG

AERIAL_GABOR1::FINE0DEG
IKONOS2_GABOR4::COARSE0DEG

IKONOS2_GABOR4::FINE0DEG
IKONOS2_GABOR4::COARSE90DEG

IKONOS2_GABOR4::FINE90DEG
IKONOS2::BAND4
IKONOS2::BAND2
IKONOS2::BAND3
IKONOS2::BAND1
DEM::ELEVATION

Sequential forward selection

Classification accuracy

Figure 21: Results of sequential forward feature selection for classification of
a satellite image using 28 features. x-axis shows the classification accuracy
(%) and y-axis shows the features added at each iteration (the first iteration is
at the bottom). The highest accuracy value is shown with a star.
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Examples
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AERIAL::BAND3
AERIAL::BAND2

AERIAL_GABOR2::FINE0DEG

Sequential backward selection

Classification accuracy

Figure 22: Results of sequential backward feature selection for classification
of a satellite image using 28 features. x-axis shows the classification
accuracy (%) and y-axis shows the features removed at each iteration (the
first iteration is at the bottom). The highest accuracy value is shown with a
star.
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Summary

I The choice between feature reduction and feature selection
depends on the application domain and the specific training
data.

I Feature selection leads to savings in computational costs
and the selected features retain their original physical
interpretation.

I Feature reduction with transformations may provide a better
discriminative ability but these new features may not have a
clear physical meaning.
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