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Summary:

Normalisation

Data Cleaning: Noise Removal (Filtering)
Data Cleaning: Anomaly Detection

Data Compression: Karhunen-Loeve Transform

Data Cleaning: Noise Removal (ICA)



Why Preprocess Data?

Data can be high in volume and come from multitude of sources
and have variety of attributes

» Real-world data may be noisy, incomplete, inconsistent, corrupted,
have missing values or attributes, outliers or conflicting values, etc.

 Analytical models fed with poor quality data can lead to poor or
misleading predictions

» Quality decisions must be based on quality data: no quality data,
no quality results!



« Data preparation stage tries to resolve such kinds of data issues to
ensure the dataset is acceptable and of sufficient quality

« Data extraction, cleaning, and transformation comprises the
majority of the work of building a data set

« Data preprocessing includes cleaning, instance selection,
normalisation, transformation, feature extraction and selection, etc.

» The product of data preprocessing is the final training set



What Are the Benefits?

» Good data preparation is crucial to producing valid and reliable
models that have high accuracy and efficiency

e |t is essential to spot data issues early to avoid getting misleading
predictions

* High quality data leads to more useful insights which enhance
organisational decision making and improve overall operational
efficiency

« Data preparation conducted cautiously and with analytical mindset
can save lots of time and effort, and hence the costs incurred




Data Preparation Activities
[Dotpreparston Actites | Whatvoder | Fewmwder |

. lgnore respective records havingmissing values orfeatures
Dealingwith Missing Values/Features . Substitute with dummy value, mean, mode, regressedvalues orvalues
predicted by an algorithm
Dealingwith Duplicate values/ Redundant | e Deletion of duplicate or redundant records
Data Cleaning Data
. Binning
Dealingwith Outliers and Noise . Regression (smoothing or curve fitting)
. Clustering {grouping values in clusterto identify and eliminate outliers)
Dealingwith Inconsistent/ ConflictingData | Use of domain expertise, business understanding, human discretionto
correctthe data
Data Integration Dealingwithissueslilke Schema . Joining datasets
{Integrate multiple sources) | integration, entity identification and . Editingmetadatato handle datainconsistencieslike naming, type etec.
redundancy
. Generalization of data . Concept hierarchy climbingto replace low level attributes with high
levelconcepts or attributes {ex. ‘Street’ can be generalized to 'country’)
. Mormalization/ Scaling of attribute | » Z-score method
Data Transformation valuesto a specified range . Min-Max method
. Decimalscaling
. Aggregation . Applying summary oraggregation operatorsto data (ex. Using daily
salesto compute annual sales)
. Feature Construction s Adderreplace withnew features derivedfrom existing ones
. Dimensionality Reductionto . Feature Selection
eliminate insignificant features . Attribute Sampling
Data Reduction . HeuristicMethods
(Reducing datato make it . Aggregation . Use of aggregation techniques {as above)
easyto handle and produce . Data Comprassion . Reducing datasize by usingmethodslike wavelet transform, PCA etc.
similar analytical results) . MNumerousity reductionto have . Record Sampling, Clustering, Regression etc.
smaller datarepresentations
. Generalization . Concept hierarchy generation{as above)
Data Discretization . Unsupervised (nolabelis used) . Binning {equal-width and equal-depth)
{ cont. featuresinto discrete) |[e Supervised{useslabels) . Entropy-based
Feature Engineering . Using orderiving the right features | » Feature Selection

toimprove accuracy of your . Validation & improvement of features
analytical model . Brainstormingto create and fest more features
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Types of Data Sets

Record

- Relational records

- Data matrix, e.g. numerical matrix
- Document data: text documents

- Transaction data

Graph and network

- World Wide Web

- Social or information networks
- Molecular Structures

Ordered

- Video data: sequence of images

- Temporal data: time-series

- Sequential Data: transaction sequences
- Genetic sequence data

Spatial, image and multimedia
- Spatial data: maps
- Image/video data
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Data Object

Data sets are made up of data objects, representing an entity

Examples:

- sales database: customers, store items, sales

- medical database: patients, treatments

— university database: students, professors, courses

Also called samples, examples, instances, data points, tuples, etc.
Data objects are described by attributes, a.k.a. features

Database rows -> data objects; columns ->attributes
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Features/Attributes

Feature (attribute, dimensions, variables): a data field, representing a
characteristic or feature of a data object.

-e.g., customer _ID, name, address

Types:
-Nominal: categories, states, or “names of things”

-Hair_color = {black, brown, blond, red, auburn, grey, white}
-Binary

-Nominal attribute with only 2 states (0 and 1)

-e.g. gender
«convention: assign 1 to the more important state

-Ordinal
-Values have a meaningful order (ranking) but magnitude between successive values is not known
-e.g. Size = {small, medium, large}, grades, army rankings
-Numeric: quantitative
-Interval-scaled
-Ratio-scaled



Normalisation

» Distance measures like the Euclidean distance are very often
used to measure similarity between features/attributes

* Each single attribute may be equally important but such
geometric measures implicitly assign more weighting to features
with large ranges than those with small ranges

* Normalisation is meant to remove such undesired effects



Linear scaling to unit range -
yields a normalised value in the range [0 1] U — 1
I: lower bound and u: upper bound
i i i i N x— I
Linear scallng to unit variance X = —
]

yields a zero mean and unit variance feature

mu: sample mean and sigma: sample standard deviation of the feature

Assuming that each feature is normally distributed, the probability of normalised feature being in the

[-1,1] range is 68%

(x —p)/30+1
2

An additional shift and rescaling as

r=

guarantees 99% of the normalised features are in the [0,1] range



« Transformation to a Uniform random variable

Given a random variable x with cumulative distribution function C(x),
the random variable resulting from the transformation x’ = C(X) is
uniformly distributed in the [0,1] range (can be simply shown)

e Rank normalisation

Given a sample for a feature component for all feature items as x1,...,
xn, find the order statistics and then replace each feature value by its
normalised rank:

rank (x;) — 1
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Normalisation after fitting distributions

« Sample values can be used to find estimates for the feature
distributions to be used to find normalisation methods based
particularly on those distributions

« After estimating the parameters of a distribution, the cut-off
value that includes 99% of the feature values is found and the
sample values are scaled and truncated so that each feature
component have the same range



Normal distribution

likelihood function for the parameters L(g,0” |xy,...,x,) = W exp ( — ) (xi— ;1}2/202)

the parameter estimates are:
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The cut-off value that includes 99% of the feature values may be found as
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Some other possibilities for distribution fitting:

Uniform
Gamma
Chi-squared
Weibull
Beta
Cauchy

etc.

Which normalisation scheme should one follow?



Data Cleaning- Noise Removal

Noisy data is data that is corrupted, or distorted, or has a low
Signal-to-Noise Ratio

Improper procedures to subtract out the noise in data can lead to
a false sense of accuracy or false conclusions

In the presence of additive noise:

Data = f(true signal) + noise, f(.) is a function

Filtering may be used to remove/attenuate noise in the signal:

- Temporal/spatial domain filtering
- Frequency domain filtering



« Spatial domain smoothing (lowpass) filters

- (arithmetic) Mean filtering: a data point is replaced by the average over the values in a
pre-defined neighbourhood

- Geometric mean filtering: a data point is replaced by the geometric mean over the values
in a pre-defined neighbourhood

« Spatial domain order-statistic filtering:

- Max filtering: a data point is replaced by the maximum over the values in a pre-
defined neighbourhood

— Min filtering: a data point is replaced by the minimum over the values in a pre-
defined neighbourhood

- Median filtering: a data point is replaced by the median over the values in a pre-
defined neighbourhood




ab

cd

FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (c) Result
of filtering with
an arithmetic
mean filter of size
3 X 3.(d) Result
of filtering with a
geometric mean
filter of the same
size.

(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)
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FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P, =P =01
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.




6% o &3 o) 5 (T 0 -y - | FIGURE 5.8
b A YRR B, ; {a) Image
cormrupled by
pepper noise with
a probability of
0.1, (b) Image
cormupted by salt
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FIGURE 5.11

(a) Result of
filtering

Fig. 5.8(a) with a
max filter of size
3 % 3.(b) Result
of filtering 5.8(b)
with a min filter
of the same size.




Frequency domain filtering

The 2D Discrete Fourier Transform (DFT)

Defined for a sampled image f(x, y) of MxN pixels:
M-1N-1 (
_ —j2n(ux/ M+vy/ N )
Fluv)=2, X flx.y)e
x=0 y=0
where x=0,1,2..M-1,y=0,1,2..N-1landu=0,1,2..M-1,v=0, 1, 2...N-1.

How do you get back? Use the Inverse transform!

M—-1N-1

Fast changes in the original signal appear as high frequency components
while slow changes in the signal appear as low frequency components
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FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(c) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)

Noise pattern obtained by filtering -



Wiener Filtering

» The presumed signal model: g = f*h+n; “*” denotes convolution

“g" is observed data, “f" is the original data, “h” is degradation function and “n” is the noise
Minimise the mean squared error between the estimate ]fa\nd the original signal f:

Minimise E(f —f )°

- where E(.) is the expected value of the argument

The DFT of the estimated data can be shown to be equivalent to

F(u.v) = |- s |4 v)‘z }G(u v)
- H(u. v) |H(u, ?})|2 + K ’

K is a constant reflecting the ratio of the noise and signal energies

H(u,v) is approximated based on our prior assumption of the degradation function



Left column: image corrupted by additive noise and motion blur. Right column: result of Wiener filtering
* Noise levels decrease from top to bottom



Outlier Detection

Data Cleaning-




 What is an outlier?

- “An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanism” [1]

- Closely related/synonymous terms: anomaly, novelty, surprise, etc.

 Outliers violate the mechanism that generates the normal data

» Applications:

- Data cleaning - Medical analysis
- Detecting measurement errors - Sports statistics
- Public health - Fraud detection

[1] Hawkins D., “Identification of Outliers”, Chapman and Hall, 1980



Types of Outliers/Anomalies

* Point Anomaly
- An object that significantly deviates from the rest of the data set

- Example: Intrusion in computer networks

« Contextual Anomaly
- An object that deviates significantly based on a selected context
- Example: temperature in a particular month



Point anomaly

Contextual anomaly
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How to detect anomalies?

 Different algorithms may be categorised from the point of view of having
access to different data types: normal only, outlier only, or both

* One-Class Classification (OCC)

deals with the problem of identifying objects from the target/positive class, and
distinguishing them from all other objects, typically known as outliers or
anomalies

» Different OCC techniques:
- Boundary methods
- Reconstruction-based methods
- Density-based methods



* In boundary-based approaches, the goal is to optimise a
boundary encompassing the target set of objects

« Example technique: One-Class Support Vector Machine (OC-SVM)[2]

Other data

X.
i

i

Classification
hyperplane

[2] Tax, D.M., Duin, R.P. Support Vector Data Description. Machine Learning 54, 45-66 (2004)



* In the reconstruction-based category, typically, a model is chosen and fit
to the data which makes it viable to represent new objects in terms of

their affinity to the generative model

» Detection is typically based on the reconstruction residual of an object using
the presumed model

« Example technique: PCA (to be discussed)

@ Original points
o (O New points
@ Reconstruction




 The density-based approaches try to estimate the probability density of the
training data followed by setting a threshold on the estimated density

« Several different distributions have been assumed in practice including the
Gaussian or a Poisson distribution

Multivariate Gaussian models

Similar to univariate case
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The Mahalanobis distance is a measure of the distance between a
point P and a distribution D

It is a multi-dimensional generalization of the idea of measuring how
many standard deviations away P is from the mean of D

—1

Squared Mahalanobis distance: (x—u)' >, (x—p)

- H is the sample mean and Z ls the inverse covariance matrix of the data

reduces to Euclidean distance if covariance matrix is identity
The larger the Mahalanobis distance, the more likely to be an outlier!



Mixture Models

Instead of a single parametric model, use multiple models to better capture the
probability density function of the data

Example: Gaussian Mixture Model (GMM) - Week 10

For anomaly detection compute the minimum Mahalanobis distance of an
observation to all mixture components
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Karhunen-Loeve Transform
(Principal Component Analysis)

Motivation

Can reduce the dimensionality: data compression
A linear transformation of the data points

Reduces the correlation between data points

May reduce the noise

May be used for data visualisation

Unsupervised: no labels required

* Given data points in d dimensions
* Convert them to data points in r<d dimensions
* With minimal loss of information




Data Compression
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Data Compression
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Covariance

* Variance and Covariance:
* Measure of the “spread” of a set of points around their center of
mass(mean)
* Variance:
* Measure of the deviation from the mean for points in one dimension
* Covariance:
* Measure of how much each of the dimensions vary from the mean
with respect to each other

* Covariance is measured between two dimensions

* Covariance sees if there is a relation between two dimensions
* Covariance between one dimension is the variance




positive covariance negative covariance
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Positive: Both dimensions increase or decrease together Negative: While one increase the other decrease



Eigenvector and Eigenvalue

AX = AX

A: Square Matirx
A: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

* The zero vector can not be an eigenvector
* The value zero can be eigenvalue

The eigenvectors of the covariance matrix form the bases for
the PCA transformation

The larger the eigenvalue of an eigenvector, the more
important it is



Input: x eRP: D — {Xl,“. T ,XN}

Set of basis vectors: Up,...,UxK

Summarize a D dimensional vector X with K

dimensional feature vector h(x)

h(x)

Uy X
U - X




U=u,...,ug
ui’s are the eigenvectors of the covariance matrix

New data representation h(x)

h(x) = U™ (x — o)

Empirical mean of the data = H’O — %ZQJ,\LI Xr&'



PCA steps

 Mean center the data
« Compute covariance matrix (or the scatter matrix)

« Calculate eigenvalues and eigenvectors of
covariance matrix

— Eigenvector with largest eigenvalue 4, is 18t principal
component (PC)

— Eigenvector with k" largest eigenvalue A, is k" PC
— Proportion of variance captured by k" PC = A,/ X, 4,



Application: Image compression

Original
. . | | Image

e Divide the original 372x492 image into patches

e Each patch is an instance that contains 12x12 pixels on a grid

e View each as a 144-D vector



PCA compression: 144D = 60D




PCA compression: 144D = 16D




PCA compression: 144D = 6D




PCA compression: 144D = 3D




Independent Component Analysis

“Independent component analysis (ICA) is a method for finding
underlying factors or components from multivariate (multi-dimensional)
statistical data. What distinguishes ICA from other methods is that it
looks for components that are both statistically independent, and non-

Gaussian.”

A.Hyvarinen, A.Karhunen, E.Qja

‘Independent Component Analysis’



Independent Component Analysis (ICA) is the identification & separation of

mixtures of sources with little prior information

Applications include:
Denoising

Blind source separation

Medical signal processing
Compression, redundancy reduction
Scientific Data Mining

etc.

ICA seeks directions that are as independent from each other as possible



A set of observations of random variables x;(t), x,(t)...x,(t), where t
is the time or sample index

Assume that they are generated as a linear mixture of independent
components: x=AS, where A is some unknown matrix

Independent component analysis now consists of estimating both
the matrix A and the s,(t), when we only observe the x,(t)



The “Cocktail Party” Problem

Mixing matrix A

Sources

n sources, m=n observations
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Blind source separation

E Observed 1 \‘ / Estimated 1
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Origin 3 i Observed 3 / \_

Unknown



Two Independent Sources

Mixture at two Mics
x,(t) =a;s, +a,s,
X,(t) =a,,s, +a,,Ss,

a,, Depend on the distances of the microphones from the speakers



Goal

4] 200 400 600 800 1000

0 200 400 GO0 500 1000



ICA Model

Xj = a;S; +aps; + .. + a8, for all j
X = AS

IC*s s are latent variables & are unknown AND Mixing matrix A is also
unknown

Task: estimate A and s using only the observeable random vector x
assume that no. of IC‘s = no of observable mixtures

and A is square and invertible

So after estimating A, we can compute W=A-1and hence

s = Wx = A1x



When can the ICA model be estimated?

Must assume:

- The si's are mutually statistically independent
— The si's are non-Gaussian

- (Optional:) Number of independent components is equal to number of observed
variables

« Fortunately, signals measured by sensors are usually quite non-Gaussian

« Then: the mixing matrix and components can be identified [3]
« Avery surprising result!

[3] P. Comon, “Independent component analysis, A new concept?”, Signal Processing, Volume 36, Issue 3,
1994, Pages 287-314, ISSN 0165-1684



How is non-Gaussianity used in ICA ?

Classic Central Limit Theorem:

Average of many independent random variables will have a distribution that
IS close(r) to Gaussian

« S0, roughly: any mixture of components will be more Gaussian than
the components themselves

« Maximising the non-Gaussianity of }wixi, we can find si



Sample non-Gaussian signals




The majority of ICA algorithms include two ingredients:

1. Non-Gaussianity measure

- Kurtosis: a classical measure, but sensitive to outliers

- Differential entropy: statistically better, difficult to compute
- Approximations of entropy: good compromise

2. Optimisation algorithm
- Gradient methods
— Fast fixed-point algorithm (FastiCA)[4]

[4] A. Hyvarinen, "Fast and robust fixed-point algorithms for independent component analysis,” in IEEE Transactions on Neural
Networks, vol. 10, no. 3, pp. 626-634, May 1999.



|ICA for Image Denoising

P we
. i
+9
] .
- b "
* 3
N
H 5
.
zt.‘..

Wiener fiItred._

| CA denoised
(Hoyer, Hyvarinen)

median filtered



